Cache as ca$h can

W.J. Grootjans, M. Hochstenbach, J. Hurink,
W. Kern, M. Luczak, Q. Puite, J.A.C. Resing, F.C.R. Spieksma

Abstract

In this contribution several caching strategies for the World Wide Web are studied. Special
attention is paid to the so-called proxy placement, i.e. placing of caches on carefully selected
nodes in the network near to the end users. Using both a deterministic and a stochastic
approach, algorithms are developed for calculating the allocation and sizes of caches with the
aim to enhance the performance of the network. Under the restriction of fixed budget it is
also indicated how both approaches can be combined.

Keywords

Cache assignment, World Wide Web, Allocation, Proxy placement.

1 Introduction

The World Wide Web (WWW) has experienced continuous, exponential growth since its inception
in the beginning of the 90’s. This has led to a considerable increase in the amount of traffic over
the internet. As a consequence, Web users nowadays can experience large waiting times (latencies)
due to network congestion and/or server overloading. Moreover, if current predictions concerning
usage of the Web come true, this performance issue will become even more important in the near
future.

A way to improve the performance of the Web is caching (as witnessed by for instance [2], [11]).
Caching copies of popular objects closer to the user is an important way of improving the net-
work’s performance. Indeed, the two main potential benefits of caching are: reduction of latencies
experienced by the users, and saving of bandwidth, due to a decrease of network traffic. In order
to realize these potential benefits, at least two (related) problems have to be dealt with:

e how to operate a cache. There is a sizable literature devoted to caching strategies to improve
Web performance; see, for instance, [1] and [9] where algorithms generalizing the well-known
LRU algorithm are proposed.

e where to install cache. Different caching options are possible: on the one hand, objects
can be stored at the user’s browser, which gives the possibility to make use of the user’s
individual characteristics (client caching, see for instance [1] and [4]); on the other hand
objects can be stored in the cache of the Web server (see [8]). In between these options,
there is the option of using prozies, that is, to install specialized servers at various points
in the network (first proposed by [6]; see also [3]). Typically, such an approach is attractive
when an organization (like a company or a university) is responsible for (a part of) a network

([7)-

This paper deals with the latter subject called proxy placement in [10]: given a network with
capacitated edges, external demand (request rates for objects and their sizes), costs for installing

41

a proxy and a budget, we develop a heuristic method to decide where to install proxy caches in
the network and what the sizes of these caches should be. The heuristic attempts to minimize a
function of the waiting times in the network, for instance, the average waiting time. We assume
that only passive caching is used, i.e., features like pre-fetching and pre-loading are excluded.

The rest of this paper is organized as follows. Section 2 describes the problem and introduces some
terminology. In Section 3 we propose an algorithm that suggests a proxy placement to minimize
waiting times. Finally, Section 4 analyzes some stochastic aspects of the problem.

2 Problem description, notation and terminology

The input for our problem is as follows:

1. An infrastructure T = (V U {0},) is a rooted tree (co standing for the root), such that
the root has exactly one child. The root represents the outside world and the inner vertices
(elements of V) represent servers. The edges (elements of &) are directed in direction of the
root and represent connections between the servers. The relation “’ is a child of 4”7 generates
a partial order < (“descendant of”) with top oo (i.e. Vi € V : i < 00).

Observe that the inner nodes are in 1-1-correspondence with the edges, each inner node
being a child of another node via the corresponding edge. Let H denote the height of the
tree and M the maximal number of children per node. Typical values for H and M are 5
and 100 respectively.

2. The files 1,..., N that are requested at the servers have sizes s1,..., sy, are located ouside
the infrastructure, and can be achieved only via the root.

3. Let \;; denote the frequency of requests for file j at (inner) node ¢ (in terms of number of
requests per time unit). The following quantities are closely related to these frequencies: let

N
)\,’ = Z)\i,j
j=1

denote the total frequency of requests at node ¢. Then
s 5
Dij = /\L:

denotes the relative frequency of the requests for file j at server ¢. That is, for every i the
function j — p; ; is a discrete distribution, Ef]zl pij = 1.

