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3.1 Introduction

This report describes the results of the analysis of a problem in petroleum reservoir simulation
presented by Peter Sammon of the Computer Modeling Group Ltd. (CMG). A summary of the
problem, including contact information, is in the introductory pages of these proceedings.

The flow of two fluids (here, oil and water) in an underground petroleum reservoir is typically
modeled by two partial differential equations: a parabolic equation for the fluid pressure in the
reservoir, and a non-linear hyperbolic conservation law describing the fluid movement. In general,
these equations are coupled through their coefficients, and are invariably solved numerically using
finite difference schemes. The major difficulty in using these schemes is that they are very sensitive
to the orientation of the finite difference grid.

The problem posed by Peter Sammon was to find an exact solution to the equations govern-
ing two-phase petroleum reservoirs that could be used to validate the numerical code used by the
Computer Modeling Group in its simulations. Ideally, the analysis would result in an exact solution
to the coupled system of equations for a specific rectangular geometry. It was soon realized that
this was a hopeless task, so the group set out to find compromises that would still provide useful
validation examples.

3.2 The Physical Problem

A simple model of the physical problem consists of a horizontal section of the petroleum reservoir
in which water is pumped into an injector (source) at a specified velocity and oil extracted from a
producer (sink) at a remote site. The geometry of the region shown in Figure 3.1 is typically part
of a much larger region with many sources and sinks.

The saturation of water S is

g— { 1 if all water, 2.1)

0 if all oil.
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Figure 3.1: Typical reservoir simulation geometry.

3.3 Potential Problems

While there are conflicting opinions regarding the details of the model equations (e.g. a three-phase
model), whichever model is used, the flow equations must be solved numerically, typically using
upwind differencing. The major difficulty with this approach is that the numerical solutions exhibit
grid orientation dependency. On grids such as those shown in Figure 3.2, the numerical scheme will
give different (sometimes wvery different) results for the same problem. McCracken et al. [3] examine

Figure 3.2: Rectangular grid orientations.

a numerical method for eliminating the dependence of the solution on grid orientation.

A question one might ask is whether or not the numerical scheme becomes more accurate as
the grid size decreases? (See Section 3.8 for further comments regarding the well-posedness of the
problem.)

3.4 Model Equations

The simplest 2-D model of petroleum reservoir simulation is described by the equations
V- (A(S)Vp) = 0,and ¢Sy =V - (f(S)A(S)Vp), (4.2)

where p is the pressure, S the saturation and ¢ the porosity of the rock. The total mobility, \(S),
and fractional flow, f(S), are the key functions that determine the different forms of solutions.
The total mobility function is typically of the form:

— §)\8
M&:%(in+m) (4.3)

where ., is the viscosity of water and k is the permeability of the rock. Similarly the fractional flow
function is

(4.4)
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where a and 8 are constants such that « > 1 and 8 > 1. In these functions the mobility M is
defined as

Ko
M= (4.5)
Pow

and typically M > 1. For simplicity we take ¢ and k as constants.
Figure 3.3 shows the dependence of key functions on the constants M, a and .
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Figure 3.3: Dependence of key functions on M, «a, and 5.

3.5 Approaches for Finding Exact Solutions
Several approaches were initially considered:
[1] Two simple special solutions:

(a) Traveling waves of the form S = S(ax + by — ct), and

(b) Similarity solutions: S = t?f(xt",yt”). Although both will produce solutions, through coupled
ordinary differential equations, there is no hope of satisfying realistic boundary conditions.
Neither was pursued.

[2] Uncoupled solutions found by the following steps:

(a) Guess a velocity field (the least sensitive to changes at the front), that must be rotational with
source/sink at corners.
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(b) Given (u,v) = —A(S)Vp, find S from S; = V - (f(S)?¥) = 0 and then find p. This approach
turned out to be more difficult than originally estimated and was not pursued.

[3] Assume the flow is radially symmetric:

(a) This is the same as the local flow around a source. This was the approach that was considered
in detail and in the next section we elaborate on this case. This approach has been considered
before. For example, Bajor et al. [1] test the grid orientation problem on a radially symmetric
problem, although their paper omits any details of the analytic solution. So far the exact radially
symmetric solution has not been located in the literature.

