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Abstract

We present a discussion of a problem posed by researchers of the company Ericsson,
namely, to estimate the fraction of the road users in a road network that must participate
in a central route planning scheme such that travel time predictions improve significantly. A
road user who participates is expected to inform the central route planner of his intentions
to travel from an origin to a destination and is expected to travel along the route advised by
the planner.

The aim of this work is to derive a measure of travel time performance depending on the
number of road users who are participating in the central route planner. The approach is
mainly of a statistical nature.
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1 Introduction

Ericsson is interested in developing a “central route planner”. The function of a central route
planner (CRP) is to advise road drivers on journey routes. Specifically, before travelling from one
location to another, a driver uses the telephone to query the central route planner, which tells the
driver the fastest route to take, an estimated journey time and possibly other information such as
reliability estimates or worst-case scenarios. Ericsson must decide how the central route planner
will calculate the routes and times it distributes, and which of the various available sources of data,
providing information on traffic flow they should use in making these calculations.

In particular, Ericsson would use historical data on traffic densities (possibly correlated with
variables such as the day of the week, season, and weather forecast). However, Ericsson has also
considered using the number of user queries themselves, for a given particular route, in addition
to this historical data. The traffic forecasts made by the central route planner may be improved
by doing this. Ericsson would like a measure of the “improvement” and wants to know how this
“improvement” would depend on the percentage of drivers using their service. Their main question
to us was: “How many user queries does Ericsson need to significantly improve upon the historical
data predictions?”

At the moment Ericsson knows very little about this type of problem, and wants some advice on
various issues. Perhaps not surprisingly, given the economic importance of efficient road networks
and the current traffic jam problems, behaviour of traffic on road networks has been studied
greatly. In section ?? we give a sketchy overview.

Ericsson’s problem has many different aspects, some of which are discussed in section ?7?.
Because of this scope, solving Ericsson’s problem in full generality proved impossible. To get
anywhere we had to make strong simplifications and restrictions, and ignore several important
aspects of the problem. The simplifications we chose to make are discussed at the start of section
77, and the rest of that section is devoted to a statistical model of the relation between CRP users
and travel time.

One part of this model is a relation between number of drivers on the road, and average travel
time. In section ?? we use a simplified version of a traffic model we found in the literature to
obtain a reasonable-looking approximating formula.
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Figure 1: Smulders’ function, relating density and equilibrium speed of traffic flow.

Section ?? gives concluding remarks. In our opinion, our analysis and the many different
aspects of the problem that cannot be influenced indicate that a large number of users is necessary
to significantly improve upon historical data predictions. We doubt whether such large numbers
of drivers will cooperate in a central route planner system, and we think that Ericsson’s idea will
probably not be feasible.

2 Literature

The following is a selection of literature we used for this report. More references can be found in
e.g. [?] and [?].

In [?] a traffic flow model is developed, inspired by fluid dynamics. The starting point is a set
of partial differential equations. These equations are discretised, and terms are added to model
the tendency of drivers to look ahead, and to adapt their speed to other traffic.

In [?] this model is further developed. The notion of “equilibrium speed” is introduced, and
a relation between traffic intensity (cars/km) and equilibrium speed is proposed. This speed, as
a function of intensity, is continuous and monotonically decreasing, with a sudden steep drop
at a critical density, marking the onset of traffic jams; see figure ??. This work also deals with
dynamically influencing traffic flows. The analysis concerns a single highway segment. Influencing
traffic flows is also studied in [?]. Methods for dynamic routing or dynamic traffic assignment, as
opposed to static traffic assignment through signposts, are discussed.

A system theory approach to route planning, using both deterministic and stochastic models,
can be found in [?]. The emphasis is more on the network, and less on modelling the traffic flow
on single road segments, for which rather crude models are used.

Currently in the Netherlands, enough real-time information on traffic densities is available
to make short-time density predictions feasible. A research group is using a model described
in [?] of traffic on the Amsterdam ring, based on [?] and ideas from dynamic game theory, to
predict densities a few hours in advance [?]. These predictions may be used to drive an electronic
messaging system.

