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Abstract

We consider the problem of creating paint of a certain target color by mixing colorants.
Although a large number of colorants is available, in practice it is only allowed to use a limited
number. We focus on the problem of selecting the right subset of colorants.
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1 Introduction

Consider the following problem. A car enters a garage for repair. The paint layer of the car has
been damaged. We want to repair the damage without completely repainting the whole car. To
remove every trace of damage, we will locally apply paint of a color very similar to the color of the
paint that is already on the car. The problem is, where do we get paint of the right color? Usually,
such paint will not be available ready-made. We need to create it ourselves by the familiar process
of mixing colorants.

In the next section we describe a simple model due to Kubelka and Munk that allows us to
predict the color of a mixture of colorants, given a recipe specifying that colorant ¢ is used in
relative proportion c;.

Using this model it is possible, given a target color and a set of colorants, to compute a recipe
that produces a best approximation to the target color.

This seems to solve our initial problem completely (assuming that the Kubelka-Munk model is
accurate), but there is a catch. For several reasons, we do not want to use too many colorants in
a recipe, not more than k say, whereas there are many more colorants available, say n. We need
to select, given our target color, a good set of k colorants to use in our recipe. In fact, we are
interested in a couple of k-sets that produce a good approximation to the target color.

Of course, we could compute a recipe for each k-set of colorants, and then decide which k-
sets produce the best approximations to our target color. Since computing one recipe is already
nontrivial, and n over k will be an exceedingly large number, this takes too much time. Moreover,
many of the k-sets will only produce very poor approximations to the target color (k shades of
blue will never make a good red), and it seems wasteful to precisely compute many recipes when
only a few good ones are needed.

In this paper, we will explain an approach that could be used to wield out bad k-sets without
computing many recipes.

2 The Kubelka-Munk model

For a given painted surface and a wavelength A, the reflectance R()) is defined as the proportion
of light of wavelength A that is reflected by the paint layer. The color of the surface is determined
by the reflectance values of light in the visible spectrum.

Colorants have two parameters, the absorption K()), and the scattering S()\), both depending
on the wavelength \. We may assume that we know both parameters for each of our colorants.



The Kabulka-Munk model predicts that a completely hiding paint layer will satisfy the following
relation between the reflectance and the parameters of the colorant, for each wavelength A:
K() _ (1= RY)? "
S(A) 2R(\)

Moreover, when we mix colorants 1,...,% in relative proportions ¢; (so ), ¢; = 1 and ¢; > 0)

we have
K(\) = Z cKi(N), (2)

and
S() =) SN, 3)

where K, S; are the coefficients of colorant ¢ and K, S are the coefficients of the mixture.

In practice, we consider only a finite number of frequencies Ay, ..., A; adequately representing
the visible spectrum. That is, we measure the reflectance values R;(A1), ..., Ri(A;) of our target
color. A mixture of colorants is considered a very good approximation if it has the same reflectance
values at wavelength Aq,...,A;. Let us say that a set of colorants I is very good if there is a recipe
using only colorants in I that gives a very good approximation of the target color.

From (??) — (??) we derive that a set I is very good if and only if there exist ¢; > 0 such that:

Licr GlG(y) (1= Ri(N))?
Yier €iSi(Xj) 2R,(N;)
Since the human eye does not perceive color with the precision of a spectrometer, a ‘very good’

set of colorants is in fact more than we need. But let us concentrate on very good sets of colorants
for now.

j=1,...,L 4)

3 A geometrical view

Rewriting (??) we obtain the following. The set I is very good if there exist ¢; > 0 such that

ZCZ"U),' = 0, (5)

iel
where the w; are vectors in IR' whose j-th coordinate is defined by

(1 - Ry(Ny))?

(w;); == Ki(Aj) — 2R\,

Si(Aj)- (6)
Note that the vector w; is completely determined by the parameters of the colorant i and the
reflection values of the target color.

Equation ?? has a simple geometric interpretation: it states that I is a very good set if and
only if the origin is in the convex hull of {w; |i € I}.

Now remember that our goal is to limit the size of the set of colorants used in the recipe, i.e.
limit the cardinality of I by k. So when we look for very good sets of colorants, we are faced with
the following geometrical problem:

Given a set of vectors in IR', select a subset of at most k vectors whose convex hull
contains the origin.

If the vectors wy, . .., w, are in general position, a subset of these vectors containing the origin
in its convex hull will have at least [ 4+ 1 elements. In other words, there are no very good sets of
cardinality < [. This is a problem, since k is usually less than [ in our application, and there is no
reason why the vectors shouldn’t be in general position.

It is time to use the fact that the human eye can be fooled, and determine when a set of
colorants is good enough.



4 The eye

On the retina of the human eye there are light sensors of three types, each type maximally sensitive
to light of a distinct wavelength. Light entering the eye will stimulate sensor of type ¢ (t = 1,2,3)
proportional to

2t = ZA()\j)ajt (7)

where A(A) is the absolute intensity of light of wavelength A; entering the eye and a; is the relative
sensitivity of type t to light of wavelength A;. The vector z := (21, 22, 23) is all the information
the brain gets from the entering light: thus our color sense is essentially 3-dimensional, and there
is a linear map Z : (A(};)); — z.