The demand (data per time unit) generated by requests for file j at server i equals
Kij i= AijSj-

The total demand caused at server ¢ is given by
N N
Ri = Zﬁi’j =)\i Zpi,jsj.
=1 =1

4. Each edge e € £ has a capacity ¢, > 0: the maximal flow (in terms of data per time unit)
through the edge.

5. The costs to place a proxy in a node i are a linear function of the size of the cache y. If a
denotes the fixed and b the variable costs, we can write the costs as

[a+by (y>0)

42

6. We have a total budget B > 0 to purchase proxies.

It is important to realize that given this input, any decision concerning the location, size and
a local caching strategy for each proxy determines, in a unique fashion, flows in the network 7°
(assuming that requests are served from proxies “up the tree” or from oo in case there are no
proxies up the tree that contain the specific request). We will use variables z., € € £ to denote
these flows. In particular, if no proxies at all are installed in 7', one can compute that the edge
flows, denoted by z0 in this case, are equal to > <i K where i is the node directly under edge e.
Let us now explicitly describe the assumptions that we use in our model:

e as mentioned above, requests are served by the closest proxy up the tree that contains the
requested object. This assumption is reasonable in practice.

e in Section 3 we assume a static strategy as a local caching strategy, that is a set of files
is chosen to remain in the cache permanently. Obviously, this is a crude simplification
of reality, where LRU type of caching strategies are common. However, in this section
we are primarily interested in proxy placement and their corresponding sizes; the specific
local caching strategy is of minor importance in our setting which justifies this assumption.
Afterwards, in Section 4 the results are analysed on the base of a LRU caching strategy.

e to be able to compute a waiting time for each edge e € £ (denoted by w,), we rely on the
following relation between waiting time w,, (given) capacity c. and flow x.:

-1

T

w, = C X (1 — —e) for some constant C.
Ce

e we assume that the objective function that we want to minimize, say h, can be expressed in
terms of the waiting times w,. For example, suppose one would like to minimize the largest
waiting time experienced by some user in the network. This can be formulated as follows:
let P denote the set of all paths from co to any inner node, then the objective function is
given by

Alternatively, the average waiting time in the tree over all possible paths can be formulated

as
1 1 1
szwe:szeHPEPIer}I:mZnewe,

pEP ecp ec& ecé&

where n, is the number of nodes in the subtree under e.

Concluding, a solution to our problem specifies for each node in the tree whether or not a proxy
is installed, and, if so, it specifies its corresponding size. In addition, specific files are suggested to
be stored in each proxy. All this is done while attempting to minimize (a function of) the waiting
times.

3 The cache assignment

In this section we will consider the problem of determining the nodes in the tree where cache will
be assigned and the files which will be stored in these caches. The goal is to achieve a comfortable
situation for the users of the network. Due to the assumptions made in the previous section, the
quality of the solutions depends on the waiting times and, therefore, on the loads in the edges.

Our heuristic algorithm to solve the problem consists of 2 major steps that are performed iter-
atively. In Step 1, we specify upper bounds u. on the loads for each e € £. Next, in Step 2 we

43

(heuristically) decide whether a proxy placement exists such that z. < u, for each e € £, and such
that the total expenses remain within budget B. If the answer is yes, we update the upper bounds
ue in such a way that they correspond to a more comfortable situation and iterate, otherwise we
either stop, or relax the current upper bounds. Subsection 3.1 deals with Step 1 and the updating
of the upper bounds and Subsection 3.2 describes Step 2.

