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1 Introduction

At the end of the winter season (November 1st to February 28th), National Grid identifies
the three half-hour periods of highest consumption of electricity, subject to a separation
of at least 10 calendar days. These three periods are called Triads. Thus, the half-hour
in which national demand was highest is the first Triad; the second highest half-hour,
excluding a period of 21 days centred on the first Triad, is the second Triad; and the
third highest half-hour, excluding two periods of 21 days centred on the first and second
Triads, is the third Triad. Historically, Triads always occur on Mondays to Thursdays
between 16:30 and 18:00 hours, and not close to Christmas (which is a period of relatively
low consumption). Figure 1 shows the typical pattern over a winter.

Figure 1: National electricity consumption figures from the winter of 03/04. Diamonds
indicate daily levels; squares indicate dates on which British Energy issued Triad warnings;
and circles indicate those dates on which a Triad was, at the end of the winter, declared to
have occurred.

British Energy supplies electricity to large industrial and commercial customers. Charges
are based on the Transmission Network Use of System (TNUoS) Charges which are levied
by National Grid and passed through to British Energy’s customers. TNUoS includes
a substantial surcharge based on each customer’s usage during the Triad periods: the
higher a customer’s usage during Triads, the higher their overall electricity supply costs.

British Energy, in common with other large commercial electricity suppliers, aims to
reduce National Grid charges for some of its customers by issuing a “Triad warning” on
days when it seems possible that a Triad might later be found to have occurred. Industrial
customers are often encouraged by their contract with British Energy to reduce their
consumption on those warning days. British Energy are restricted by the contract to
issuing a limited number of calls over the entire winter period, anything up to 23.
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A customer who receives a Triad warning may, or may not, take action (e.g. shutting
down their factory early that day). Some – but not all – customers are contractually
required to inform British Energy whether or not they are reducing their consumption.
Therefore British Energy cannot be sure by how much overall consumption will drop if
a warning is issued. Furthermore, the national consumption is also affected by suppliers
other than British Energy who may also have issued a Triad warning.

It is thought that this system may suffer from “negative feedback”. That is, on a
day that is likely to include a Triad period because it has high predicted consumption,
many suppliers will issue warnings, resulting in many customers reducing their actual
consumption, ensuring that the total national demand is actually much lower than
predicted: sufficiently low, in fact, that no Triad occurs, and no warning was actually
necessary. It is expensive for customers to take action when it is not actually required.

British Energy currently uses the deterministic half-hourly consumption forecast issued
by National Grid and the recent and forecast temperatures at hourly intervals at 7
locations around the country to decide on a daily basis whether to issue a Triad warning.
The decision-making tool, called TriFoS, does not currently take into account the possible
problem of negative feedback.

The Study Group was asked to consider ways of compensating for negative feedback. The
next section confirms that feedback is a statistically significant phenomenon. Sections 3
and 4 then use the so-called ‘Full-Information Secretary Problem’ to motivate the
derivation of possible triad-calling strategies. Section 5 examines the possibilities for
issuing triad warnings from analysing historical data.

2 Detecting feedback

It is understood that a Triad warning issued by British Energy will reduce consumption
by around 200 MW, whilst a warning issued by all suppliers (including British Energy)
will reduce consumption on the order of 1200 MW.

An important step was to try to quantify the impact of negative feedback in Triad
forecasting. We expect that the issuing of high-consumption warnings affects the
behaviour of British Energy’s commercial customers, encouraging them to reduce their
consumption. In addition, we expect other supply companies to issue their own
independent warnings or to react to British Energy’s. To investigate this phenomenon
we look at the forecast errors in National Grid’s consumption forecast on those days
when British Energy issued Triad warnings, and compare them to days when warnings
were not issued. It is assumed that National Grid’s own consumption forecasts do not
take into account the effects of Triad warnings, in which case, we expect the forecast
error to be larger on those days when warnings are issued.

We divide the days into 4 categories (which are not mutually exclusive), as follows.

• No Warning: days where no Triad warning was made by TriFoS;
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• Low: days where Triad warnings were made and were deemed low probability by
TriFoS;

• High: days where Triad warnings were made and were deemed high probability by
TriFoS;

• All: days where Triad warnings were made regardless of probability.

Table 1 shows the mean and standard deviation of the consumption forecast error for
these 4 categories. We see that in each case shown here, the mean forecast errors for
days when warnings were issued (All) are larger than on those days when No Warning
was issued. In addition, the mean forecast error for warning days with Low probability
is, in general, larger than for those warning days with High probability. Whilst these
observations are encouraging regarding the detection of feedback a more rigorous test is
required in order to confirm our suspicions.

No Warning Low High All
Period N n μ σ n μ σ n μ σ n μ σ
01–02 109 90 702 661 12 1084 801 7 989 478 19 1049 685
02–03 101 78 759 1162 10 1152 563 13 753 454 23 926 532
03–04 94 76 562 503 10 1250 582 8 1091 378 18 1179 495
04–05 106 88 471 522 15 875 665 3 778 584 18 858 637
05–06 85 62 914 711 15 1055 449 8 1391 839 23 1172 615
01–06 495 394 668 757 62 1064 613 39 997 578 101 1038 598

Table 1: Summary of consumption forecast errors showing the period 2001–2006 (in years)
and the number of data points. The data is subdivided into No Warning days, Low Triad-
probability days, High Triad-probability days, and All Triad days (combining low and high
probability days). The total number of points N , the number of data points of each type n,
the mean μ and standard deviation σ of the forecast errors are presented.

Table 2 shows the P -values from a Student t-test on the difference of the means between
No Warning and each of Low, High and All. The null hypothesis is that there is no
difference in mean forecast error. This is tested against the alternative hypothesis that
the mean error is larger for Low, High and All than for No Warning. The test is done
assuming unequal variances in the samples. The values given are the probabilities of
observing the given result, or one more extreme, by chance if the null hypothesis is true.
Small values of P cast doubt on the validity of the null hypothesis.

The test shows clearly that, taking the data over all years, we can reject the null
hypothesis that the mean forecast errors are the same. Therefore, there is clear evidence
that Triad warnings do affect the measured consumption, and negative feedback is a real
effect.