An attempt was also made to check the solution with a simple numerical code. John Stockie had
a code available from an undergraduate project. [It turned out that this code, from Waterloo, was

originally developed in part by Peter Sammon.] This code is unlikely to produce anything new in a
short time but could be useful as a check.

3.6 Radially Symmetric Flow
The equations governing the pressure p and water saturation S are:
V- (A(S)Vp) =0, and ¢S = V- (f(S)A(S)Vp). (6.6)
Assuming p and S are only functions of the radial variable r, these equations become
(rAp2)r = 0, and 85, =+ (rf(SA(S)p)r (67)
We consider a source at r = a of finite size, then from equation (6.9)

aA(S)pr = —g(t), (6.8)

where g(t) is an arbitrary source function. The negative sign indicates that p, < 0 for outflow. From
this, we obtain

9 g1
55 = =[S (6.9)
Defining the new time variable 7 as
t
T= / @dt_, (6.10)
o ¢
in terms of 7, (6.9) becomes
1
S+ ;[f(S)]T =0. (6.11)

Redefining the source as g(t) = G(7) the initial and boundary conditions are:

[ G(r) r=a,7>0
s={¢" rerza @1

Many different solutions to the problem arise, depending on the behaviour of the fractional flow
function f(S) and the initial function G(7). We will usually consider G(7) as a step function, so
will concentrate on various forms of f(S). For convenience, from now on we set 7 =1 .
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Case 1. If f(95) is convex (f"(S) > 0), then

G(a) (t > ﬂ)

S = 2feOp (6.13)

o (< grem):

The characteristic variable, «, is defined by
r2 _ g2

t—a= 2 (G@))’ (6.14)

so that t = o at r = a.
In this case, we have a simple solution along characteristics. A shock occurs if
(@G () = £1(G), (6.15)

and therefore depends on f and G. For example, an f = G? shock occurs if G'(a) = G(a) for some

a.

If r = U(t) is the shock path, it is determined by the shock condition:
du fr=f

@t~ (ST-5)U (6:16)

When G(a) is a step function, a single shock appears in plots of the saturation S as a function of
radial distance r from the source. The shock propagates in the positive r direction as time increases.
This case would provide a good numerical test for non-smearing and grid dependencies. The shock
path is given by

U? —a? =2t(f(1) — £(0)). (6.17)

Case 2. When f(.59) is concave there is no shock for the same step function input. The solution
is smooth, corresponding to a rarefaction wave connecting the characteristics carrying S = 1 and
S=0.

Case 3. The best test of all is for the real f. For example, f is convex for 0 < S < L and
concave for L < S < 1. Here, f'(L) = f(L)/L and f'(1) # 0. The general form of the solution for
the water saturation is

Constant (S = 1) | Rarefraction (S = Q) | Shock | Constant (S = 0). (6.18)

The characteristic net is divided into three regions with the corresponding solutions:

v (25
S=¢ N (%93%) (6.19)

r2 — g2
0 G<2MD)’

L<N<1; f(N)=Q
Q=(r*—a®/2t, f'(1) <Q < f'(L).

This case tests both the smooth parts of the flow and shock-smearing. Figure 3.4 displays the
characteristic curves for the mixed convex/concave f case.

where NNV is given by
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Figure 3.4: Characteristic curves for the mixed convex/concave f case.

3.7 Results and Discussion

We present the results of our study through various examples.

For M = 10, = 4 and 8 = 1, we have plotted the saturation profile in Figure 3.5 and the
pressure profile in Figure 3.6 for two fixed times.

We computed the pressure and saturation solutions using a simple numerical code (implicit in
pressure and explicit in saturation). Figures 3.7 and 3.8 display the resulting pressure and saturation
fields along a ray emanating from the injector (source) to the producer (sink). Figures 3.9 and 3.10
show the corresponding pressure and saturation fields over the entire solution domain.

3.8 Stability and Well-posedness

Although we are confident that the radially symmetric problem described above should provide a
good test for both shock-capturing and grid orientation dependence, it is worth expending some
thought on the question of whether or not the generic flow problem is well-posed or not. To begin to
understand why we might anticipate difficulties, we consider first the standard porous medium prob-
lem. This exhibits similarities to the full oil recovery problem considered above, but is technically
much simpler.