3.1 Step 1: computing and updating upper bounds u,

The basic structure of the algorithm is visualized in Figure 1. It consists of an initialization of the
bounds and a loop process in which the upper bounds are updated according to the the procedure
which will be explained in the next section. In the following some remarks how these steps may
be realized are given:

e To start, the algorithm needs an initial set of total edge flows for all edges. We propose
two ways to find this set of flows: when the instance under consideration corresponds to an
existing network, one can use the current situation as a starting point. More specifically,
the current proxy placement and the current flows can be used as input for the algorithm.
Another possible way to get an initial flow is as follows: specify a maximal waiting time for
each edge e € £: w;. Now w, < wj} is equivalent to

1
T, < (1 - —) Ce =: Ug.
we

The corresponding flows can be used as input for the algorithm.

e The upper bounds are updated to the current total edge flows and a factor times the gradient
of the objective function is subtracted. This means that the upper bound for each total edge
flow is reduced proportional to the rate of descent of the objective function with respect to
that total edge flow, which is symbolically denoted by Vh(x). This gradient is evaluated for
the current total edge flows. Notice that we rely here on the assumption that we are able to
compute this gradient (cf. the choices of h mentioned in Section 2).

e The question whether or not an allocation with x < u (for all components) exists, can be
answered by the “inner loop” which yields either the answer no or the answer yes and a set
of total edge flows x.

If the answer from Step 2 is negative then we go back a few steps in the algorithm and
decrease the upper bounds less than we did initially, or we have found a solution that we
consider satisfactory and stop.

If the answer from Step 2 is positive then the new set of total edge flows becomes the set of
upper bounds and the algorithm reiterates.

e The value of oy and the way « is decreased will have to be looked at using an implementation.
At this time we cannot say anything sane on these matters.

3.2 Step 2: proxy placement for given upper bounds u,

Given upper bounds u., we determine whether we can find flows z. < u. by allocating a total
amount of cache of cost < B. We divide this problem into three subproblems:

P1) Determine in which nodes a proxy is installed;

P2) Determine how much cache is installed in these nodes;

44

Does allocation
with x < u exist ?

yes

no

Decrease a.

Are we satisfied ?

yes

Stop.

Figure 1: Flowchart of the updating of the bounds.

45

P3) Determine which files are stored in these proxies.

We solve these three subproblems by first considering P1, and next P2 and P3 simultaneously.
Notice that Step 2 either outputs ”yes” with an accompanying flow or "no” meaning: no flow x
with z. < u, with expenses < B is found.

3.2.1 Determine nodes in which a proxy is installed

In this subsection we describe an algorithm that determines in which nodes of 7 a proxy is
installed. In fact, this algorithm determines the minimal number of proxies and possible locations
for them that are necessary to achieve flows z, < u, by a straightforward “bottom up” search
in linear time. However, although our result is minimal in the mentioned sense, it may not be
optimal concerning the complete problem.

To describe the algorithm, first we need some additional notation: If u. is an upper bound we
impose on the flow z, then the overflow o, with respect to x is defined as:

o, = | Te—ue (ze > ue)
710 (ze < ue)

If 0. > 0 we call e an overflow edge with respect to flow z.

The algorithm works as follows. Let eg be an overflow edge (0., > 0) with respect to flow
2% without any overflow edges below ey. Then we place a proxy in the corresponding node i
and compute a new flow x, assuming z., vanishes: the total request of the corresponding subtree
becomes zero (“complete caching”). Observe that the flow only changes in edges along the path
from ig to oo: for each of these edges e we set z, := x, — xgo. Next, we find a new overflow edge
with respect to this updated flow and repeat until no overflow edges exist in 7.

Claim: Assuming the budget constraint is not violated, this algorithm determines a minimal
number of nodes where a proxy must be installed in order to be able to output "yes”.

Argument: Consider an overflow edge e which has no overflow edge below it. Since the flow in
this edge has to be reduced to get a feasible solution, we have to place at least one proxy below e.
The maximal reduction of the load in e by placing proxies below e is equal to the current load of
e. However, since the placement of a proxy of arbitrary large size in the node corresponding to e
leads to this reduction, it will be optimal to place the proxy there. These observations imply that
for each overflow edge that has no overflow edge below it in 7, a proxy must be installed at the
corresponding node. Moreover, it follows from our approach that the demand from nodes where
a proxy is placed vanishes. The proof of the claim now follows by induction. O