The TriFoS system used by British Energy performs very well, capturing almost all Triads
in the given number of warnings. Indeed, the current maximum number of warnings
(23) seems a little generous: in all the years for which TriFoS has been in operation, a
considerably smaller number would have been sufficient.
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P -value
Period Low High All
01–02 0.069 0.089 0.027
02–03 0.046 0.514 0.167
03–04 0.002 0.002 0.000
04–05 0.020 0.230 0.012
05–06 0.171 0.080 0.053
01–06 0.000 0.001 0.000

Table 2: P -values from one-sided t-test on consumption forecast error. The values provided
are the probabilities of the corresponding t-statistic.

3 Approaches based on the Secretary Problem

In the Full-Information Secretary Problem (or FISP), one imagines being presented with
a sequence of n values, which are drawn independently from some known probability
distribution.1 One selects (or ‘calls’) r of the n values, in an attempt to include among
the selection the M largest values (assuming always that r ≥ M). However, each value
may be selected only when it is presented, i.e. without knowledge of the values yet to
come, and without going back to any values that have been previously passed over. The
objective is to devise a strategy that maximises the probability of including the M largest
values among the r selections. The problem is known for short as the ‘(r, M) FISP’.

The similarity with the calling of Triads should be clear, with the data values being
estimates of daily peak power consumption. However, the Triad-calling problem has two
important additional features, namely that energy consumption data is:

(1) Correlated. The best way of predicting the weather today is to guess that it will
be the same as yesterday. Similarly, electricity consumption on a given day is not
independent of energy consumption on the previous day.

(2) Subject to negative feedback. If British Energy call a Triad, many of their customers
will reduce their consumption, as will commercial customers of other electricity
suppliers who provide the same service, thereby reducing the consumption below
that predicted.

In order to investigate the effects of these two complications, we will study the FISP
with correlation and feedback. We will not, in this report, attempt to include the effect
of the ten-day window or to add any uncertainty into the prediction, but these points
are discussed further in section 6.

Appendix A reviews the optimal strategy for the (1, 1) FISP, as discussed by Gilbert
and Mosteller [2], which takes the following form. Suppose that the n data values

1The term ‘full information’ refers to the fact that the underlying distribution of data values is
known.
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Figure 2: The decision numbers for the Full-Information Secretary Problem with draws from
a uniform distribution, and their asymptotic approximation for i � 1.

are y1, y2, . . . , yn. Then the best strategy involves an increasing sequence of decision
numbers {bi}, which does not depend on n. The ith data point should be called if

yi > bn+1−i and yi = max(yj, j ≤ i) . (1)

In other words, a value is called if it is both the largest value seen so far and larger
than the decision number bj, where j is the number of values yet to come (including the
current value). Note that b1 = 0, since we always call the final data point if it the largest
in the whole set.

The FISP is most easily studied if the data points are drawn from the uniform distribution
on [0 1], U(0, 1), and for the (1, 1) FISP we then have (see the appendix)

bk+1 =
1

1 + z
, where 1 =

k∑
j=1

1

j

(
k
j

)
zj. (2)

Note that b2 = 0.5. It is straightforward to compute the higher decision numbers
numerically and asymptotically they increase to 1 according to

bi+1 ∼ 1 − 0.80435

i
as i → ∞. (3)

The decision numbers, along with this asymptotic result, are shown in figure 2. The
decision numbers bi are monotonically increasing with i. In practice, the optimal strategy
for n large is to wait, unless a data point very close to unity appears, but, as the end
of the data set approaches and the decision numbers get smaller, the next data point to
come along that is the largest so far should be called. As discussed in [2], the probability
of calling the maximum correctly using this strategy, P (win), is about 0.61 when n = 10,
and 0.58 when n is large.
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Figure 3: Examples of the three possibilities in the (1, 1) FISP with n = 100: the maximum is
called correctly (top figure), the wrong data point is called (middle figure), or the final point
is reached without a call being made (bottom figure).

Other underlying probability distributions for the data values can be accommodated
through mapping to U(0, 1) through the cumulative distribution function, F (y).
Provided that F (y) is continuous and strictly increasing then setting xi = F (yi) generates
values xi that are drawn from U(0, 1). For example, a draw y from the normal
distribution with mean zero and unit variance, N(0, 1), can be mapped to a draw x
from U(0, 1) using

x =
1

2

{
1 + erf

(
y√
2

)}
(4)

where erf is the ”error function” obtained through integrating the normal distribution.
We would expect a reasonable model for electricity consumption data to involve normally
distributed random variables, which can then be mapped to a uniform distribution in
this manner.

The decision numbers on U(0, 1) must be mapped to those for N(0, 1) using (4) to obtain
the correct numbers for the normally distributed version of the problem. Figure 3 shows
the decision numbers and some typical sequences of data points for normally distributed
FISP. Note that the horizontal axis is inverted compared to Figure 2, so that it indicates
the number of points that have been seen, rather that number still to be seen.
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3.1 Framework for incorporating correlation and feedback

In order to model electricity consumption data, we wish to extend the FISP, with
normally distributed data, to take account of correlation and negative feedback. The
model we use assumes a sequence of n data points of the form

yi+1 = (1 − α) yi + N(0, 1), i = 1, 2, . . . , n − 1, (5)

with y1 = N(0, 1). This means that the series is correlated for O(1/α) data points.
With α = 1, this is just the previous case of an uncorrelated draw from N(0, 1), and
with α = 0 it is a random walk. We will study the correlated, (r, M) FISP based on
(5). The Triad prediction problem is closely related to this problem with M = 3 (and
r = 23). In addition, we will assume that, when a call is made, negative feedback reduces
yi to yi − f , with f ≥ 0. We seek the optimal strategy as a function of α, f , r and M .

The random walk without feedback, corresponding to α = 0 and f = 0, was studied
in [3], and we discuss this case in section 3.2. We then extend the analysis to find
analytically the optimal strategy for the (1, 1) uncorrelated FISP with feedback, and
an almost optimal strategy for the (r, 1) uncorrelated FISP with no feedback. For the
general problem, we determine strategies using Monte Carlo simulation, in Section 4.