Assume that the region to the left of the boundary f(z,y,t) = 0 (see Figure 3.11 for schematic
details) is a porous medium filled with fluid, whilst to the right there is no fluid. By Darcy’s law we
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g,

Figure 3.5: Saturation S versus radial variable r at times ¢ = 1 and ¢t = 3 for M = 10, o = 4 and

B=1.

have
q=—kVp

where, as usual, g and p denote the velocity and pressure respectively and k (dimensions msec/kg)
is the relative permeability. For incompressible fluid, conservation of mass now gives the equation
of motion in the fluid-filled porous medium as

V2p =0.

As far as boundary conditions are concerned, we assume that the pressure is given on f = 0 by
P = Pa, say. Another condition is also needed to determine the free boundary; this condition simply
asserts that Df/Dt =0 on f = 0 where D/Dt denotes the Lagrangean derivative. We find that, on
f =0, we must have

fi =kVp-V{.

This problem has a simple traveling wave solution with speed v; it is given by
v
p=pa+E(vt—w), f=z—ot

We wish to determine under what circumstances this traveling wave is stable to y-perturbations.
Proceeding in the obvious fashion, we consider linear stability by assuming that

Da + %(vt —z) + €g(z,t) sinny

f = z—ovt+eesinny
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10

Figure 3.6: Pressure p versus radial variable r at times ¢t = 1 and ¢t = 3 for M = 10, a = 4
and § = 1. Fora<r <r,p=p =ps— (A/X1))In(r/a). Forry < r < 71y, p =p2 =
pi(r1) — Afri(l/)\(S(a))q)dq. For r > ra, p = ps = p3(r2) — (A/A(0)) In(r/r2).

where € < 1 and g(z,t) and the amplification factor g are to be determined. The flow equation in
the fluid-filled porous medium gives

g=A(t)e™ + B(t)e ™
and assuming without loss of generality that n > 0, we must take B = 0 so that the perturbations

become negligible as * — —oo. Imposing p = p, and f; = kVp-V f on z = vt — ee? sin ny now gives
the equations

0 = %eqf + A(t)em™,
deat — nA(t)e™"
k
so that ¢ = —vn and A(t) = (—v/k) exp(—2nvt). Since n was assumed to be greater than zero, we

recover the well-known result that retreating flow (v < 0) in a porous medium is unstable. (A very
similar argument may be applied to the Hele-Shaw flow shown in Figure 3.12 to show that retreating
fronts in such a cell are unstable.)

This result is potentially worrying. If we consider a retreating porous medium flow as discussed
above as one where a ‘more viscous’ fluid (water) is being expelled by a ‘less viscous’ fluid (air),
which is the case that pertains for nearly all of CMG’s calculations, then the instability of the process
could lead to gross errors in the numerical calculations. To be sure that this problem is present,
however, we need to ensure that instability is present for the full equations.

3.8.1 Stability of a Paradigm Shock Solution

In this subsection we analyze a simple paradigm shock problem to finish developing the methodology
necessary to attack the full problem.
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Figure 3.7: Pressure field p along a ray emanating from the injector to the producer (computed
using the simple numerical code).

To illustrate the methods that we wish to use, consider the conservation law
S+ (8%/2)x +(57/2)y = 0.
It is easily confirmed that this possesses the one-dimensional shock solution

_[ S (<o)
S_{OL (o> o)

where, according to the standard jump condition with f(S) = S?/2
LS _ 5

S] 2

We note also that since f'(Sp) = St and f'(Sg) = 0 then the entropy condition f'(S.) > v > f'(Sg)
is satisfied and so according to the standard theorems (see, for example Smoller [5]) the solution
that has been determined is unique.

We now wish to examine the stability of this solution. Using the ansatz that, for a perturbed
shock,

Y = z-vt—ef(y,t)
S = Sp+eg(y,t) (left of the shock)
S = 0+eh(y,t) (right of the shock)

we find that h and g satisfy the partial differential equations
9t +S0(92 +9y) =0, he=0

whilst the jump condition (evaluated at the perturbed shock front) gives at O(e)

~ 1
=Spfe —vg+vh+ SLg— 5512ny
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Figure 3.8: Saturation field S along a ray emanating from the injector to the producer (computed
using the simple numerical code).
where § = g(vt,y,t), h = h(vt,y,t). Now suppose that the perturbation is of the obvious form
f(y,t) = Re(e™e™).
Then the equations rapidly give h = 0 and g = g1 (x)e'™e’?, followed by g1 (x) = 20 + inSy, and

o = —iSrn. Thus the shock is neutrally stable (applied perturbations neither grow nor decay) and,
on taking real parts,

v = z— %t—ecos(n(y—SLt))
S = Sp+enSpsin(n(y —Spt))  (left of the shock)
S = 0 (right of the shock).

