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Abstract

Fast evaluation of integrated circuits(ICs) requires the availability of so—called com-
pact models, i.e. simple-to—evaluate relations between the voltages and the currents
in the IC—components. In this paper the compact model for a particular IC—part, the
LDMOS device, is studied. This model consists of coupled submodels, each of which
describes a separate part of the LDMOS device. The purpose of the present work is
the derivation of the submodel for the transition region of the LDMOS. As a prepa-
ration a model for a neighbouring region, the drift region, is derived in full detail. It
is shown that the submodels for transition and drift regions are very similar, although
the transition region seems to be more intricate as far as its geometry is concerned.
The general form of the transition region model needs evaluation of an integral. The
expression can be reduced to an algebraic one if the voltages applied to the boundaries
do not differ much. This insight may enhance the evaluation speed considerably.

Keywords

Transistor, Integrated circuits, High-voltage LDMOS device, Compact Model, Tran-
sition Region, Drift Region, Thin-layer Approximation, Depletion Layer

1 Introduction

An integrated circuit (IC) consists of many thousands of semiconductor devices (transistors).
In practice, there is an urgent need for mathematical models of transistors, since such
models allow to simulate the behavior of an IC. The physics underlying a semiconductor is
reasonably well understood, so finite—element methods may be formulated that in principle
may be used for simulation. Finite-element methods, however, require a lot of computing
time and memory, and for a full IC with its many transistors a finite—element model per
separate transistor is therefore not manageable. Instead we would like to have a compact
model for a transistor with the following properties:

e the model provides a simple-to—evaluate relation between the voltages and currents
at designated places in the transistor;

e the model is scalable, that is, its physical parameters and geometry may be varied
such that a large class of transistors is described.

In the following section we describe the LDMOS (Lateral Double-Diffused Metal Oxide
Silicon) device, used for high voltages, in some detail and specify the parameters involved.
The overall model of the device will be a combination of models for various regions in the
device. We identify two such regions, the drift region and the transition region. In Section 3
we review a one-dimensional depletion layer model. This is a building block for a model for
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the drift region, which we consider in Section 4. Then, in Section 5 we take a closer look
at the transition region, which is the region of main concern. In the process of modelling
several simplifying assumptions are made along the way. The present work is not concerned
with the investigation of the quality of the model developed for the transition region.

Transition Drift

substrate

Nald

Figure 1: An LDMOS device.

2 An LDMOS device

Figure 1 shows a cross—section of an LDMOS device. In the top part a strip of oxide separates
two strips of metal called the source (on the left) and the drain (on the right). If we set a
voltage Vg — V; > 0 across the two metal strips electrons will move from source to drain,
and hence, an electric current will flow from right to left. The current lines are depicted as
dashed curves in Figure 1. The current flows in the white regions which contain silicon. In
fact, all material below the strip of oxide is inhomogeneous silicon, where the inhomogeneity
is due to a variable amount of doping. In Figure 1 the concentrations of doping are denoted
by n~ and n* for n—doped material (n-material), and by p* and p~ for p—doped material
(p—material). We come back to this point in more detail in Section 3. For the moment it is
enough to know that a so—called depletion layer is formed at places where differently doped
materials meet. In Figure 1 these are the dark grey layers. They act as barriers through
which only a negligible amount of current can flow. There is also a depletion layer just
below the strip of oxide. The size of the depletion layers depends on the voltages, so by
changing the various voltages it is possible to shrink or enlarge the depletion layers, thereby
modifying the shape of the channel through which current can flow.

In the device we identify a drift region (a large region in the center of the device) and
a tiny transition region (below the gate, see Figure 1). Their respective geometries differ a
lot and as a result the models for them differ as well.

For the physical background of the system under consideration we refer to references
[1]-[4]. Throughout we make use of the so—called drift-diffusion model, which involves the
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following equations:

E = 7v¢5
vV-J = 0,
J = kETp,Vn + qupnE,
—— ——

diffusion term  drift term
-V(eVy) = p =qlp—n+D), (D=Ni—N,).