Remarks:

e This algorithm determines the actual nodes where a proxy is located, which gives us a value
of the fixed costs of the cache assignment. Indeed, if this sum of fixed costs exceeds budget
B, we stop and output: no feasible solution found.

e Moreover, it gives lower bounds on the cache sizes. Indeed, putting file j of size s; in the
cache of node iy decreases z., by
8j Z Aijs

relevant ¢<ig

which is a decrease of Xio,j "= D relevant i<io Nij Per unit cache. (Relevant i < ip means:
i below or equal to ig such that there is no proxy in between ¢ and ig.) Let 7;, be an
enumeration of the files j in order of decreasing Xio,j. Then the minimal needed cache size
equals Ei;} S7;,(k), Where d is minimal such that Ezzl Xio,n-o(k)sno (k) > 0eo- (Without
complete caching below i more ¢ may become relevant (probably depending on j), and one
easily verifies the minimal needed cache size in node iy only increases.)

46

e The given algorithm may be modified by assuming that the placement of a cache at a node
does not vanish the complete flow, but only a certain percentage = (this seems to be more
realistic). In this case we will loose the 'minimality property’ but it may be easier to solve
Steps P2) and P3).

3.2.2 Determine the sizes of the proxies and the stored files

First, let us deal with the complexity of these subproblems.

Claim: Given the nodes where proxies are installed, computing the minimum total size necessary
to achieve z, < u, is NP-hard.

Argument: We will prove the claim by a reduction from the partitioning problem. Let n numbers
ai,...,an with 3% | a; = 2b be given. The partition problem consist of answering the question
whether or not a partition of {1,...,n} into two subsets S1,S> with > ;¢ a; =) ;cg,ai = b
exists. We may reduce an instance of the partition problem to the following cache assignment
problem: Given are n leaves 1,...,n which are all connected to a source s and this source s is
connected to the root. Leave i requests only for a file f; of size a; and source s has no request.
For the edge (s,00) we define an upper bound u = b and all other edges have upper bounds which
are large enough. Furthermore, cache may only be installed at the source s. It is straightforward
to see that it is possible to achieve a feasible solution with a total amount of cache equals b if and
only if the partition problem has a feasible solution. O

Thus, problem P2) is unlikely to be solvable exactly by a polynomial time algorithm.

In view of the result above, we will solve P2) & P3) simultaneously by a greedy heuristic. Generally
stated our heuristic works as follows. Put files in cache, one at a time, so as to maximize the relative
total overflow reduction in each step. Proceed greedily until the overflow on each edge in 7 is
reduced to 0. This implies a cache size allocation. If this allocation has costs exceeding budget B
we return "no”, otherwise we return ”yes” with the corresponding flow .

A more detailed description is as follows. Recall that an overflow edge is one with o, > 0. The
relative overflow reduction 7, ; is the total reduction of overflow caused by putting one unit size

of file j in the cache at node ig. This depends on both the frequency /)‘\io .j of requests on file j that
arrive in node ip, and the multiplicity p;, ; counting the number of overflow edges above node ig
up to the next proxy containing j. More precisely, putting file j (of size s;) in cache at node ig

reduces total overflow with 7, ; = iy, Aig,j-

Thus, in each step of the algorithm, the current situation is given by:

The set of files cached per proxy so far;

The set of overflow edges;

~

The frequencies A;,,; of file j at node iq:

Aig,j = § Aijs

relevant i<{ig

where for a fixed file j, the summation is over those nodes i below or equal to ig such that
7 is not cached in between ¢ and ig;

e The relative overflow reductions r;, ; of putting file j in the proxy at node ig:

~

Tioyi = Mio,jNio,j-

Now we can identify a node ¢ and a file j for which r; ; is maximal, store this file j in the cache
at node i and iterate.