In [?] the idea of combining a toll-system (rekeningrijden) and advance booking was brought
up- It contains elements of Ericsson’s idea, and was investigated by the engineering consultants
Niema, who concluded that the idea could be a “worthwhile contribution” to solving the traffic
jam problem. Currently the idea is being discussed with several parties involved; see also [?].
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3 Some definitions

We define here a few terms that we shall use throughout. A wuser is a road user who has telephoned
Ericsson’s central route planner, and is following the advice provided. A network is a directed
graph of road segments (in practice, each edge usually has a complementing one going in the other
direction). We use the word road to denote a single edge in the network, that is, a segment without
crossings, on- or off-ramps. For each edge or abstract road we define the following quantities, some
of which are time-dependent:

e Length, L; corresponds to length of road.
e Number, N; corresponds to number of cars on road.

e Density, D = N/L; corresponds to number of cars per kilometre on a given road. For each
road, we assume homogeneity.

e Intensity, I, also called ‘traffic flow’; corresponds to number of cars driving past a certain
point per hour.

e (Average) speed, S; average number of kilometres cars travel per hour on a given road.
e Capacity; maximum intensity, reached for some optimal density and speed.

e Travel time, T = L/S.

e Equilibrium speed; speed of traffic in stationary state, at a certain density.

Detailed models differentiate between equilibrium speed and the actual current (average) speed.
In the models we use we shall not make this distinction.

By network flow parameters, we mean capacity, density, intensity and average speed for each
road in the network. Capacity clearly depends on the type of road, i.e. number of lanes, highway
or not, speed limits, etc. It also depends on road conditions, by which we mean all variables that
influence the capacity of a road such as weather conditions, daylight, construction work, accidents
on the road (or on the road going in the other direction, which may create a kijkfile (spectator
jam). Finally, routing information is the information a user obtains when he! calls the central
route planner. This information includes the estimated time his planned journey will take, the
time at which he has to leave, and the reliability of the estimate.

4 Aspects of the problem

In this section we identify and comment on several aspects of the traffic estimation and routing
problem. Many of these aspects have not found a way into the proposed model; however, we
believe they are all relevant, and important to keep in mind when a decision about follow-up
research on the CRP is to be made.

4.1 Two main approaches to the traffic problem

Vaguely put, the goal of traffic routing is to make more efficient use of available network capacity.
Two main approaches may be identified (see also [?]), which we dub the top-down and bottom-up
approach.

e Top-down: Guides traffic so that the total capacity of the network is maximized at a global
optimum;

e Bottom-up: Provides users with accurate information and predictions, enabling them to
choose the most efficient (fastest) route, i.e. every user is in a local optimum.

1'Whilst not making strained efforts for political correctness, we are aware of the existence of female drivers.
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The first is the approach taken by the government, when they try to influence traffic, for instance
by imposing speed limits. The second approach is taken by individual drivers, when they choose
departure time and route in order to encounter fewer jams.

Note that the two approaches use different notions of optimality. Government is interested
in average throughput, an individual user is interested primarily in his own travel time. And
indeed, these differing notions give rise to different optimal configurations. For example, within
some bandwidth, imposing a speed limit results in a higher road capacity (the number of cars
per minute flowing through), although individual cars take longer to arrive. Other even more
counterintuitive situations may occur; see section ?7.

4.2 Historical data and users information

We assume FEricsson has access to historical data on the network flow parameters. It is unclear
to us whether this assumption is justified. We believe that a systematic, detailed and extensive
database of past network usage is vital for predicting the traffic flow, and running a CRP service.
Rijkswaterstaat routinely compares the traffic flow and speed of the flow with values of the recent
past. Each traffic control center has a module for this.

The problem of predicting traffic flow using historical data alone is not trivial. A reasonable
idea seems to identify independent, explaining variables, and use these to look up relevant past
traffic situations. The independent variables would include at least the day of the week, the time
of the day, the season and weather (forecasts). The database would provide an estimate of traffic
intensity, as well as an estimate of road conditions, together with the resulting traffic densities.