3.2 Optimal strategy for the (1, 1) FISP with a random walk

The secretary problem for a random walk, (corresponding to (r, M, α, f) = (1, 1, 0, 0) in
the general framework) was studied in [3], where it was shown that the optimal strategy is
to observe the first k data points, and then pick the next data point that is larger than all
the previous points. This is similar to the standard, zero information secretary problem,
see [2], where the optimal strategy is the same, and k ∼ n/e as n → ∞. However, for
the random walk, this strategy is optimal for all k. The proof involves rearrangements of
the sequence of data points, and is not given here. In particular, choosing the first data
point, and choosing the final data point are both optimal strategies. It is also shown in
[3] that the probability of winning using any of these strategies is asymptotic to 1/

√
πn

for n large. Finally, we note that, as long as2 b1 = −∞, so that the final data point is
chosen if it is a maximum, any sequence of decision numbers bi, possibly including ±∞,
gives an optimal strategy.

3.3 Optimal strategy for the (1, 1) FISP with feedback

This case has α = 1 and f > 0. We can adapt the method used by Gilbert and Mosteller,
[2], described in appendix A, to incorporate feedback. Consider the position when the
current data point, chosen from N(0, 1), is y, we have yet to call a maximum, there
are k data points still to come, and y − f is the largest value to appear so far. If we

2Recall that zero in U(0, 1) maps to −∞ in N(0, 1).
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Figure 4: The decision numbers for the Full-Information Secretary Problem with data taken
from N(0, 1), with feedback.

call a maximum, the probability that we are correct is equal to the probability that the
remaining k data points are less than y − f , which is (Φ(y − f))k, where

Φ(y) =
1√
2π

∫ y

−∞
e−

1
2
s2

ds ≡ 1

2

{
1 + erf

(
y√
2

)}

is the cumulative density function for N(0, 1).

If we don’t call a maximum and continue, and j of the remaining data points are greater
than y, we will correctly call a subsequent maximum if the largest remaining data point
is ym > y + f and the remaining j − 1 points are less than ym − f . The probability of
calling the maximum correctly in this case can therefore be written as∫ ∞

y+f

{Φ(ym − f) − Φ(y)}j−1 P (ym) dym,

where

P (ym) ≡ 1√
2π

e−
1
2
y2

m ,

is the point probability of drawing ym from N(0, 1). The appropriate decision number
for the current data point is the value of y at which the probability of winning by calling
a maximum and the probability of winning by not calling a maximum are equal. This
gives us

(Φ(y − f))k =
k∑

j=1

(
k
j

)
(Φ(y))k−j

∫ ∞

y+f

{Φ(ym − f) − Φ(y)}j−1 P (ym) dym. (6)

Note that when f = 0, (6) is equivalent to (2) with z = (1−Φ(y))/Φ(y), since P = dΦ/dy.

It is straightforward to solve (6) numerically, and figure 4 shows the decision numbers for
various values of f . We can see that, as we might expect, the decision numbers increase
with f .

D-9



0 0.5 1 1.5 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

f

P
(w

in
)

 

 
n = 50
n = 100
n = 250

Figure 5: The probability of winning in the Full-Information Secretary Problem with feedback
f , for various n.

We have not attempted to calculate the probability of winning analytically, but have
estimated it using Monte Carlo simulation with 105 trials. Figure 5 shows the probability
of winning as a function of f . Clearly, feedback has a significant effect on the probability
of calling the maximum, which decreases monotonically with f . In addition, although
P (win) asymptotes to a constant value as n → ∞ when f = 0, this does not appear to
be the case for f > 0, and we conjecture that P (win) → 0 as n → ∞.

3.4 An almost-optimal strategy for the (r, 1) FISP

We return now to the case with no correlation and no feedback, but allow several calls
to be made. We can extend the method used by Gilbert and Mosteller, [2], described
in appendix A, which works when r = 1, to find a strategy for uncorrelated FISP with
r > 1. Once we have a strategy for the cases r < S, then we have a strategy for the case
r = S once a single call has been made. In particular, we look for a strategy involving
decision numbers bR

i , for i = 1, 2, . . . , n and R = 1, 2, . . . , r, such that a call should be
made if, with R calls remaining in hand, yi > bR

n+1−i and yi = max(yj, j ≤ i). It is easiest
here to work with data points taken from the uniform distribution, U(0, 1), transforming
the results as required to other distributions.

Consider the position when the current data point, x, is the largest so far, we have R
calls available, and there are k data points still to come. If we call a maximum, the
probability that either x is the maximum or we will still be able to call the maximum
with one of our R − 1 remaining calls, is composed of two parts, say P1 + P2. These
are, firstly, the probability that no more than R − 1 of the remaining k data points are
greater than x,

P1 =
R−1∑
j=0

(
k
j

)
xk−j (1 − x)j ,

and secondly, the probability P2 that, if there are j ≥ R data points remaining that are
bigger than x, then they are ordered so that the R − 1 remaining calls suffice to find

D-10



the maximum. For example, consider the situation when R = 5 and j = 6, and the 6
remaining data points bigger than x are x6 > x5 > x4 > x3 > x2 > x1 > x. Then,
if these data points are ordered, for example, x1x2x3x4x5x6, the R − 1 = 4 remaining
calls will be used up on the first 4 data points, and x6, the maximum, will not be called.
However, if they are ordered, for example x2x3x1x4x6x5, the data points x2, x3, x4 and
x6 will be called, which includes the maximum. The data point x1 is effectively shielded
by the data point x2 > x1, which appears earlier in the sequence.

In general, if the maximum data point is the Ith that is larger than x, it is the ordering of
the I−1 preceding data points that concerns us. Let Nβ

γ be the number of permutations
of x1 < x2 < . . . < xβ such that our decision process would have to make a total of γ
calls to reach the end of the sequence. (That is, γ is the smallest number of calls needed
to include the maximum xβ as one of the calls.) For the two examples given above,
β = 6. In the first case γ = 6 calls would be made, and in the second, γ = 4 calls would
be made. We can find a recurrence relation for Nβ

γ by noting that all sequences of length
β +1 can be made by adding a new data point, x0 < x1, to each sequence of length β, in
every possible position. The number of calls increases by one if the point is added to the
left hand end of the sequence, but remains unchanged otherwise. For example, starting
from the sequence x2x3x1x4x6x5, which leads to 4 calls, and adding x0 < x1, we obtain

x2x3x1x4x6x5x0,
x2x3x1x4x6x0x5,
x2x3x1x4x0x6x5,
x2x3x1x0x4x6x5,
x2x3x0x1x4x6x5,
x2x0x3x1x4x6x5,

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

4 calls required, x0x2x3x1x4x6x5, 5 calls required.