Here, E is the electric field intensity, ¢ is the potential, J is the current density, k is
Boltzmann’s constant, T' is the temperature (in Kelvin), u, is the mobility of the electrons,
n is the free—electron concentration, q is the electron charge, and e is the permittivity of the
material. The charge density, denoted by p, depends linearly on p, n, the concentrations of
holes and free electrons, and on the doping concentration D (for a p-material Ny = 0, so
D = —N,, whereas for an n—material N, = 0, and D = Ny. In the model it is assumed that
no recombination occurs; this is expressed by the equation V -J = 0. Some typical values
and ranges of the physical quantities are listed in Table 1.

T ~ 300 K k=1.38-10"2 J/K ¢g=1.602-10"1° C
N, =10 cm™® n; = 1.45-10" cm™? (Silicium) Ny =10 cm™3
pn = 1190 cm?/(Vs) | €ox = 0.345-107'2 C/(Vem) | €5 = 1.036 - 1072 C/(Vem)
Vi — Vs =12 or 60V Vy — Vs =12 or 60V

Table 1: Typical values and ranges of the physical quantities.

Figure 2: p-material meets n-material.

3 Depletion layers in doped material — one-dimensional
case

In this section we review what happens if differently doped materials are brought in contact
with each other. For simplicity we consider here the one-dimensional case of a p—material
in the region z < 0 and an n—material in the region z > 0; see Figure 2. The two materials
have opposite constant doping concentrations +A, so that D = Asgn(z). We assume that
a voltage difference V is applied over the two materials joined together. At the right end
(x — o0) the voltage is V, at the left end (z — —o0) the voltage is 0. Upon contact,
electrons move until after a short while a steady state is reached at which J = 0. From the
drift-diffusion model we then infer that

KT pinVn + quan(—Ve) = 0. (1)

13



In our one-dimensional configuration where 1 (z) and n(z) only depend on z it follows
that n(z) = cexp [;54(z)] for some constant c. In the steady state there is still a small
percentage of the electrons that moves freely. The concentration of these electrons is denoted
by n; and for silicon n; = 1.45 - 10'® ecm~3. This we can exploit for the determination of
c. For large positive z the voltage 1(z) is nearly constant and close to V, hence, in the n-
material we have n(z) = n;exp [7% (¢ (z) — V)]. Similarly, for large negative 2 the voltage
1(x) is nearly constant and close to 0. Hence in the p-material, where ¢ — — ¢, we have
p(z) = njexp [—%1(z)]. Inserting this into the drift-diffusion model we are led to the
equation

(@) = ple) = ans {exp [ L0)] - e [( 00 - V)] + Zs@) ).

As £ — +o0 one has p — 0. On neglecting exponentially small terms it follows that

kT A kT A
w0 = ~"l1og (2), o) = v+ iog (2. 3)
q i q n;
Next we multiply both sides of (2) by ¥’(z) and integrate with respect to z. As a result we
find

“Ze(@'(x))? = —kTniexp [f qu (x)] — kTn; exp [kiT(¢(x) fV)]

+qAy(z) sgn(z) + Cy, (4)

with integration constants C_ for < 0, and Cy for x > 0. These integration constants
are determined by evaluating (2) at = 00, where ¢’'(+00) = 0. By use of the values of
1(+00) found above, we obtain

C —kTA (1 ~log (;)) O, —kTA (1 ~log (;)) AV, 5)

For reasons of symmetry we expect that (0) = V/2. This value can be found from the
property that ¢’(z) is continuous at = 0. Indeed, continuity of the right—hand side of (4)
at x = 0 implies

—qAP(0) + C- = +qA¢(0) + Cy

so that ¥(0) = (C- — C4)/(2¢qA) = V/2. Figure 3 shows plots of the voltage 1(z), the
electric field E(z), and the charge density p(x), as functions of z, for V=0 and V = 10
and a doping concentration A = 10'® cm 3. These plots are based on a numerical solution
of (4). Note the fairly abrupt transitions from a vanishing value to non—vanishing values
of the charge density p. The depletion layer is now defined as the interval [, ] outside of
which p(z) is effectively zero. The value of | may be determined by approximating p(z) by
a piecewise constant function of the form shown on the left of Figure 4. From (2) it follows
that p(0~) = —qA, p(0") = +qA. Corresponding approximations for p and E by piecewise
linear and quadratic functions are obtained by integration, viz

E=/_iO @ds, w(m):%—/ozE(s)ds.