Ericsson’s extra source of information are the user queries. The information on users consists
of the information about their current travel plans, and probably also of a database containing
the travel histories of all users. This information may be used to improve the traffic intensity
estimate. Using the database or a traffic model, this can subsequently be related to an improved
traffic density estimate.

As the extra information contained in the user queries would almost certainly be related to
network usage (intensity), rather than road conditions, it is important to compare how traffic flow
varies with varying network usage, as compared to the variation due to varying road conditions.
See section ?7? for more remarks.

To determine the effect that using the extra information contained in user queries will have on
the precision of estimated journey times, it is vital to look at the relationship between the number
of drivers on a road, and the number of user queries (pertaining to this road). There may not in
fact be a useful relationship between these quantities, for the following reasons.

Some proportion of the drivers may never call, for instance because they are bound to fixed
departure times, or simply because of unfamiliarity with the system. People taking the same route
regularly may not bother to call (often), especially if the proposed route and departure times do
not vary much. An assumption on the relationship, for instance that a fixed percentage A of the
drivers call Ericsson, will therefore probably not hold in general, but might however hold for the
group of occasional drivers.

The CRP can provide best routing information after all user queries are collected. This would
mean that users must call twice to obtain the requested information, which is not practical.
Moreover, they must plan their journey well in advance, which may not be possible or desirable
for everyone. Alternatively, the routing information may be continuously updated, with the system
always giving the latest predictions. This has the disadvantage of rewarding late callers, reducing
the effectiveness of the system.

Users may also give unreliable information, particularly if this information must be given well
in advance, or ignore the CRP’s advice, causing further problems. User input will hardly influence
the information they get from the CRP, so that there is little incentive for the user to be very
precise.
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Figure 2: Braess’ paradox. The numbers indicate the travel times for the corresponding edge; see
text. Adding an edge, in this case a third bridge across the canal, leads to increased travel times
for all drivers. Such paradoxical results have been observed in practice.

4.3 Nash equilibrium, Braess’ paradox and the Prisoner’s dilemma

One idea that came up during the discussions, is whether Ericsson, by advising their users properly,
could “manage” traffic so that a more efficient use of the network would result, and hence better
journey times for many of Ericsson’s users. However, paradoxical situation may occur, as for
instance noted by Frank Kelly [?]:

[If drivers are provided with extra information about random delays ahead, the out-
come may well be a new equilibrium in which delays are increased for everyone.

In this section we shall make some remarks about a similar paradox, which states that adding
edges to a traffic network may similarly increase delays.

Tt is usually assumed that drivers choose routes so as to optimize their own situation. As-
suming full information, this leads to a traffic situation where every driver uses a locally optimal
route, meaning that choosing a different route will not result in a decreased journey time for this
particular driver. This is called a Nash equilibrium. More than one Nash equilibrium may exist.

Given that Nash equilibria are locally optimal, it is perhaps surprising that the globally op-
timal, or most efficient, traffic situation may not be a Nash equilibrium. For this statement to
be meaningful, we need a definition of “efficiency”. Here we choose as efficiency measure, any
(weighted) average of the journey times experienced by all drivers in a given traffic situation.
More precisely, the statement is as follows. For certain networks, traffic situations exist where,
compared to the most efficient Nash equilibrium, every driver has decreased journey time. These
traffic situations are more efficient according to our efficiency measure.

The fact that a Nash equilibrium need not be optimally efficient, is closely related to Braess’
paradoz [?]. Braess found that adding an edge to a network may lead to a change in a Nash
equilibrium, with increased delays for everyone, even though drivers have more routes to choose
from. This phenomenon has actually been observed in practice [?].