This example shows how Nβ
γ affects both the values Nβ+1

γ and Nβ+1
γ+1 . This means that

Nβ+1
γ = Nβ

γ−1 + βNβ
γ ,

which, along with the condition N0
0 = 1, N0

γ = 0 for γ > 0, completely defines Nβ
γ .

However, this is precisely the definition of the unsigned Stirling numbers of the first kind
(see [1] for a discussion), and the usual notation is

Nβ
γ ≡

[
β
γ

]
.

The mathematical details of this approach (P2 and an equation for the decision numbers)
are given in appendix B.

It is straightforward to solve for the decision numbers numerically, and figure 6 shows
them up to r = 10. As we might expect, the decision numbers become smaller as r
increases, since, with more calls available, we can use them more liberally. It is also easy
to show that bi+1 = 1 + O(i−1) for i � 1, but we omit the details here. We can now see
why this strategy is not optimal. We constructed it by assuming that we would always
choose a data point greater than the largest called so far, since the decision numbers
bn+1−i decrease monotonically with i. However, after making a call with R calls in hand,
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Figure 6: The decision numbers for the Full-Information Secretary Problem with draws from
a uniform distribution and r calls, for r up to 10.

we switch to the decision numbers appropriate for R − 1 calls in hand, which means
that the decision number increases discontinuously after each call. There is therefore
the possibility of a data point arriving that is bigger than the largest point called so far,
but smaller than the appropriate decision number, contradicting the assumptions that
underlie the construction. We shall however see in the next section that our strategy is
close to optimal.

Finally, figure 7 shows the probability of calling the maximum as a function of r when
n = 100. The probability of calling the maximum increases with r, and is greater than
0.99 when r = 5. Also shown is the probability of winning using the simpler strategy
suggested by Gilbert and Mosteller, [2], which uses a sequence of decision numbers that
depends upon r, but is independent the number of calls made. As we would expect, the
strategy derived here gives a slightly higher probability of calling the maximum.

4 Optimal strategies by Monte Carlo simulation

In order to investigate the cases for which we cannot derive an optimal strategy
analytically, we will use Monte Carlo simulation. Before outlining the procedure, we
need to take note of two features of the problem.

Optimal strategy with feedback and more than one call (f > 0, r > 1)

With just one call available, r = 1, we showed in section 3.3 that we can derive the
optimal strategy. In particular, it is clear that we should not make our call until the
current data point exceeds by more than f the largest data point to appear so far, since
feedback will otherwise reduce it too far for it to remain a maximum. When r > 1, the
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Figure 7: Probability of calling the maximum with r calls, from Monte Carlo simulation with
105 trials and n = 100. Also shown is the strategy due to Gilbert and Mosteller [2].

situation is not so clear. If we use this approach at every data point, we may discard a
sequence of increasing data points, and push ever higher the threshold above which we
will actually call. An alternative strategy is, if we have more than one call still available,
to make a call whenever the current data point exceeds the greatest value not called.
Although we know that we will not necessarily call a maximum, we will reduce the value
of the called point by f , so that the threshold does not increase. We can then, with one
of our remaining calls, hope to call a data point that is large enough that, even with
the effect of feedback, it is actually a maximum. This is the strategy that we adopt
below. However, we might envisage cases where the current data point only exceeds
the previous maximum by a small amount, in which case we would not want to waste
a call on it. This suggests that an optimal strategy involves an additional sequence of
numbers, {δR

i (f)}, such that with i data points and R possible calls remaining, we call
if the current data point exceeds the previous maximum by more than δR

i . We might
expect that δR

i 
 1 when R � 1 and that δ1
i = f . We have yet to investigate this more

sophisticated strategy further. In effect, we assume that δ1
i = f and δR

i = 0 for R > 1.

Optimal strategy for calling more than one maximum (M > 1)

When the M > 1 largest data points are to be called, the optimal strategy is very
difficult to calculate, since the decision number depends not only on how many data
points remain, but also the relative sizes of the previous data points and, once a call
has been made, the size of the data points called. As an example, we can study the
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(2, 2) FISP. Consider the situation when we have yet to make a call. If we try to use
the method described earlier, we must calculate the probability of calling the two largest
data points, firstly if we call the current data point, and secondly if we do not call the
current data point. If we make a call, the probability of winning is the probability that,
of the remaining k data points, just one is bigger than the second highest data point
seen so far, which is not the current data point, but the previous highest data point. In
other words, the optimal strategy must depend upon not only the current data point,
but also the previous highest data point. The decision numbers are therefore functions
not just of i and R, but also of, in this example, the previous highest data point, and in
general, the previous M − 1 highest data points. It may be possible to sort this out in
principle, and even in practice, but we have not attempted to do so here. Instead, we
look for decision numbers b

(R,M)
i that are dependent only upon i, R and M , as described

below.

4.1 Monte Carlo simulations with M = 1

4.1.1 Numerical method

In principle, when successive data points are correlated, we could use the methods
described in section 3 to calculate the decision numbers. However, in practice, it is not
possible to determine analytically the probabilities of winning by calling or not calling
a given data point, because of the complicated conditional probabilities that need to be
calculated. Instead, we calculate the decision numbers numerically using Monte Carlo
simulation. Specifically, if we know the decision numbers br

i for 1 ≤ i < j and bR
i for

1 ≤ i ≤ n and 1 ≤ R < r, we can calculate br
j numerically. Using n = j, we can calculate

the probabilities of winning by calling the first data point, Pc, and by not calling it, Pnc,
using Monte Carlo simulation, evolving yi using (5), including the effect of feedback if
necessary, since we know the decision numbers for the subsequent j − 1 data points. In
this manner we can compute G(y1) ≡ Pc − Pnc. By construction, bj is the solution of
G(y1) = 0. Since we compute G by Monte Carlo simulation, we cannot rely on it being
smooth, so we use a bisection method to find the root. This works well in practice until
the probabilities Pc and Pnc both become either small or close to unity. In these cases,
the function G eventually becomes too noisy to work with. In the results that follow,
we have used Monte Carlo simulation with 105 trials to estimate G. Finally, note that,
since we know that bR

i = −∞ for 1 ≤ i ≤ R (the final R data points should be called
if they are maxima), we have a place to start our calculation, and therefore a practical
algorithm for calculating the decision numbers.