Plots of these approximations are shown in Figure 4. The potential t(x) varies from
h(—o0) = V/2 — qAI?/(2€) till 1(+00) = V/2 + qAlI%/(2¢). Hence by comparison with the
values of 1(+o00) found before, we have

qu_ —b(—o0) = k_T A
T = 4p(00) — )—V+2qlog( ) ©)

g
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Figure 3: Plots of ¢, E and p across a depletion layer with V' = 0(top) and V = 10 (bottom).
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Figure 4: Figure 4: Plots of approximations of p(z), E(x), and ¢ (z) across a depletion layer.

This relation leads to the following expression for the width of the depletion layer as a
function of the applied voltage:

kT A
l= in(V + o), o 1= 2710g (n_,> . (7

So far we considered the case of symmetric doping: Ny = N, = A. For general Ny and N,
the depletion layer is not symmetric although located around =z = 0. It can be shown that
the widths of the layers to the left and to the right of x = 0 are given by

€ 2Ny € 2N,
lo=V\———"—"V+ , li=———"7V+ , 8
\/qNaNa+Nd( do) \/quNa+Nd< o) ®)

in which

et () e (2)

Finally, we consider a depletion layer from x = 0 till z = [, consisting of an n—material
only. In this case, it can be shown that

2e
ls =4/ ——(V -V 10
s qu( 0) ) ( )
where 1V and V' are the voltages at £ = 0 and x — oo, respectively. For the derivation of
this expression we refer to the analogous derivation of the expression (32) of ¥5 in Section

5 ((28)—(31)).

15



oxide

substrate

Vi
Figure 5: The drift region.

4 The drift region

With the depletion model into effect we analyze the drift region. This is the n~—doped region
G4 indicated in Figure 1 and described by G4 := {z,y| 71 < z < z3, ls(z) <y < T.—Il;(z)}.
In G4 the current roughly flows in the horizontal direction, from right to left, which is taken
as the negative z-direction. The drift region is shown schematically in Figure 5; the four
constant voltages V; along the boundaries are assumed to be known. The aim is to relate
the total current I (assumed to be constant), flowing from left to right through the drift
region, to the voltages V;. As the name suggests, in this region the effect of drift is assumed
to outweigh the effect of diffusion. For the calculation of I we need the voltage V(z,y) in
the whole region depicted in Figure 5, so not only in G4, but also in the metal and oxide
layers and in the three depletion layers (of widths s, I; and l4). In these different regions
different asymptotics apply.

In the layers, a thin-layer-approximation may be applied, implying that the Laplace operator
AV (z,y) in the layers reduces to

 0V(z,y)
N ToE
This can be seen as follows. Let | be a characteristic length parameter for the width of

the depletion layer and assume [ < L = x3 — x1. Scale the coordinates z and y such that
x = Lz, y = lj. Then the Laplace operator for V' can be written in terms of Z and ¢ as

AV

Ay e L PVay) 108V _1[(1\* &V(ny) V()
T L2 932 2 92 12 |\L 02 D)
_ 10°V(a,y)

T2 6@2 (1 +O((l/L)2)) )

which explains the approximation used above.
The consequence is that, for fixed x, we may now consider V' as a function of y only, and
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that we may use here the results of the one-dimensional models derived in Section 3.

At both sides of the interface y = T, between the n~—doped drift region and the p~—
doped substrate a depletion layer will occur, the width of which is dependent on the voltage
drop over the interface. Now suppose Va > Vi > V4. Then the width of the depletion
layer near the right boundary z = z3 (the boundary with potential V3 in Figure 5) is larger
than the width of the depletion layer near the left boundary ¢ = z; (the boundary with
potential V] in Figure 5). This will make the channel for the current narrowing towards
the right. Under the oxide a similar depletion layer is formed, which also contributes to the
reduction of the channel width towards the right. Consequently, the Ohmic resistance along
the channel depends on the coordinate .