For any fixed z, the eye is unable to distinguish between any two kinds of light with absolute
intensity vectors in Z~1(2).

The color of light emitting from a painted surface depends on both the reflection values R(\)
of the paint layer and the environmental light illuminating the surface. By definition of R, we
have A,ut(Aj) = R(Aj)Ain();) for each wavelength A;. So given a certain kind of environmental
light e, we have a linear map Y, : (R(\;)); — (Aout(Aj));- This somewhat enhances the ability
of the eye to distinguish paint colors. Two paint layers, with reflection vectors r1,72 can appear
to the eye to have the same color in one kind of environmental light (Z(Y1(r1)) = Z(Y1(r2))), but
can be seen to have a different color under another kind of light (Z(Y2(r1)) # Z(Y2(r2))). This
phenomenon is known as metamerism.

In practice, a car is not looked at under every possible kind of light, and this makes our job
somewhat easier. We may assume that the repaired car will only be scrutinized in a very limited
set of environments, say in daylight and in the light that is usually emitted by street lamps. This

means that if the paint layer on the car has reflection vector r; := (Ry(\1),..., Re(N\i)), it is
satisfactory if we create paint with reflection vector r such that
Z(Yaaytight (1)) = Z(Ydaytignt (re)), (8)
and
Z(Y:stTeetlight (7')) = Z(Y:streetlight (rt)) (9)

This procuces a set R C IR! of reflection vectors that can be safely substituted for the target
reflection vector 7;. The solution set of (??) is an affine subspace of IR’ but note that reflection
values should be between 0 and 1. We may even want to restrict ourselves to R(\;) between
R;(\;) £ €. In any case, R will be a convex set.

We will say that set of colorants I is good enough if by mixing colorants from I we can create
paint with reflection vector r € R.

From the previous section it follows that I is good enough if and only if there is some reflection
vector 1 = (R(A1),...,R(A)) € R such that

the origin lies in the convex hull of {w] | i € I},
where )
(1 - R()))

Si(Aj)- (10)

Thus w; = w;*.

5 Two methods

5.1 The random hyperplane method

Consider a finite set of vectors U in IR'. Tt is clear that if U is strictly on one side of a (linear)
hyperplane H, then the convex hull of U does not contain the origin. From geometrical intuition



it is also obvious (but not trivial to prove) that the converse holds: namely that if the convex hull
of U does not contain the origin, there is some hyperplane H having all of U strictly on one side.
Such is the content of Farkas’ Lemma (see e.g. [?]):

Lemma 1 (Farkas) Given a finite set of vectors U C IR ezactly one of the following statements
hold:

1. 0 lies in the convex hull of U, and

2. there is a vector d € R' such that (d,u) > 0 for all u € U.

By (.,.) we denote the inner product of two vectors.

This can be put to use for our problem in the following way.

Let us first consider ‘very good’ sets of colorants again. If we take an arbitrary vector d € IR!,
and set Fy := {i | (d,w;) > 0}, then it follows from (the easy part of) Farkas’ Lemma that any
set of colorants I with I C Fj; will not be a very good set. The nontrivial part of Farkas’ Lemma
shows that any set that is not ‘very good’ has a nonzero chance of being a subset of Fy . We may
rapidly construct a multitude of such ‘forbidden’ sets, by randomly choosing vectors di,...,dn
from S'~' := {d € R' | ||d|| = 1}. Then we search for k-sets I that satisfy I\ Fy, # 0 for all
1=1,...,N, and provided that IV is big enough such an I will very likely be a very good set.

If we are interested in sets that are ‘good enough’, the problem becomes more subtle. Define
for each colorant i the set W; := {w! | r € R} where R is the set of safe substitutes for the target
reflection vector r; of the previous section. Given any vector d € R', we put

Fy:={i] ur)relivr&i(d, w) > 0}. (11)

Clearly, no subset of Fy will be good enough. It is not true anymore that any set that is not good
enough is eliminated this way. Still, we can construct many such forbidden sets Fy each time
killing many candidate k-sets of colorants.

The minimization problem min,cw, (d, w) is hard in general but

1. we may assume that R is a polytope, and
2. we can replace w] by its linear approximation around w;* provided that ||r — r¢|| is small,

yielding a polytope W; approximating W;. We can either solve the minimization problems
min,, . (w,d) for each d or compute the vertices V; of W; in advance, and use the fact that
min,, . (w,d) = minyey;, (v, d) for every d.

A faster, but more crude method is to replace the condition

ur}relivr‘}i(d, w) >0
in (??) by (d,w;) > € for some strategically chosen € > 0. Thus we use the unquantified notion
that we can still displace the vectors w;, but only a little. If a set of vectors is far on one side of
a linear hyperplane, the chances that a small displacement of these vectors has the origin in its
convex hull become very thin.