4.1.2 Validation for the (r, 1) FISP and (1, 1) FISP with feedback

We begin by validating our numerical method against the analytical results that we
obtained earlier. Figure 8 shows the decision numbers for the (r, 1) FISP calculated
both numerically, by Monte Carlo simulation, and analytically using the results of
section 3.4. Although, as we discussed above, the analytical decision numbers, shown
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Figure 8: The decision numbers for the (r, 1) Full-Information Secretary Problem, as given
by the solutions of (11) (solid lines), and by Monte Carlo simulation (points).

as solid lines, cannot be precisely optimal, they are in good agreement with the optimal
decision numbers calculated by Monte Carlo simulation, which are slightly lower. In
particular, the strategy when r = 1 (the standard (1, 1) FISP) is in excellent agreement.
We conclude that the analytically determined strategy is close to optimal. Note that,
as r increases past five, the probability of winning gets close enough to unity that our
method for determining the decision numbers numerically loses accuracy, which leads to
the noise in the calculated decision numbers evident in figure 8.

Figure 9 shows a comparison between the analytically and numerically calculated decision
numbers for (1, 1) FISP with feedback. Again there is good agreement.

4.1.3 Results for the (r, 1) FISP with correlation and feedback

Now that we have some confidence in our Monte Carlo simulations, we can investigate
the effect of correlation and feedback. Figure 10 shows the decision numbers for (1, 1)
FISP with correlation. As α (in Equation 5) decreases, the decision numbers become
larger, which reflects the tendency of the data points to wander further from zero. When
α = 0.01, the correlation extends over about 100 data points, and the series is close to a
random walk. This is why the decision numbers are so noisy in this case, since, as we saw
in section 3.2, when α = 0, any sequence of decision numbers with b1 = −∞ provides an
optimal strategy. This is consistent with figure 11, which shows the probability of calling
the maximum as a function of α. The circle shows the analytical result, P (win) ∼ 1/

√
πn

for n � 1 and α = 0. Figure 12 shows the decision numbers for α = 0.5 and various
r. As r increases, the decision numbers become more noisy, again reflecting the fact
that the probability of calling the maximum becomes close to unity. The probability of
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Figure 9: The decision numbers for the (1, 1) Full-Information Secretary Problem with
feedback, as given by the solutions of (6) (solid lines), and by Monte Carlo simulation (points).
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Figure 10: The decision numbers for the (1, 1) Full-Information Secretary Problem with
correlation, but no feedback (f = 0), calculated by Monte Carlo simulation.
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Figure 11: The probability of calling the maximum for the (1, 1) Full-Information Secretary
Problem with correlation, but no feedback (f = 0), and n = 100 data points, calculated by
Monte Carlo simulation.

calling the maximum is shown in figure 13 for various values of r as a function of α. It
is clear that, even with correlation, the probability of winning rapidly approaches unity
as r increases, unless α is close to 1/n, which is equal to 0.01 in this case.

Finally, we present some results with f = 0.5. Figure 14 shows the decision numbers
when f = 0.5 and the data points are uncorrelated (α = 1). One striking feature of this
plot is the gap between the decision numbers for r = 1 and those for r = 2, which is
significantly larger than the gaps between the remaining sets of decision numbers. This
is probably because the optimal strategy involves the additional sequence {δr

i }, described
earlier. In our simulations, we call a maximum whenever a new largest point arrives,
even if we know that feedback will reduce it below the threshold, until we have just one
call remaining, when we have to exercise more caution. The probability of calling the
maximum using these decision numbers is shown in figure 15, and is significantly smaller
for a given r than when there is no feedback (see figure 13). Figures 16 and 17 show
the results when f = 0.5 and α = 0.2. Although the decision numbers are somewhat
larger than those shown in figure 14, the probabilities of calling the maximum shown
in figure 17 are not very different from those when there is no correlation, shown in
figure 15, which suggests that feedback is the dominant mechanism that determines the
probability of success.
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Figure 12: The decision numbers for the (r, 1) Full-Information Secretary Problem with
correlation α = 0.5, but no feedback (f = 0), calculated by Monte Carlo simulation.
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Figure 13: The probability of calling the maximum for the (r, 1) Full-Information Secretary
Problem with correlation, but no feedback (f = 0), and n = 100 data points, calculated by
Monte Carlo simulation.
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Figure 14: The decision numbers for the (r, 1) Full-Information Secretary Problem with no
correlation (α = 1), and feedback f = 0.5, calculated by Monte Carlo simulation.
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Figure 15: The probability of calling the maximum for the (r, 1) Full-Information Secretary
Problem no correlation (α = 1), and feedback f = 0.5, and n = 100 data points, calculated
by Monte Carlo simulation.
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Figure 16: The decision numbers for the (r, 1) full information secretary problem with
correlation α = 0.2, and feedback f = 0.5, calculated by Monte Carlo simulation.
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Figure 17: The probability of calling the maximum for the (r, 1) full information secretary
problem correlation α = 0.2, and feedback f = 0.5, and n = 100 data points, calculated by
Monte Carlo simulation.
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4.2 Monte Carlo simulations with M > 1

As discussed earlier, the optimal strategy in this case depends explicitly on the previous
data points. We will not attempt to unravel this here, but instead propose a simpler
strategy. We will assume that there are sequences of decision numbers, {b(r,m)

i }, with
1 ≤ m ≤ M , which govern the selection of the first M calls when m calls remain to
be made. However, once we have called at least M data points, we make another call
only if the current data point is larger than the Mth largest of those already seen. It
seems likely that this strategy is close to optimal since, as we saw above, our analytically
determined strategy for the (r, 1) FISP is close to optimal, even though it was constructed
on precisely this basis (with at least one call made, call if the current point is the largest
so far). We can calculate the decision numbers numerically in the same way as we did
for the case M = 1. However, for these calculations, we used just 104 trials, since the
algorithm required to sort out the position of the current data point relative to those
called so far is rather time consuming, so that the accuracy of the following results is
somewhat lower than those described above.