An example network where Braess’ paradox occurs is given in figure ?77; see also [?]. A network
around two mountains and across a canal offers two alternative routes. Suppose that the delays
on the various parts of the network are: 10 minutes to go around a mountain, 2 minutes to
drive along the canal, and n/10 minutes to cross the canal, where n is the number of cars using
the bridge. This term models the congestion, due for instance to the narrowness of the bridge.
Suppose 100 cars want to cross the canal. In this case the unique Nash equilibrium is reached
when cars distribute themselves equally among the two available routes. The associated delay is
104+2+ % = 17 minutes for each route.

Suppose now that a third bridge is constructed, as indicated in the right panel in figure ??. Two
new routes are available, one going around both mountains, the other avoiding going around either.
The first will not be used, but the second route is fast, with initially % +2+0+2+% = 14 minutes
delay, so that the previous traffic situation is no longer a Nash equilibrium. The new unique Nash
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equilibrium is reached when 20 cars take the new route, with the remaining 80 divided equally
among the two old routes. The delay in this situation is 18 minutes for all routes, longer than
before.

The previous traffic situation, with 17 minutes delay, is still possible in the new network
configuration. However, it is not a Nash equilibrium and will not spontaneously occur in practice:
since the shorter route is faster, with only 14 minutes delay, taking this route is beneficial for the
individual driver, even though it is detrimental to the “community”.? This situation is analogous
to the classical Prisoner’s dilemma.

One way to induce drivers to move towards the non-Nash optimally efficient situation is to
artificially increase the “cost” of the short route, for instance by imposing a monetary fine (essen-
tially the content of the NIEMA proposal, see [?, ?]). Drivers will weigh the benefit of a decreased
delay against the monetary cost associated to the quicker route. A new equilibrium will set in,
which is a Nash equilibrium associated to the weighted graph, with weights that include both the
delay along the edge, and the monetary cost involved. With fines chosen appropriately, such a
Nash equilibrium can correspond to an optimally efficient traffic situation.

We conclude that the two approaches, top-down or global, and bottom-up or local optimizing
(see also section ?7?), result in different optimal solutions. Efforts for globally optimizing network
usage are best done at the government level. Ericsson, on the other hand, is interested in the
local problem of predicting travel time and the best possible route, in order to provide a service to
users. For this reason, we abandoned the idea of global traffic management, and instead focused
on predicting traffic densities, in order to find the fastest route for individual users.

4.4 Finding the shortest route

Once road speeds are estimated, finding the fastest route is relatively easy. It can be basically done
with Dijkstra’s shortest path algorithm (mind the datahandling!) for directed weighted graphs,
adapted to take into account that the weights of the edges (the travel time along this edge) vary
with time. Provided that the weights do not vary too quickly (as otherwise waiting before taking
an edge may get you to your destination quicker than leaving immediately — Dijkstra’s algorithm
does not handle this correctly), this can be done easily. Such an algoritm has polynomial time
complexity. For an application of Dijkstra’s algorithm in a real-life situation see [?].

4.5 The explaining variables of traffic jams

To provide reliable information, we want to predict how quickly a user can travel on the road
network. This depends on the user (whether he is driving a truck or a car, whether he will drive
fast or slow if he has an option), and on traffic conditions (the maximum attainable speed on each
leg of his journey). Traffic conditions depend on several things, such as the type of road, the road
conditions, the number of drivers on the road, the type of vehicles (cars or trucks), and previous
traffic conditions (a jam takes time to dissolve; above criticality, a jam reinforces itself).

Let us focus on two main variables, demand and road conditions. Since the central route
planner bases its estimate on an improved estimate of traffic density, and since Ericsson’s additional
source of information only carries further information on the first variable, demand, it is important
to know something about the relative importance of these two variables for traffic density estimates.

A very simple first approach to answer this question empirically could be as follows. Instead
of looking at the average speed, which varies over the roads of the network and may be difficult
to measure, we look at the length of a traffic jam. This may be regarded as a stochastic variable.
The lengths of traffic jams are already being measured and broadcast on the radio. Correlating
these with variables related to demand and road conditions then gives information on how these
variables explain the lengths of traffic jams. Real-time measurements of intensity are already done
at some points in the Dutch road network (see [?]).