We see that the widths of the depletion layers change, but we now assume that they
change ’slowly’, in so far that |I'(z)] < 1, for all € (21, z3). For a straight channel, the
voltage in the channel will be independent of y (i.e. V =V (z), then). Hence, if we assume
that |I'(z)| = O(48), 0 < § < 1, then it is also reasonable to assume that

Viz,y) =V (2)(1+0(9)), as(z,y) €Ga.
Thus, for small §, we have for the voltage in the drift region Gg:
V(a,y) = V(@) +6Vi(w,y) — Vi), ford — 0. (11)

The widths of the two depletion layers in the drift region, denoted by I, and Iy, are
dependent on z; see Figure 5. In fact, the widths depend on z only via the voltage V' in
the channel, which in its turn depends on z. Indeed, in the previous section we showed that

(see (8))

) = \/ S V@)~ Vi k) =BV (@), (12)

where

ot o () ()

In a more or less analogous way, we can calculate I;(z). For this we start from (10). In
this expression, 1 is the voltage at = 0, which is built up from the prescribed voltage V2
and the potential jump Yox over the oxide layer, so

%=%+¢ox-

However, 1o also depends on [, as can be shown as follows.

On the interface between the metal layer (conductor) and the oxide layer (dielectric) there
will be a surface charge density, say Q2. Moreover, let the total charge per unit of length
in the z—direction in the [;—depletion layer be @Qs, so @s = ¢N4l;. Then, due to the global
charge neutrality, we have

Q2= —Qs = —qNals . (14)
The potential jump over the oxide layer, which has width T,y and permittivity eqx, is
N,
o = 2 1 = Ny (15)
€ox Cox
where
€ox
x = . 1
Co =1, (19
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Hence,

N,
Vo=Va+ L4, . (17)
Cox
Substituting this result into (10)(with € = &), we obtain
2€s qNg
2= —Va— =1 1
El qu (V ‘/2 Cox ) ) ( 8)

resulting in the following expression for /,:

ls(x)z\/%( VV2+Vsi\/I75i)=is(V), (19)

where

g6silNg
203,
Let J(x) be the current density in the channel in the z—direction. By use of the drift-

diffusion model with the diffusion term neglected, we find that the channel current density
at z is given by

Vsi = (20)

av
J(z) = *QNnNdE(QT) . (21)
The total current I(z) flowing through a cross-section of the channel at x is then given by

Te 7l1 (m)
Iz) = W J(z)dy

la(x)
dv
= ~WauaNalTe — li(z) — L;(2)] - (2) , (22)
where W is the width of the channel in the direction perpendicular to the z —y—plane. The
relation between I and V still depends on . However, the channel current I is independent
of z, since there is no accumulation of charge. Therefore we have the obvious relation

ot / I(z)ds = — o /V3 gNy(T, — [,(V) = 1,(V)) aV. (23)

T3 — X1 Jgy I3 —T1 Jv,

The integrand is a known function of V', hence, the total current I may be calculated as a
function of Vi and V3: I = I(V;,V3). To get some insight into the function I(Vi,Vs), we
expand it about the equilibrium point where all boundary voltages are the same: Vi =V, =
V3 = V4. To that end we write

GNa(T. ~ (V) = ,(V)) = gNa(Te — (Vi) — aNa(ls (V) = 1 (VA) = gNal,(V) . (24)

qi (V) a:(V)

By construction, both ¢, = 0 and ¢, = 0 if V; = V5, = V3 = V,. Therefore around the
equilibrium point we have

Wun [V
1= - e a) - gy
T3 —T1 Jy,
- _Boh + higher—order terms, (25)
Ry,
in which
r3 — T1
Ron i= —— 26
W png; ( )

may be interpreted as the ohmic resistance near equilibrium.
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Figure 6: The transition region