4.2.1 Results for the (r, M) FISP

Figure 18 shows the decision numbers when r = M , with neither correlation nor feedback.
Note that, for example, the decision numbers for the (3, 3) FISP are given by the third
largest set in figure 18, but, once a call has been made, switches to the next largest
curve, which is also appropriate for the (2, 2) FISP, and so on. As we might expect, the
decision numbers decrease with M , since we need to select more points. Figure 19 shows
the associated probabilities of calling all M maxima, which obviously decrease with M ,
but perhaps not by as much as one might expect. The decision numbers needed for the
(5, 3) FISP are shown in figure 20. We find that the probability of calling all three of the
largest data points is 0.32, 0.60 and 0.79 for r = 3, 4 and 5 respectively, and n = 100.

Results for the (r, M) FISP with correlation and feedback

Since we now have a large parameter space to explore, we will restrict our attention to a
case that seems relevant to the triads problem, namely α = 0.2 (correlation over about
five data points), f = 0.5 and M = 3, for various values of r. Figure 21 shows the three
sets of decision numbers for r = 10, 15 and 20. We can see that, as r gets larger, the
sets become closer to each other. This is in line with British Energy’s current practice,
where a single threshhold (decision number) is used to decide whether or not to call.
Although one of the r = 20 sets is a little different from the other two, this is probably
due to numerical error, since it contains the decision numbers for the (18, 1) FISP, for
which the probability of calling the maximum is greater than 0.99. Figure 22 shows the
probability of calling the three largest data points as a function of r. This is greater than
0.9 when r ≥ 18. Also shown for comparison are the same probabilities when there is
no feedback and/or no correlation. Just as we found when M = 1, the effect of feedback
on these probabilities is significantly greater than the effect of correlation. This is an
aspect of the problem that could be investigated further.
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Figure 18: The decision numbers for the (M,M) Full-Information Secretary Problem with no
correlation or feedback (α = 1, f = 0), calculated by Monte Carlo simulation.
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Figure 19: The probability of calling the M largest values for the (M,M) Full-Information
Secretary Problem with no correlation or feedback (α = 1, f = 0), calculated by Monte Carlo
simulation for n = 100.
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Figure 20: The decision numbers needed to solve the (5, 3) Full-Information Secretary Problem
with no correlation or feedback (α = 1, f = 0), calculated by Monte Carlo simulation.
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Figure 21: The decision numbers needed to solve the (10, 3), (15, 3) and (20, 3) Full-
Information Secretary Problems with correlation α = 0.2 and feedback f = 0.5, calculated by
Monte Carlo simulation.
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Figure 22: The probability of calling the 3 largest values for the (r,M) Full-Information
Secretary Problem with correlation α = 0.2 and feedback f = 0.5, calculated by Monte Carlo
simulation for n = 100. In order to compare the effects of correlation and feedback, the results
for α = 1 and/or f = 0 are also shown.

5 Criteria based on analysis of historical data

As previously described, the current algorithm used by British Energy, implemented
by TriFoS, is extremely effective. However, in this section we consider alternative or
additional criteria that might be used for deciding whether to issue a Triad warning.
Such criteria would involve rewriting the TriFoS algorithm and are therefore unlikely to
be implemented; however, they are interesting in their own right.

Notation:

(1) We define the actual Peak Power consumption on a given day in year n as Ca(i, n)
with 1 ≤ i ≤ 120 representing the date and n the year. Here we take n in the range
1 ≤ n ≤ 5 corresponding to years 2001/02 to 2005/06 and dates from 1/11/n to
28/2/(n + 1). Forecast Peak Power consumption Cf (i, n) is defined similarly.

(2) From Ca(i, n) and Cf (i, n) we define C̃a(i, n) and C̃f (i, n) which are the ordered
Peak Power consumptions, with C̃a(1, n) > C̃a(2, n) > · · · > C̃a(120, n).

Notes:

(1) For technical reasons, historical figures are not available on every single day. The
number of total Actuals and Forecasts are given in Table 3.
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Year Number of Actuals Number of Forecasts
2001/02 60 58
2002/03 55 52
2003/04 60 57
2004/05 64 63
2005/06 64 64

Table 3: Number of Actual and Forecast Peak Power levels recorded.

(2) In 2005/06 Scotland was included for the first time. In order to compare C̃a(i, 5)
with C̃a(i, n), n < 5, we subtract an estimated consumption for Scotland using the
estimate Ca(i, 5) − 1

4

∑4
n=1 Ca(i, n).

(3) It is important when comparing consumption from year to year to attempt to make
sure that we are looking at data collected in the same way. Hence we have only
used C̃a(i, n) and C̃f (i, n) for i in the range 1 ≤ i ≤ 50.

(4) We assume that TriFoS is able, or can be adapted, to produce a good forecast of
the actual consumption Ca(i, n) on a given day i, either with or without taking
into account the effects of negative feedback. We also presume that this forecast
is better than that given by National Grid. Although actual consumption and
the National Grid forecast are clearly well correlated (with a correlation coefficient
of 0.95; see Figure 23), we find that the National Grid forecast minus the actual
consumption, for the year 05/06, has a mean of 881 with a standard deviation of
556. Least-squares fit of a straight line gives a slight slope, but is not very different
to the line with height equal to the mean (see again the figure). The higher National
Grid estimate is partially but not entirely due to negative feedback.

It is clear from this graph that a year-by-year comparison on a given day will have
quite a large random element in it.

Aims:

(1) We want to attempt to remove as much as possible of the random element in the
figures, and to do that we compare the ordered forecasts, C̃a(i, n).

(2) We then want to see if we can make a good estimate of when we should issue a Triad
warning, assuming that a good estimate of the actual consumption is available.