47

Finally, the amount of cache in each proxy i is computed as

Y = Z Sj-

7 cached in ¢

Observe that only here the file sizes come in. Finally, our algorithm returns the total costs

Z k(yi)-

proxies i

Of course, as the number N of files involved can be a fairly high number (depending upon the
specific situation) this algorithm should be carefully implemented. Let us now suggest an efficient
implementation of an updating step in the algorithm. Recall that p;, ; is the number of overflow
edges in between node i¢ and the first node above iy where j is cached. We therefore consider two
files at node iy equivalent if the first node on the path from i¢ to the root, where these files are
cached, is the same. For each iy, we order equivalence classes into lists according to decreasing
frequencies A, ;. Note that (ig-)equivalent files ji, j» have the same multiplicity: pig,;; = ig,ja-

After we put file j in proxy at node g, the update procedure now consists of:
e Finding the right equivalence class for file j in nodes below node ig;
e updating frequencies of j at certain nodes above ig;

e in case for some original overflow edge e the overflow reduces to 0, changing the multiplicity
Mi,; on those equivalence classes to whose multiplicity e contributed before.

To illustrate the updating, we now provide an example.

Example: Suppose we have the following current situation in node E of the depicted infrastructure
of Fig. 2.

, contributing overflow nearest proxy || . ,. Lo
HE,j edges containing j || ? (in order of decreasing A\g ;)
/ / I s U 74 permutation of [6], ey [N], say
4 4,(B),C, DB o 10] (28) ; [6] (23) ;...
2 D E C 1 (60); 5] (50)
7 E D 2] (100)
0 none E 4 () ;3] (0)
Then

TE 0] =428 =112,
T, = 260 =120,
T2 = 1-100 =100 and
re4 =0-0=0,

so [1] is a candidate to be put in stack at node E. However, there may be a prozy io with even
bigger mazimal r;; ;.

e Suppose i = D has biggest mazximal 1, ;, viz. for j = [5](130) (with pup[5) = 1, whence

rp,5] = 130). Putting [5] in the prozy at D has the following effect on the lists in node E
(below ig = D), assuming — say — that A’ and D’ become overflow free:

48

all [j]| oo “the outside world”

A’

[1,[2, 5] C

/o N

AN

Figure 2: An infrastructure with original overflow edges A’, B’,C’, D', E’, F', current overflow
edges A’',C", D', E’, F', proxies installed in C, D, E, F, currently containing the depictured files

[j]-

contributing overflow nearest prox .. Lo
HE,j . dgis f con tainfng]?/ J (in order of decreasing Ag,;)
2 (4, (B"),C', (D", E’ 0o 10] (28) ; [6] (23); ...
1 (D), E’ C 1] (60)
1 E D 2] (100) ; [5] (50)
0 none E 4 (0);[3] (0)

o Suppose ig = F has biggest mazimal vy, ;, viz. for j = [10](25) (with pppe = 5, whence
rp0] = 125). Putting [10] in the prozy at F' has the following effect on the lists in node E
(above ig = F'), assuming — say — that A’ and D’ become overflow free:

49

) contributing overflow nearest proxy .. Lo
HE,j edges containing j J (in order of decreasing Ag,;)
2 (4),(B),C", (D), E' o0 6] (23); ... ;[0 (3);---
1 (D", E’ C 1] (60);[5] (50)
1 E D 2] (100)
0 none E 4 (0);1[3] (0)

4 Stochastic Analysis

So far we analyzed the caching problem using deterministic methods. We tackled the question
where to cache specific files. In practice, however, no local caching strategy would cache specific
files. Instead, one often uses the so-called Least Recently Used (LRU) strategy, which operates as
follows:

e whenever a request arrives for a file that is not in cache, this file is cached,

e whenever the total size of the files in cache exceeds the cache capacity, the least recently
used files are dropped.

In the following subsections we present a stochastic analysis of the caching problem that takes into
account the LRU strategy. By this analysis we will estimate the expected loads on the edges of
the network that result from a given assignment of cache to the nodes. Thus, using these results
we may get a better view on the quality of the solutions achieved by the methods presented in the
previous section.