5 The transition region

The transition region is a small wedge-shaped region of about 2um x 2um below the gate, as
shown in Figure 1. In the transition region we use the polar coordinates r,8; see Figure 6.
The true transition region Gy (i.e. the white region in Figure 1) is surrounded by two
depletion layers, both of n—type. The first layer is connected to the oxide layer and runs
from 6 = 0 to 8 = ¥s(r); thus the thickness of the layer at radius r is rd,(r), which should
be compared to ls(z) for the drift region. The second layer runs from 6 = 7/2 — ¥1(r) to
6 = m/2; here the width r¥;(r) is comparable to l;(x). To the left of this layer there is
a third layer, but now of p—type. This layer runs from 6 = 7/2 to § = 7/2 4+ J4(r) with
width 794 (r) comparable to l4(z). As before, in these depletion layers J = 0 and the charge
density is ¢/Ng in the ¥,— and ¥, —layers and ¢V, in the ¥4—layer.

The true transition region is given by

Gy =1{r0|r <r<rs 9(r) <0 <m/2 -9 (r)} .

In this region a current J runs mainly in radial direction and dependent on r, while the
charge density p vanishes, implying that AV = 0. Here, V = V(r,6) is the voltage in Gy,
which has prescribed values V; and V3 at the boundaries » = r1 and r = r3, respectively;
see Figure 6.

The analysis of this wedge-shaped transition region is in main lines analogous to that
of the rectangular drift region. Firstly, in the depletion layers we may apply a thin-layer-
approximation, stating that we may consider the voltage at fixed r as a function of 6 only,
resulting in the following equation for V:

1°V(r8) _ »p

2 002 ey (27)
In the first depletion layer this equation becomes

0?*Vy(r,0) _ aNa »

Tz—e—gr ; 0<9<'l93(’[‘), (28)
with the boundary conditions (V5 is again the voltage applied to the oxide layer)

%(TJ 0) = ‘/2 + ’%x ’ V;,(T‘, 193) = V ’ (29)
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where
_ _qNy
Yox = Yox () = Co

and V(= V(r)) is the voltage in G.
The solution of this problem reads

rds(r) (30)

N, 6 6
Vi(r,0) = q26(~i r2(9,0 —6*) +V 19—+(V2+¢0x) (1—19—) . (31)
S1 8 8

The angular width 9, follows from the requirement

oV
06

yielding

1 /2 1.
195(7“):; ;TZ( V—V2+Vsi—\/Vsi)=;ls(V), (32)

with Vg as in (20).
It is now obvious that we can find 9 (r) in accordance with (12) and (13) as

(7': 193) =0,

~

=N | =

_ 1 €si 2Na _
ﬁl(r)_T\/quNa—}—Nd(V(r) ‘/:1+¢0)_
Secondly, in the transition region G; we assume that the voltage is independent of 6, so
that V = V(r). This assumption can be justified as follows. Since p = 0 in G¢, V satisfies
AV =0, and then it follows from a separation—of-variables argument that V is of the form

V(r,0) = ap + a1 log(r) + Z r" (¢, cos(n) + dy, sin(nh)). (34)
nez

If the boundaries of the depletion layers would be perfectly straight (i.e. 95(r) = 9 and
Y1(r) = 1), the boundary conditions for V' would read: V(ri,0) = Vi; V(r3,0) = Vs;
0V/08 = 0 for § = ¥, and § = ¥;. This would imply that ¢, = d, = 0, for all n, so
V = V(r). Hence, when we assume that the boundaries of the depletion layers are ’slowly
varying’, it is allowed (in accordance with the approach for the drift region; compare to
(11)) to take

Vr,0) =V(r)+6V.(r,0) .