2Choosing routes according to a globally efficient traffic situation is, in Hofstadter’s language, following a “super-
rational” strategy (see [?, Part VII]). His experiments indicated that rational people do not follow such strategies.
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A potential problem in this approach is that the relationship between traffic jam lengths and
demand is probably highly nonlinear: below a certain threshold, jams are very unlikely to occur.
Because of this nonlinearity, ordinary linear correlation might not be the best way to measure the
dependence between these variables.

5 A statistical approach

Here we present a model to answer Ericsson’s question quantitatively, in a simplified setting.

5.1 Simplifying assumptions

All network flow parameters are important for e.g. simulations. ;From the users’ perspective, the
average speed (or travel time) are mainly of interest. In order to predict the total travel time for
a single user, Ericsson needs to be able to predict the travel time on each leg of the network, at
every instant of time.

Once these estimates are known, finding the fastest route is relatively trivial. Therefore we shall
focus on the precision of the journey time estimate, which depends on the “reliability” of network
flow parameter estimation. Many of the variables that influence this are inherently stochastic in
nature (such as the occurrence of accidents), so a statistical approach seems to be natural.

In order to simplify further, we will not consider the whole network or discuss the correlations
in time mentioned, but focus on the problem of predicting the travel time on a single given road.

As final major simplification, we assume that the network flow parameters (such as intensity)
are independent of time. In practice, this means that we shall consider a short time interval, where
conditions can be regarded as being constant (but see section 77?).

5.2 The model

In this model, we consider a single road. Let N denote the number of cars on this road and 7" the
time taken to travel along the road. As mentioned previously, we assume there is a deterministic
relation between the density and the speed, so that T is some function of NV:

T =g(N) (1)

say. It is reasonable to assume g is monotonically increasing and hence injective (see also section
??). Some of these N drivers call Ericsson; say U users. The problem is now to estimate N given
U.

First we need to model the distribution of N itself. All we know of N is that it is a discrete
variable. We assume N has a Poisson distribution with parameter u, say.

Furthermore, we assume that the probability of a driver being a user is A. In other words, the
conditional distribution of U given N = n is a binomial distribution with n trials and parameter A.
The actual value of A may be deduced from historical (users) data. Then U is Poisson distributed
with parameter p.

We have historical data for a particular road, i.e. with frequencies fi, ..., fr thereare ny,...,ng
cars on the road. The travel times are then ¢, ..., t; where t; = g(n;).

In practice many n;-values can occur, while the historical data may be limited. It is therefore
probably a good idea to use intervals [n;,n;y1) of some appropriate length, instead of points. See
also section ?7.

Suppose we observe U = u say, and we know

P(U = u|N = n;) P(N = n)
PU =w)

P(N =n|U =u) =

by Bayes Theorem. Now P(U = u|N = n;) is given by the above assumption, P(N = n;) ~
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fi/ >_ fi by our assumption on the historical data, and
P(U=u)= Y P(U=u|N =n;)P(N =n;).
n;>u
As n; varies, this gives us the posterior distribution of N, given U = u. Hence, using that g is
injective (see also figure 77),

P(T = t|U = u) = P(9(N) = g(ni)|U = u) = P(N = ni|U = u) (2)

gives the posterior distribution of T' given U = u. We finally estimate T from a given u by choosing
the value ¢; which maximizes (77).
Let us now use our knowledge of the distributions of N and U. We have

e MM (uA)
u!

’

P(N =n) = e_;“", P(U = ulN =n) = (Z) M- A" and P(U =u) =

and a little algebra yields the posterior distribution of N:

e (1 — )

PN =n;|U = u) = (i — )]

?

a Poisson distribution with parameter pu(1 — A), translated by u. It reaches its maximum at
N =wu+ p(1l — X), which is also its mean. Its variance is u(1 — ). Now, T' = g(N), so that

var(T|U = u) = var(N|U = u) (¢'(E(N|U = w)))” = u(1 - ) (¢'(u+pu(1 - N))>  (3)

(Note that the quality of this approximation depends on the smoothness of g. In our case g is
nondifferentiable, see section ??, and (??) will be an underestimate just below critical densities.)
An estimate of the variance of T' without user information is pg’(¢)2. With user information, this
changes to (??7). The difference can serve as a measure of the improvement of our estimate.