When a suitable collection of forbidden sets Fi,...,Fx has been constructed, it remains to
find sets I such that I ¢ Fj for all i. Equivalently, we want an I such that I N F; # () for all
i, where U denotes the complement of a set. This is known in the literature as a set covering
problem : the set I needs to ‘cover’ each Fj.

Although there is no direct relation to the current problem, the approach described in this
section was inspired by the method described in [?].



5.2 The greedy algorithm method

The greedy algorithm is a very general method to pick a good k-subset I out of an n-set C. To
apply the greedy algorithm we need a measure f of how good a subset is. For the moment we will
not specify this function, we only remark that it acts on all subsets of C' and its image is a real
value. Applied to our problem, this algorithm looks like this:

1. I« @;c+0.

2. choose i € C such that f(I U {i}) is maximal
I—Tu{il;jec—c+1

IF ¢ = kK THEN RETURN(I)

ool W

goto 2.

In step 2 we intentionally do not specify that ¢ ¢ I. In that way I is increased with some element
only when this results in an improvement.

The main advantage of this algorithm is that it runs very fast. The speed depends heavily
on how fast can we evaluate the function f. The drawback is that we may end with a far from
optimal subset I. We will start very well picking the first elements but the subsequent choices
made in step 2 can be very weak. One solution to this problem is to incorporate some flexibility
(an integer m will be the measure of flexibility). Now we give a second version of the greedy
algorithm with flexibility m:

1. I Q- I, —0;¢+0

2. find m elements (i1,51),- -, (im,Jm) in C x {1,...,m} that take the m maximal values (in
order) of the function (i,7) — f(I; U{j}) and such that for all 1 < s,t < m, I;, U{js} #
I’it U {Jt}

3. I; 4*_[,'1 U{jl},...,fm HIim U{jm}; c—c+1
4. IF ¢ = kK THEN RETURN(Il, ... ,Im)
5. goto 2.

This method will approach the optimum as we increase m. It is also interesting to have more
than one set of colorants to mix, for example one set of colorants may be more stable under small
variations on the concentrations than others.

Now we will look at two different functions f or measures on how good a set of colorants is.
With them we will try to get as close as possible to a very good set of colorants and we will not
treat the more difficult problem of finding a good enough solution.

5.2.1 Minimum distance

Remember from section ?? the geometrical interpretation of equation (??): I is very good if the
origin is contained in the convex hull Hy of {w;|i € I}. Also we remarked that this will not
happen in general, so our aim is that the convex hull is as close as possible to the origin. Thus
the Euclidean distance from the convex hull to the origin is the natural way to judge sets I:

fI) =d(0,Hy) = min{||w|| | w € Hr}. (12)

We describe how to calculate this with the following program. By Vi, for any K C I, we mean
the affine space generated by {w;}ick-

1. [ —TLivy «—0;i 1

2. Let 7y, (v;) be the orthogonal projection of v; onto V7,.



3. IF exists J; C I; such that V7, j, is an hyperplane in V; and separates {w; };c s, from 77, (v;)
THEN goto 4
ELSE RETURN(y/d(v1,02)% + - - + d(vi_1,0:)?)

4. Iipg — L\ Jiy vigr — 7, (0); 6 — i+ 1
5. goto 2.

5.2.2 Angle

Let us suppose for a moment that k£ = 2, this means that we have a collection of points {w;}icc
and our aim is to pick two points w;, , w;, such that the interval between both almost contains the
origin. If this is the case then the angle w,ﬁ)?vh should be very close to 7. And it holds that the
angle wimh is 7 if and only if 0 is contained in the interval between w;, and w;,. This suggests
that the angle might be a good measure. Unfortunately there are very particular cases where this
measure is bad. So we will hope that our set of points is general enough and believe that this
measure is good.

What happens if £ > 2?7 We propose a generalization of angle, namely the solid angle: fraction
of the unit sphere overlapped by the cone with the origin as a vertex and generated by the convex
hull of our set of points. This number is not easy to calculate unless k < 3 (for kK = 3 we have the
Gauss-Bonet formula), so the best way to approximate it is by a Montecarlo method. That is, we
select random unit vectors uniformly distributed and we count how many lie inside the cone. If
we do this for enough vectors we will get a good approximation of the solid angle. For k& > 2 it
is still true that the solid angle of the cone with vertex 0 and generated by {w;};cr is 1/2 of the
unit sphere if and only if the convex hull of {w; };cr contains the origin.

One further idea is to use as a measure the sum of the angles between all pairs of vectors in
{w;}icr- This works well only if k is small (say k& < 6). For example for £ = 3 the sum of the
angles of all pairs is 27 if and only if the convex hull H; contains the origin. For k < 4 there is
still a maximum for the sum, in the case when this maximum is attained then the origin is in H;
but the reciprocal does not hold any more.

6 Conclusion

The methods presented in this paper were the result of a week-long brainstorming session. There
is nothing final about any of the algorithms we describe. Rather, we show that the hard problem
of selecting colorants has a geometrical interpretation that inspires a new kind of strategy to solve
the problem.
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