Thus, with V(r1) = V4 and V(r3) = V3 we obtain (up to O(9))

Similar to (21) and (22), the current density and the total current through the channel in
the transition region are now given by (J = J(r)e,)

dv (r)

J(r) = —qunNq pa

(36)
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and

5—91(r)
Iry = W J(r)rdd
Bs(r)
. T dv (r)
= ~WauaNa [T = 91() — 0 ()] r =
. [(m dV(r) - dv(r)
= —WqunNg 2 A L(Va) ar
A - dv (r)
+WaunNa [1(V) = b(Va)] =
[ dv
+WqpunNa ls(V)&]
I dr
dv
= W [a) ~ @) +a,(V) G| (37)
where ¢, and ¢, are defined in (24), and ¢; is given by
_ T A dv (r)
ai(r) = Na [Sr—hi(v)] =2 (38)
while it follows from (33) that
> €si 2N,
(V) = ———1p . 39
1( 4) quNa+Nd¢0 ( )
Since there is no accumulation of charge we again argue that
1 T3
I = / I(r)dr
rs —T1 r1
_ Whaa gNa(Vz —W1) /” m  L(Va) d
= - - — r
rg —ry  log(rs/r) o\ 2 T
Wy, ¥
o [ @) gV av (40)
rs—T1Jy;

Around the equilibrium point V; = Vo = V3 = Vy, where ¢, = ¢s = 0, the total current is
given by

T pngNgW { 2 108(T3/T1)] :
I = —— 72— 11— 2 (Vy)) === (Vs — V1) + higher-order terms
2 log(rs/r1) 1(V4) T3 —T1 (Vs —¥1) + big
Va —V;
= 21 + higher—order terms , (41)

on

in which the ohmic resistance is given by

1 T pngNgW [ 25 10%0‘3/7’1)]
— = — 1——-l(Vy)————=. 42
R,n 2 log(T3/T1) ™ 1( 4) ry —1r1 ( )

With this final result, the total current in the transition region is written in a form similar
to the one obtained in the drift region.

According to the numerical values of Table 1, and with r3 = 2um, the second term
between the square brackets on the right-hand side of (41) is of the order of 10~!. Hence, it
is less than 1, but not really negligible with respect to 1.
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6 Concluding remarks

A high—voltage MOS(metal-oxide-silicon) device consists of several regions, such as the body
region, the drift region, and the transition region. A compact model for the device as a whole
requires coupling of the compact models for these separate regions. Up to now, one uses for
the transition region a model that has been developed for the drift region and is adapted to
the transition region via ad-hoc considerations. The main goal of the present project is the
derivation of a reliable compact model for the transition region from first principles. Since
the drift and transition regions have the same characteristics and differ mainly in geometry,
it is to be expected that many similarities exist between the corresponding models. That is
why the Study-group started with rederiving the drift region model in full detail, in order
to find which mechanisms are most important. For this, the basic principles described in
[1]-[4] formed the starting points.

An important ingredient of a compact model for the drift region is the thin-layer-
approximation for the depletion layers. Another assumption is that the widths of these
layers vary rather slowly in the longitudinal direction of the channel. This implies that,
to lowest order, the voltage in the drift region is a function of the horizontal position only.
This approach resulted in the compact model embodied in expression (23), which relates the
current through the channel to the voltages applied at the boundaries. This model contains
an integral. If the boundary voltages are nearly equal, the model is described by expression
(25), which is algebraic and extremely simple to evaluate.

The derivation of the drift region model provided the insights for the derivation of the
transition region model. Here, polar coordinates (r, 8) are used. It is shown that the voltage
in the transition region is a function of r only, if the form of the depletion layers is wedge-like
with straight boundaries, i.e. & = constant along these boundaries. It is assumed that the
deviations from straight lines are small, so that, to lowest order, the #—dependence of the
voltage may be ignored. This allows for a derivation along the same lines as followed for
the drift region. The resulting compact model given in (40), relates the current through
the transition region to the voltages applied to the boundaries of this region. If the latter
voltages are nearly equal, the model is described by (41). The latter algebraic expression,
which is very easy to evaluate, shows that, to lowest order, the current is given by Ohm’s
law: it is proportional to the voltage difference V3 — V3 over the transition channel, and the
resistance, given by (42), is a function of geometry and the other boundary voltages.

We conclude that both the drift and the transition regions of the MOS-device can be
adequately represented by compact models and these models are quite similar. The models,
derived above, are reliable as long as in the drift region the depletion layers vary slowly in
width, whereas in the transition region the boundaries of the depletion layers do not strongly
deviate from straight lines. If these conditions are not fulfilled, the present models could be
extended with correction terms.
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