4.1 Problem Formulation

As in the deterministic analysis, we consider the web-caching problem on a infrastructure T' =
(V, E) with node (vertex) set V and edge set E. We assume there is a fixed number N of files in
the network that can be requested by users, and associated with each node of the tree is a fized
number of files that can be stored simultaneously in its cache. Note that, for convenience, we
neglect the fact that different files can have different sizes.

We are given the following parameters:

e)\ j, the frequency of arrivals of external requests for file j at node 3;

e)\;, total frequency of external request arrivals at node 4 (thus Ejvzl i = Ai);

® D= k}\—f, the probability that a request arriving at node 1 is for file j;

e M;, the number of files that can be simultaneously stored at node i.

The aim is to determine the expected load z. on edge e, for all e € E when the LRU strategy is
used. This is done by calculations that start at the leaves of the tree and successively working
our way up to the root of the tree. For each node i, we first compute the total arrival rate ;\,-,j of
requests for file j at 4, which also includes the requests received from all descendants of i. From
a Markov chain analysis we then obtain the total rate of requests leaving the node (which equals
the expected load of the edge incident on it in the direction of the root). In the next subsections
we shall illustrate the Markov chain analysis.

50

4.2 Markov chain analysis for a single node

In this subsection we analyze the cache at a single node. From now on, we suppress the index 1.
Thus requests for files arrive with rate A and the probability that some request is for file j is p;,
independent of all other requests. After a new request of a file, which is not in the cache, arrives
at a node, the file is placed in the cache and, simultaneously, the least recently used file is removed
from the cache. The state of the cache can be described by the files contained in the cache and
the order in which they have recently been used; thus the total number of different states is equal

to (AA,;)M' =N(N-1)...(N—M+1). Clearly, this process is a discrete-time Markov chain. The
stationary probability that file j is present in cache is denoted by pg-M).

A closed form expression for the limiting distribution of the Markov chain can be obtained by using
the fact that the LRU strategy for caching is closely related to the “move-to-the-front rule”, which
has extensively been studied in the context of selecting records from a computer file and taking
out books from a library shelf. For example, in [5], Hendricks considers the following problem.
A library contains N different books By, ..., By arranged on a single shelf, and regardless of the
arrangement of the books the probability of selecting B; is pj, where p; (1 < j < N) are positive
numbers such that Zjvzl pj = 1. Only one book is demanded each time and the book is returned
as the next book is borrowed. Upon return, a book is placed at the end of the shelf nearest to the

librarian’s desk. What is the stationary distribution of the order of books on the shelf?

Let 7 = (j1,...,jn) be a permutation of {1,..., N}. The Markov chain has N! states, corre-
sponding to the N! different permutations of the books. The state B(7) corresponds to the books
being arranged in the order, from left to right, Bj,, ..., B, on the shelf. Let u be the equilibrium
probability of state B(7). Hendricks proved that

N N
w=[[®i./>_pi)
n=1 r=n
The shelf corresponds to the cache in our case, while books correspond to files. Hendricks’ result
can be applied if we only take into consideration which books are in the first M positions and how
they are ordered. Let m = (j1,...,jm) be an ordered M-tuple, whose entries are distinct members
of the set {1,...,N}, and let v be the equilibrium probability of the corresponding state of our

Markov chain. Then

N N
v=> Tl®./>_pi)
o n=1 r=n
where the summation is over all permutations ¢ = (jary1,...,Jn) of theset {1,..., N}\{j1,...,im}-

Unfortunately, the above closed-form expression is not likely to be useful in practice, since cal-
culating its value involves a summation of (N — M)! terms. Typically N — M = Q(N) (that is,
(N — M)/N is bounded below by a positive constant as N, M — o), and thus (N — M)! grows
exponentially in N and M. This implies that evaluating the formula quickly becomes computa-
tionally infeasible. Therefore, we propose the following approximation for ng) :

P =1-(1-p,), M
where z solves the equation
N
M=N-Y(1-p).)
j=1

Equation (2), which determines z, follows from summing equations (1) over all j and using the
fact that j pg-M) = M, as in equilibrium the cache should be full. Furthermore, the number z
represents the expected number of steps required to pick M distinct files and hence 1 — (1 — p;)*
can be interpreted as the probability that file j has been selected during the z steps required to
form the current contents of the cache.