3.8.2 Stability for the Oil recovery problem

Guided by the methodology of the previous two subsections, we now consider the stability of the
problem

A(S)pz)z + (A(S)py)y = 0 (8.1)
(F(SAS)Pe)e + (F(SAS)Py)y = St (8.2)

Here we have assumed without loss of generality that ¢ = 1. For simplicity we consider the case
a =3 =1 (see later remarks) so that

S k -5
19=57s 0= ()
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Figure 3.9: Pressure field p in the entire solution domain (computed using the simple numerical
code).

Perturbing the problem in a similar fashion to the previous subsection, we assume that

¢ - p—t— €eo-ifeiny + 0(62) (83)

SL = 1- ea(w,y, t) + 0(62) (84)

Srp = eb(z,y,t) + O(?) (8.5)
w t

pr = _% + 7 (1o — o) + €c(@,y,1) + O(€?) (8.6)

pR = G ed(z,y,t) + O(€?) (8.7)

where by convention real parts are taken throughout. Note that the form of this ansatz ensures (a)
that the pressure is continuous to leading order at the shock front, (b) that the one-dimensional
solution is a shock of amplitude 1, and so by the jump conditions the shock speed is one, and (c) in
the one-dimensional solution Ap, = —1, so that the flux of material is constant in time and the front
moves from left to right. (Fluxes that are functions of time may easily be dealt with by rescaling
time as described above.)

We now need to pick a, b, ¢, d and o so that the following conditions are satisfied:

e sy, and pr, satisfy the partial differential equations (8.1) and (8.2) to the left of the shock.
e sp and pg satisfy the partial differential equations (8.1) and (8.2) to the right of the shock.
e The correct jump conditions for (8.1) and (8.2) are satisfied.

e The pressure is continuous to O(e) at the shock front.

Courant & Hilbert [2] give the jump conditions for a system of k conservation laws in n inde-
pendent variables. If the system is written in conservation form as

“ OP; .
= =1,2,..,k
; 8:L'i 0 (J ’ ? ? )
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Figure 3.10: Saturation field S in the entire solution domain (computed using the simple numerical
code).

some simple analysis shows that if the shock front is given by

’lﬂ(xl,xg, ,IL'n) =0

then the jump conditions are
n 6¢ '
Pl — =1,2,..,k
SIPlg, G )

where, as usual, [.] denotes the jump in a quantity as the shock ¢ = 0 is crossed. For the equations
above the jump conditions are therefore

[Ap:]vz + [/\py]"nby =0 (STt — [fAP=]tbz — [f/\py]wy =0.

Inserting the ansatz into the relevant equations in the order indicated above, we find that at O(e)
the following seven equations must be satisfied:

Cow + Cyy + ]’\‘4—’2(1\4 —1a; = 0 (8.8)
Caw + Cyy + l%”(at ta;) = 0 (8.9)
oo + dyy + %(1 — M), = 0 (8.10)
b+ Mb, = 0 (8.11)
1 (1— M) B
Co — Mdz + Uk [—apw —bus] = 0 (8.12)
—ge’te™ +b(1— M) — Mﬁcm =0 (8.13)
Ho = Hw eotginy L o g = 0 (8.14)

k
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fe=kVp-Vf
pnzo
pn=1 V-(Vp)=0 p = const

Figure 3.11: Darcy porous medium.

The first four of these equations are partial differential equations for functions of z, y and ¢, whilst
the last three are to be evaluated at =t and are therefore equations in the independent variables
y and ¢t only.