5.3 An alternative approach: Continuous distributions

A major drawback of the discrete approach is that we need to choose appropriate lengths for the
intervals [n;,m;41). A convenient way to avoid this is to model N by a continuous distribution,
say N (u,0). The facts that p is large and that many different values N can occur validate this
choice. Since negative values of N make no sense, we assume that ¢ < p, so that the probability
of such values occurring is negligible. We assume again that the probability of a driver being a
user is J, in other words, that U is binomially distributed with parameter A and N, given N € N.
By the law of large numbers

B(N,\) ~ N(NX, /N1 —N).

The rest of the analysis follows the previous section, and we shall not give the details.

6 The dependence of travel time on road usage

In the previous section, we used an unspecified function g to describe the dependence of the travel
time T on the number of users N of a road segment; see (?7). In this section we use a simple
model of traffic dynamics to arrive at a candidate for g.

Many different models of traffic flow can be found in the literature. They may be characterized,
crudely, as microscopic (individual cars, see references in [?, ?]), mesoscopic (densities and average
speeds over segments a few hundred meters in length, again see [?, ?]) and macroscopic (on the
level of networks, see [?]).

We focus on the mesoscopic level. The existing models are too detailed for us, and we make a
few extra simplifications.

70



6.1 Traffic model

The model we describe here is a simplified version of the models used in [?, ?, ?]. The main
simplification is that we consider a single road segment, on which we assume that homogeneous
conditions prevail.

In section ?? we mentioned the relation between density and equilibrium speed proposed in
[?]. We shall assume that traffic flow is always in equilibrium, so that the relation between
densities (supplemented by variables describing the road condition) and speed (hence intensity) is
deterministic.

Input of the model is a function A(¢) describing the influx of cars on the road segment per
time unit, in cars per hour. The output is a function D(t) describing the instantaneous density,
in cars per kilometre. The density increases due to the influx of cars, and decreases due to the
outflux, which is equal to the intensity (in cars/hour). The intensity is a function of the density,
namely Smulders’ function (see figure ??) multiplied by the density. Denoting the length of the
road segment by L, this leads to the following model:

D
152 = 4() — D(1) - S(D(1) 0
Here S is Smulders’ function. In principle, this function depends on various parameters, like
road conditions, type of traffic etcetera. For simplicity we shall ignore this and use the following
formula:

(D) Ufree (1 - DjDam> if D < Doyt
S(D) =
1 1 :
Vtree Derit D Djam) if D> Dy

(See figure 77, and [?, p. 30] for a motivation.) The various parameters are

=110 km/h, D:

jam = 110 cars/km,  Deyjy = 27 cars/km

Ufree

Because we assume that conditions on the road segment are homogeneous, the length of the
segment is an important parameter of the model (??). We used the value L = 30 km, which led
to reasonable results.

6.2 Road usage

The influx of cars at a certain instant, per unit of time, is given by A(t). As a model for road

usage we take
A(t) == N\/Ee—a*, (5)
T

a bell curve, where N is the total number of cars passing the road, and « is related to the width
of the bell curve. Both parameters influence the development of a jam.

6.3 Analysis

We are interested in the throughput of the road segment. One statistic related to this is the
average time it takes to travel through the segment. The time spent is the time of exit minus time
of entry; the average time spent on the segment for all cars is therefore

[ t(outflux(t) — influx(t)) dt  [7_t(D(t) - S(D(t)) — A(¢)) dt

o]

I, inﬂux( )dt B [ A(t)dt

—L— D(¢
LNy Uy

where we integrated by parts, with vanishing boundary terms. This is a first candidate for the
function g(N).

T =
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Figure 3: The average travel time, and average speed, on a road described by traffic model (??)
under influx (??), for varying parameter values N and a.