(3) The days close to an actual Triad are excluded because of the ten-day rule. If
we filter these out then the top three in the amended list are the Triads. The i
associated with the C̃a(i, n) of the Triads form a subsequence relating where the
Triads appear in the ordered list. We note here that for the available data all Triad
days have i < 20, as is given in Table 4.
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Figure 23: National Grid forecast and actual consumption for 2005/06. The top two curves
are respectively the forecast and the actuals. The lower curve is the difference, with the lower
line representing the axis and the upper line the mean of 881.

Year Triad 1 Triad 2 Triad 3
2001/02 1 2 17
2002/03 1 2 14
2003/04 1 4 11
2004/05 1 4 14
2005/06 1 9 12

Table 4: The ordinal i associated with each Triad.
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Figure 24: Graph joining the points C̃a(i, n) for fixed i and 1 ≤ n ≤ 5, with the Scottish
average subtracted in the year 2005/06.

Figure 24 is a piecewise continuous graph joining the points C̃a(i, n) for fixed i with
1 ≤ n ≤ 5, where the estimated Scottish average of 6991 is subtracted to make data
uniform from year to year. The top 40 of these graphs are shown and the circles represent
the average of the top 40 for a given year. Suppose we define the signature of each graph,
for example (+,−, +,−), as the sign of the piecewise derivative, that is the sign of the
slope of the graph between year n and n+1 for a fixed value of i. It is clear that C̃a(1, n)
dominates, in that its signature is shared by most of the other graphs as we vary i. The
average also has this same signature and thus is a good indicator of the shape of each
graph for fixed i.

From these observations, the average is not the only feature that determines the top
structure in the ordered list: the signature is also an important feature. In order to
predict this structure accurately it is therefore good to use at least two parameters. For
issuing Triad warnings, the objective is to predict the level of consumption C̃a(20, n)
from the previous years’ data and any data so far available for the current year to date.
The average of C̃a(20, n) still shows a sizable random element from year to year as is
seen from the circles in Figure 24 and in Table 5. While the difference shows that the
average is well approximated by the average of the top 40, as we would expect, there is
a larger random yearly element.

We now turn our attention to the best parameters to determine the values of C̃a(i, n)
in the ordered list. As we indicated earlier we require two parameters and this suggests
that we should be looking at a straight line fit.

Figure 25 plots C̃a(i, n), for n fixed and i in the range 1 ≤ i ≤ 40, and the best straight
line fit. All 5 years are superimposed: it is not really important to know which year is
which, it is the distribution of errors that is important. Figure 26 shows the error of the
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Year C̃a(20, n) Average Difference
2001/02 49791 49859 −68
2002/03 50872 51376 −504
2003/04 51001 51168 −167
2004/05 51572 51616 −44
2005/06 57868 57995 −127

Table 5: Comparison between C̃a(20, n) and the average of the top 40.
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Figure 25: Graphs joining the points C̃a(i, n) for a fixed n, with the best straight line fit.

D-28



–400

–200

0

200

400

600

800

1000

10 20 30 40

Figure 26: Errors in the straight-line fit of the top 40.

Year C̃a(15, n) Linear C̃a(20, n) Linear C̃a(25, n) Linear
fit fit fit

2001/02 50033 50059 49791 49742 49440 49424
2002/03 51595 51493 50872 50980 50576 50466
2003/04 51326 51261 51001 51020 50810 50778
2004/05 51766 51761 51572 51593 51431 51425
2005/06 58349 58244 57868 57938 57712 57631

Table 6: Comparison between C̃a(i, n) and the linear fit for i = 15, 20 and 25.

linear fit, equal to the difference between C̃a(i, n) and the linear fit. All five years show
that the trend errors are positive at the start and finish, that is the highest and lowest
consumption is underestimated by this fit, and negative in the middle (15 ≤ i ≤ 25). It
should be noticed that the range of errors in Figure 26 is approximately (−450, 1000)
while it is reduced to approximately (−450, 100) for 15 ≤ i ≤ 25. However the range of
each individual year is much less. Figure 27 and Table 6 emphasise this by comparing
the consumption with a linear fit of the consumption in the range 15 ≤ i ≤ 25. We see
that this fit predicts the consumption in the range to within an error of ±110.

Summary and analysis of data

The Peak Power consumption on a given day and year, Ca(i, n), varies from year to year
and exhibits considerable random fluctuation. The ordered Peak Power consumption,
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Figure 27: Errors in a straight-line fit restricted to 15 ≤ i ≤ 25.

C̃a(i, n), shown in Figure 24 displays much less fluctuation from year to year. We also
show in Figure 25 that for a fixed year the ordered Peak Power consumption can be well
approximated by a straight line. However we should remember that Figure 25 also shows
that there is considerable variation of this fit from year to year. The error in the straight
line fit of the top forty is shown in Figure 26, while the goodness of fit of the top 15 to 25
is shown in Figure 27, which shows that the absolute error is less than 110. We should,
of course, point out that while it is easy to fit this straight line “after” the event, that is
at the end of the year, it is more difficult to predict this fit at the beginning of the year.
However tables 4 and 5 show that if we are able to predict the value of C̃a(20, n) we
should be able to predict, and thereby issue a warning for, all the likely Triad events. If
we do issue warnings for all of the top 20 then the problem of negative feedback should
almost disappear, because we expect to have caught all the Triads.

Predicting the value of C̃a(20, n)

While predicting the value of C̃a(20, n) is the main aim, we suggest that the best strategy
is to predict the linear fit. This requires two parameters, either the mean and the slope,
or perhaps better using two points. We suggest that we take C̃a(15, n) and C̃a(25, n).
However we should remember that we are not actually trying to predict C̃a(15, n) and
C̃a(25, n) but merely the straight line, which will then give not only give an estimate of
C̃a(20, n) but also an estimate of the error in the predicted value. We also note that a
quadratic fit requires three points and a cubic four points which would be very difficult
to forecast accurately.

We can get some prior estimate from Table 6, taking into account that Scotland is
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included in the consumption figures now. What is then required is to update these
estimates in the light of the consumption figures of early November, before the likely
period of the first Triad date, and throughout the year as more data comes in. We have
not attempted to do this. However we should remember that an estimated linear fit will
not have as good error bounds as the actual fit and this should be taken into account
when deciding whether to issue a warning. The best suggestion is for this alternative
method to be used in a trial period running simultaneously with the present TriFoS
method and comparing the results at the end of the year to see which gives the better
results.