To solve (8.8)-(8.14), we make the further ansatz (again assuming that real parts are taken
throughout) that

a ay ea2 (M=) giny (8.15)
b = bet2e—Mbginy (8.16)
¢ = cenMemt)giny (8.17)
d = dyeb2E"Mt)einy, (8.18)

these choices having been made so as to automatically satisfy (8.11) and the simple equation that
results from subtracting (8.9) from (8.8). Now (8.13) gives the three equations

b(1-M) = o (8.19)
aa(M-1) = o (8.20)
(1 — M)bl — uiMCI/QCl = 0 (821)

whilst (8.8), (8.10), (8.12) and (8.14) in turn give

M?cia3 —n’e; + %”(M —Daias = 0 (8.22)

diby —n’dy + EE(1L= M)bibe = 0 (8.23)

Mcias — %bgdl + %[—pwal —pob1] = 0 (8.24)
o1 —dy + e B g, (8.25)

k



36 CHAPTER 3. PETROLEUM RESERVOIR SIMULATION

1

— 2
pn =0 P = 12M|VP|
p=1 V-(Vp)=0 p=0
pn=20 f(:c,y,t)zO

Figure 3.12: Hele-Shaw.

The equations (8.19)-(8.25) constitute seven equations in the seven unknowns ay, b1, c1, di, as, bs
and ¢ so nominally the problem formulation is complete.

Before proceeding further, let us consider how the ansatz that we have made is related to these
equations. To the left of the shock, the perturbations must decay as x — —oo, so that necessarily
as > 0. But now if p, > py so that M exceeds 1 (as is normally the case), then (8.20) suggests
that o is positive. A similar argument applied to the right of the shock shows that by < 0 and gives
the same conclusion regarding the sign of ¢. Thus according to (8.3) the shock position is unstable
and perturbations grow exponentially. This instability is likely to manifest itself as ‘fingering’,
where the water infiltrates the oil in an unstable manner, similar to the porous medium instability
discussed above. As far as the size of the shock is concerned, we note from (8.15) that since as > 0,
perturbations to the left of the shock decay exponentially in time. To the right of the shock, however,
since b < 0 th perturbations grow exponentially. Thus both the position of the shock front and S
are linearly unstable. (Since we have examined the case @ = 3 = 1 there is no technical reason why
S cannot take values less than zero, which is unphysical. When « and 8 are not one, however, this
problem may easily be dealt with.)

Although the conclusion that the simple shock front solution is unstable now seems unavoidable,
it is necessary to check (for consistency) that amplification factors with positive real parts actually
exist. Eliminating as, b1, b and d; we find from (8.22), (8.23) and (8.24) that

o2 M? . w10
m(ﬁ—nz)—%u ! =0

k

(e 252) (53 ) 55 () =

aMo o Mo — P
M—1 M- (cl+ k >+
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(1-M) Lo koMc; _
kM abw =T \ Ot o)) =0
and a; and ¢; may now be eliminated to give an equation involving o alone. After some (rather

tedious and lengthy) calculations, we find that the amplification rate o satisfies the quintic equation
0(c) = 0 where

6(c) = Ko® + M(1 — M)?0* — Kn*(1 — M)o® —n?*M?*(1 — M)30® + n*(1 — M) (8.26)

and K = k/p,,. This equation is tedious to analyze (though various special cases where the param-
eters K, M and n are large or small may be examined), but we note immediately that 6(0) < 0 for
M > 1 whilst for (o) — +00 as 0 — +o00. It is therefore certain that a real root greater than zero
exists, confirming that the problem as posed is, indeed, ill-posed.

What may we conclude from this analysis? Unfortunately it seems clear that, as might be
expected, the simple porous medium result that forcing a more viscous fluid with a less viscous one
is unstable is not altered for the more complicated oil recovery problem. This is likely to lead to
difficulties in computing numerical results, and may be one of the factors that influences the grid
orientation dependence. As far as the computation of numerical results is concerned, of course, the
code is unlikely to ‘see’ the equations (8.1) and (8.2). Instead, the discretization used will introduce
‘artificial’ viscosity and other dissipative mechanisms which may act to at least partially damp out
numerical instabilities.

Finally, a few general comments are in order. Although for simplicity we only considered the
case @ = = 1 in detail, other values of a and 8 may be dealt by making various changes to the
solution ansatz. We have not analyzed these fully yet, but it seems likely that the conclusions will
be similar. We also note that, whilst the first two problems analyzed in this section are standard
book work, we have not been able to find an analysis of shock front stability for the full oil recovery
problem in the literature, though it seems likely that one must exist somewhere.
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