A different but related statistic is the average speed. It may be calculated by noting that an
intensity of cars D(t) - S(D(t)) experience a speed S(D(t)); the average speed therefore is

V= %/_Z D(t) (S(D(t)))* dt

For parameter values N € [2000,4500] and « € [$,4], both statistics have been plotted in figure ?7.
In both plots a ‘ridge’ can be seen, along which 7" and V' seem to have discontinuous derivatives.
The corresponding curve in the & — N plane is related to the onset of jams.

6.3.1 Critical curve

We now try to obtain an estimate of this curve of critical parameter values. The pair (a, N) is
critical when the density reaches, but not increases beyond, the critical density D ¢, at some
time Z¢pi¢. At this moment 42 = 0. Plugging this into (?7) we get that ¢ satisfies

A(tcrit) = D(tcrit)S(D(tcrit)) = DcritS(Dcrit) = Lerits (6)

where the critical intensity I..; is defined by It = DeritS(Derit) = 275(27) = 2241 cars/h.
Equation (??) has two solutions, one negative and one positive. Since D lags A and reaches its
maximum after A does, only the positive solution is relevant.

The remaining condition is that D(t.pit) = Derit- To solve this equation we need to solve the
differential equation (??). To simplify the latter, first note that 0 < D < D globally. In this
range S(D) depends linearly on D, and varies by approximately 25%. We approximate S(D) by
a constant Sayg. This constant is chosen somewhere between 110 and 83 km/h, but with a bias
towards the lower value since S(D) affects the differential equation more when D is larger. Then

(??) becomes linear,

12U 4 suegD(t) = A1),

and can be solved by variation of constants, D(¢) = (1/L) ffoo eSeva(u=t)/L A(y)du. The important
parameter here is Savg/L, which in our case is approximately 3. This justifies the use of the
following estimate which is more useful for our purpose, and which is valid for large parameter

values Savg/L:
1 L L? 5L
D(t) = Alt— + A”(t )+ 7

( ) Savg ( Savg) Qngg 3Savg ( )

Using only the first term, we get the following condition for #..;:

L
A (tcrit - Savg) = SanDcrit
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Figure 4: Curve of critical values in the N — a plane: jams start to occur upon crossing this
curve from the left. Dots are obtained by numerically solving (??); the curve is the approximation

(27),(72).

Expanding to first order, and using (??), we can rewrite this as A'(t¢t) = (1/L)Savg(Zerit —
D it Savg)- (From (??) we find that A’(t)/A(t) = —2at, and using this the condition becomes

1 D¢t S
20(t(;rit = zSan ( Ci?t e 1)

crit

(8)

Given «, we can solve (??) for ¢.pt, and then

[a 2
Nerit = Lerit ;ea enit 9)

Fitting the resulting curve to the curve obtained by numerical integration, we find good agreement
at Savg = 95 km/h. The critical curve is plotted in figure ?7.

6.3.2 Average time with jams

We now analyze what happens when we cross the critical curve. We assume that the time during
which the density exceeds the critical value is small, compared to the total time interval considered.
Let N and a be on the critical curve, and let .. denote the instant at which critical density is
reached, and It = Derit S(Derit) = D(terit) S(D(terit)) the critical intensity. We increase A(t)

by a factor e, that is, we set
A(t) == (1 + e)N\/geatz

For small €, the time spent in the jam-regime D > Dt will be small. This justifies approximating
I and A by linear models,

I(D(t) = Ileit —7(D(t) = Derit)
Alt) = (1 +e)leig(l — Bt — terit))s
where we used that A(tepit) = Ierit when € = 0. Here v = él—]g as D N\, D¢y, and g =

f% [Icrit at t = tepit. For € > 0 the critical density will be reached for ¢; < tg;. Using
D(t) = (Depit [A0))A(t — terit) (equation (2?)), valid when D < D44, we find the approximation

DO ~ (1+ ) Deri 1+ 3.0~ feri? ) = (14 D1~ alt ~ trs)?)
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for the case € > 0 and D < D ;. Solving D(t) = Dy we find