6 Conclusions and further work

We began the study by conducting an analysis of the errors in National Grid’s
consumption forecasts, which revealed a statistically significant dependence on whether
or not Triads calls had been issued by British Energy. This result confirms that negative
feedback is present in practice. We then went on to consider two broad ways of
approaching the question of identifying Triads as they occur, based on extensions of
the Full-Information Secretary Problem, and a direct analysis of historical data.

Methods based on the Full-Information Secretary Problem

We have shown that by studying (r, 3) Full-Information Secretary Problem with feedback
and correlation we can gain some insight into the Triads problem, and that our results,
which suggest that about 18 calls are needed to be able to find the three largest data
points 90% of the time, are in line with the experience of British Energy. Our results
also indicate that negative feedback may be a more important issue than the correlated
nature of the data. We were also able to derive some new analytical results for the (r, 1)
FISP and (1, 1) FISP with feedback.

In order to make these simulations more realistic, we would need to include the effect of
the ten-day window, and add some uncertainty into the prediction. For example, this
uncertainty could take the form of a value chosen from a normal distribution and added
to each data point after the decision to call or not has been taken. The optimal, or at
least a good, strategy then needs to be more complicated. We would wish to call data
points whose predicted value is not one of the three largest so far, but is sufficiently large
that uncertainty may make them so.

In addition, we note that the Triad problem has two more subtle aspects in practice.
Firstly, the aim should be to maximise the expected number of triads called, not to
maximise the probability of calling all three triads. However, when the probability of
the latter is close to unity, the expected number of triads called is sure to be close to
three. Secondly, British Energy would like to minimise the number of calls made. This
has not been addressed here, as we have assumed that a fixed number of calls, r, is
available. It would be worth looking at the results again to assess the expected number
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of calls, which is likely to be less than r when r is large, but we have not attempted this
here.

Methods based on analysis of historical data

If peak daily consumptions through the winter are placed in decreasing order, then the
Triad days always seem to fall within the top 20. Since British Energy has at least 20
calls available, calling the top 20 will catch the actual Triads (as above, this line of
thinking does not attempt to minimise the number of calls made). We therefore looked
at ways of predicting the twentieth highest daily consumption and found that, within
each year, a simple linear fit to the ordered daily peak consumptions may be sufficient.
Although there is significant variation from year to year, it may be possible to use actual
data from early November in each year to parameterise the linear fit for that year before
any of the Triads occur.

A Optimal strategy for the (1, 1) FISP

Following Gilbert and Mosteller [2] for the case of data points drawn from U(0, 1),
consider the position when the current data point, x, is the largest so far, and we have
yet to call a maximum, with k data points still to come. If we call a maximum, the
probability that we are correct is equal to the probability that the remaining k data
points are less than x, which is xk. If we don’t call a maximum, but choose the next
value higher than x, the probability that we win when there are j data points remaining
that are higher than x is equal to the probability that the highest of these j data points
comes first in the sequence,

1

j

(
k
j

)
xk−j (1 − x)j ,

where (
k
j

)
≡ k!

j!(k − j)!
.

The appropriate decision number for the current data point is the value of x at which
the probability of winning by calling a maximum and the probability of winning by not
calling a maximum are equal. This gives us

xk =
k∑

j=1

1

j

(
k
j

)
xk−j (1 − x)j ,

or, defining z = (1 − x)/x,

1 =
k∑

j=1

1

j

(
k
j

)
zj. (7)

This equation is straightforward to solve numerically, and gives x = 1/(1 + z) = bk+1.
For example, when k = 1, (2) reduces to z = 1, and hence b2 = 0.5, as we would expect
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when there is just one data point remaining. We also note that the right hand side can
be written as an integral, so that (2) becomes

1 =

∫ z

0

(1 + s)k − 1

s
ds. (8)

Although this formulation has no advantage over (2) for numerical evaluation, we can
see that, when k � 1, z = O(1/k), so that, if we define z = z̄/k, s = s̄/k, (8) becomes,
at leading order as k → ∞,

1 =

∫ z̄

0

es̄ − 1

s̄
ds̄, (9)

which has the unique solution z̄ = z̄0 ≈ 0.80435. This shows that

bi+1 ∼ 1 − z̄0

i
as i → ∞. (10)

B An almost-optimal strategy for the r, 1 FISP

In the notation of section 3.4 Using these ideas, we can write

P2 =
k∑

j=R

(
k
j

)
xk−j (1 − x)j

(
1 −

k∑
I=R

I−1∑
J=R−1

PjIJR

)
,

where PjIJR is the probability that the largest of the remaining j data points larger than
x is the Ith, with J calls required for the preceding I − 1 data points.

Since, of the j! permutations of the remaining j data points larger than x, there are
(j − 1)! with the maximum being the Ith, we have

PjIJR =
1

j!
(j − 1)!

1

(I − 1)!

[
I − 1

J

]
=

1

j

1

(I − 1)!

[
I − 1

J

]
,

and hence the probability of winning by choosing the ith data point is

P1 + P2 =
R−1∑
j=0

(
k
j

)
xk−j (1 − x)j

+
k∑

j=R

(
k
j

)
xk−j (1 − x)j

(
1 − 1

j

k∑
I=R

I−1∑
J=R−1

1

(I − 1)!

[
I − 1

J

])
.

Similar arguments can be used to determine the probability of winning by continuing,
which is

R∑
j=1

(
k
j

)
xk−j (1 − x)j+

k∑
j=R+1

(
k
j

)
xk−j (1 − x)j

(
1 − 1

j

k∑
I=R+1

I−1∑
J=R

1

(I − 1)!

[
I − 1

J

])
.
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After equating these probabilities, and noting that there is considerable cancellation
between the two, we find that the decision number is the solution of the equation

1 =
k∑

j=R

1

j

(
k
j

)
zj

j∑
I=R

1

(I − 1)!

[
I − 1
R − 1

]
, (11)

where, as usual, z = (1 − x)/x. This reduces to (2) when R = 1.
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