4.3 Expected loads on the edges of the tree

Finally, we show how to calculate the expected loads on all the edges of the tree. For each node ¢
and each file j, let p; ; = \; j/\; be the probability that a given request at node i (either external
or from one of the descendants of node 7) is for file j. Clearly, if node i is a leaf of the tree then
Di,j = pij for j =1,...,N. For each leaf i, we calculate pgy)
M; =N — Ejvzl (1 —p; ;)*. The rate of requests leaving leaf i equals X} =); Zjvzl Pij (1 —pgy)),
and hence the rate of request arrivals for a node i at height 1 from the bottom is A\; + > A7,
where the sum is over all nodes r that are descendants of node i. We proceed recursively in the
manner described above to higher levels of the tree, until we reach the root. The rate of requests

leaving a node equals the expected load on the edge leaving the node towards the root.

=1— (1 —p;;)*, where z; solves

5 Conclusion

In this paper we have considered the problem of placing proxies in a network to get a better
performance of the net. We have divided this problem into two subproblems: identify nodes
where proxies will be placed and determine the size of the proxies. To make the problems easier to
handle, first we have simplified the problems by neglecting the stochastic structure of the process
resulting from the caching strategies used in practice. Based on the assumption that fixed files
are placed in the proxies, we have developed algorithms to determine locations for and sizes of the
proxies.

Since the estimated quality of the resulting proxy placement is calculated using the deterministic
model, it may be not very realistic. To overcome this, in a second step we have presented a stochas-
tic analysis for the commonly used LRU caching strategy to achieve a more realistic estimate of
the quality of the solutions. This analysis may be combined with the deterministic algorithms in
an iterative procedure: First, on the base of given bounds on the loads of the edges, calculate a
solution which in the deterministic model achieves these bounds on the loads. Afterwards, analyze
the solution using the stochastic method. Based on the outcome of this analysis, change the used
bounds on the loads and iterate the procedure.

References
[1] C. Aggarwal, J.L. Wolf and P.S. Yu, Caching on the World Wide Web, IEEE Transactions on
Knowledge and Data Engineering 11 (1999), 94 — 107.

[2] H. Braun and K.C. Claffy, Web traffic characterization: an assessment of the impact of caching
documents from NCSA’s web server, Computer Networks and ISDN Systems 28 (1995), 37 —
51.

[3] R. Céaceres, F. Douglis, A. Feldmann, G. Glass and M. Rabinovich, Web proxy caching: the
devil is in the details, Performance Evaluation Review 26 (1998), 11 — 15.

[4] S.J. Caughey, D.B. Ingham and M.C. Little, Flexible open caching for the Web, Computer
Networks and ISDN Systems 29 (1997), 1007 — 1017.

[5] W.J. Hendricks, The stationary distribution of an interesting Markov chain, Journal of Applied
Probability 9 (1972), 231 — 233.

[6] A. Luotonen and K. Altis, World wide web proxies, Computer Networks and ISDN Systems
27 (1994), 147 - 154.

[7] C. Maltzahn, K.J. Richardson and D. Grunwald, Performance issues of enterprise level web
proxies, Performance Evaluation Review 25 (1997), 13.

52

[8] E. Markatos, Main memory caching of web documents, Computer Networks and ISDN Systems
28 (1996), 893 — 905.

[9] J. Shim, P. Scheuermann and R. Vingralek, Proxy cache algorithms: design, implementation
and performance, IEEE Transactions on Knowledge and Data Engineering 11 (1999), 549 —
562.

[10] J. Wang, A survey of web caching schemes for the internet, ACM Computer Communication
Review 29 (1999), 36 — 46.

[11] C.E. Wills and M. Mikhailov, Towards a better understanding of Web resources and server
responses for improved caching, Computer Networks 31 (1999), 1231 — 1243.

53

54