- Cr1

€

t1 =terit — alte

For convenience we now choose translated variables ¢ and D', so that ' = 0 corresponds to t1,
and D' = 0 to Dt Setting up the differential equation for the jammed regime in these variables,
we get

D’ _
L T (1 + ) Ierit (1 - B (t/ “Vall+e ) —Ipit +¥D' =a—bt' +~D’

where a = I (e + (1 + €)B+v/€/a(l +€)) and b = I3 (1 + €)5. This equation can be solved by
variation of constants again, yielding

D/(t/) — (%t/ . %tﬂ) et/'y/L (10)

The solution is valid for D’ > 0, that is, between t; = 0 and

€ n 2¢
al+e) (1+¢€)p

th =2

(11)

We are interested in the value [D(t)d¢t. Without jams this would be N/Sayg, see (7). With
jams the value becomes larger, due to two effects. First of all, from the second term in (??) it is
seen that the time interval where D > D, is longer than it would be without jams. Secondly,
the density in this interval is larger than it would be without jams. Integrating (??) over the
appropriate interval, and truncating at degree €2, we the following formula:

0 if N < Nt

+ L‘DCI‘it 26 ]‘GﬂICI'It 63 . (12)
fN > N
N A+ 3N \adlte = it

L [ L
T=— D(t)dt =
N[oo () Savg

where N = (14€)N ;- It turns out that for reasonable parameter values, the last term, measuring
the large-density effect, is the least important one. As a final improvement, we replace the constant
Savg by a number that is 110 for N = 0, and linearly decreases to Sayg when N reaches its critical
value. The resulting curve, and the numerically obtained statistic 7', are plotted in figure ??.

We conclude that the expression (??) may serve as a good approximation of g(/N) below and
around critical densities.

7 Conclusions

Ericsson’s problem has many different aspects, which makes it impossible to give a precise answer
to their question. Instead we have tried to provide an overview of these aspects, which helped us
to subsequently formulate and analyze a model problem.

We selected relevant literature and described some of the recent research in the area. Traffic
routing problems and traffic density predictions, as well as traffic flow models, have been studied
greatly. It turned out that even advance booking had been investigated, an idea which is closely
related to Ericsson’s ideas. We indicated a few problems that may arise when a CRP is imple-
mented. Our main concerns are, that too few drivers may cooperate for traffic density estimates
to improve significantly, that users may give unreliable information or ignore the CRP’s advice,
and that road conditions (which cannot be predicted well in advance) may influence the traffic
densities more than the demand.

To get a sense for the relation between user cooperation and reliability of travel time estimates
we modelled a single road segment, under strong assumptions. Here we used the variance of travel
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Figure 5: Average time to travel through the segment, for fixed a = 4, as a function of N. The
smooth curve has been determined numerically, the other curve corresponds to (?7?).

time estimates as a measure of reliability. We also analyzed a simplified traffic model to find a
relation T = g(IV) between road usage N and average travel time T'. The fraction A of the drivers
that use the CRP appears to influence the travel time predictions in two ways. If the number
of cars on a road is not near a certain critical number, the variance of the travel time depends
more or less linearly on the fraction A (in this case the derivative ¢’(IV) is roughly constant when
N changes due to CRP advices). Far from critical situations, the effect of users information will
therefore only be noticeable when many drivers become users. If the number of cars on a road is
near the critical number, ¢’(N) changes drastically with small variations of N. This may cause
a higher order dependence of the variance on A, and means that user information becomes more
useful. It is however hard to predict in advance whether the situation on a road will be near
criticality.

Moreover, a change in N, caused by the CRP’s advice, may also let g’(N) increase. This can
result in a less reliable estimate than the estimate without users information. Partly this is due to
our notion of reliability; however, paradoxical situations may occur, related to Braess’ observation.
It would be interesting to study this, and identify when reduced reliability, or increased travel
time, can occur as a result of providing users with better information. Another topic that seems
interesting and relevant to study is the dependence of jams on road conditions versus road usage.
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