The maritime surveillance problem

Philip Kilby
NICTA and Australian National University

Patrick Tobin

Swinburne University of Technology

Ruth Luscombe

University of Melbourne

Steven I. Barry and Roslyn Hickson
University of New South Wales @ ADFA

1 Introduction

The problem examined here is that of using aircraft to find and classify ships at sea. Identify-
ing the position and type of ships within, or close to, Australian sea borders is an important
part of Australia’s national security activities. Conducting the surveillance within Australia’s
sea borders is a mandated role for the Australian Defence Forces. Currently it is carried
out by the Royal Australian Air Force. The Defence Science and Technology Organisation
(DSTO) is looking at how these missions can be flown with the maximum efficiency.

There are two important considerations in running these surveillance missions. The first
is to reduce as much as possible the number of ships that are “missed” in the survey. The
second is to make the flying time as small as possible. In this study we will describe the
problem in detail, and give some initial results on how well these two objectives can be met
under different scenarios. There are three questions the DSTO are particularly interested in:

e What is the effect of treating the targets as stationary?

e Can flying time be improved?

e Is execution time of methods an issue?

The aim of the study was to find answers to these questions, or at least determine how
they might be answered.

In Section 2 we describe the Maritime Surveillance Problem as presented to the MISG,
and in Section 3 the problem is formulated in terms of related problems, particularly from
the routing literature. In Section 4 the simulation system that was developed during the
week is described. This system was able to go a long way towards answering DSTQ’s original
questions. The results are presented in Section 5. On the way to answering these questions,
a number of related questions were also examined. The results are presented here, including

e determining the heading to intercept a moving ship (Section 6),

e estimating tour length (Section 7), and

e finding what proportion of ships are detected? (Section 8).

32

2 The maritime surveillance problem

The basic objective of maritime surveillance is to monitor the ocean regions around Australia’s
coastline. A particular region of ocean may be identified, and some part of that region
assigned to a single surveillance aircraft (called a platform). The surveillance problem is
therefore partitioned into smaller problems, one for each ‘Area of Interest’ (AI). In this study
we consider the problem for a single Al. Typically, an Al is a square or rectangle with sides
in the range of 200-300 n mile!.

Various types of aircraft are used for surveillance. Typically, it is an AP-3C Orion air-
craft, but may be a helicopter. The flight speed of the platform is an important variable in
determining the flight path. Values range from 100-350 kn.

Each AT has a default flight path, defined by a list of way points, known at the start of
the mission. It is a requirement that all way points be visited, and that they be visited in the
order specified in the default flight path. The way points are selected so that if the platform
flies the default path, every point within the AT comes within surveillance range. An example
set of way points is given in Figure 1. If no ship is seen, the platform would simply fly the
route defined by default flight path.

Area of
Interest (AI)

- | S
4 -
f o

| -
;; Way pomnt

Default flight path\.

_Radar

& range

Figure 1: Way-points - blue dots - defining the default flight path.

As the platform proceeds, ships will come within range of the radar on board. The distance
at which a ship can be detected is variable, and depends upon factors such as the weather, the
flight altitude, and the type of equipment used on the platform. For the purposes of this study,
the detection distance is treated as an input variable. Typical values for detection distance
are 20-100 n mile. We make the simplifying assumption that detection is binary — either a

!The Nautical Mile (n mile) is the standard unit of distance at sea. It is equivalent to one minute of latitude
along any line of longitude, and is about 1852m. Its associated speed unit is the knot (kn) = defn 11 mile/hour.

33

ship is detected or not. In reality, there is a drop-off in the sensitivity near the boundaries
of the radar where detection is fuzzy, but for this exercise we are ignoring these effects. We
are also assuming that when a ship is detected, we can tell the speed and direction of travel.
This is also a simplification, but one that is fairly reasonable, as updates to these estimates
can be accommodated as the platform flies closer to the target. Another simplification made
here is that ships do not change their speed or direction. This is an oversimplification that a
practical system would not be able to assume. However for the questions examined here, it
is a reasonable assumption.

When the platform detects a target, it flies to a point that is close enough to be able to
classify the ship. “Classifying” a target involves seeing it well enough to determine the type
of the ship. Once again, the distance at which this classification can take place is variable
depending on factors such as the weather. We use an input variable classification distance to
determine what is “close enough”. Typical values are 0-20 n mile.

One restriction that is placed on routes in this study is that the platform is not permitted
to leave the Area of Interest. That is, if a ship is detected close to the border of an Al, it
may leave the AI before the platform can reach it. If this is the case, the platform is not
permitted to “chase” it outside the AI. Similarly, a ship detected outside the AI must enter
the AI before the platform can classify it. Note that it is also possible for a ship to pass
through an AI without being detected, depending on the timing.

A second restriction is that the flight time is limited. Since all way-points should be
visited, this places a hard deadline on the last way-point. It is a hard deadline as it relates
to the ability of the platform to return to base without running out of fuel! This means that
some targets may not be able to be classified if visiting them means the platform cannot reach
the final way point in time.

As the platform is flying toward one target (or way point) other targets may be detected.
During the course of a mission, more than 100 targets may be detected. At any one time, we
may have tens of ships detected but not yet classified. The problem we address is to find a
route which visits all these unclassified targets, plus the remaining way points, in as short a
time as possible.

At all times the platform maintains a plan of the flight path. This flight path evolves as new
detections are made. The route will visit all remaining way points, plus as many unclassified
targets as possible. It will obey all of the constraints discussed above. Calculation of a new
route is triggered whenever a new target is detected. It is also triggered when a previously
detected target enters the AI. When the current target is classified, the platform selects the
next target or way-point in the current route as the next point to be visited. In a practical
system, other events such as a ship adopting a new speed or heading, or loss of contact with
a target, may also trigger a re-calculation. However these complications are out of the scope
of the current study.

2.1 Current solution method

DSTO currently model the maritime surveillance problem within a larger simulation model.
This larger model is used in undertaking operational analysis in such areas as tactics devel-
opment and capability assessment. An algorithm has been developed to solve the maritime
surveillance sub-problem within the context of this larger simulation system. The algorithm
employed is a simple single-swap crossover genetic algorithm. A population size of two is
usually used, with no mutations. A fixed number of generations is used. This method is used

34

to optimise the route each time a trigger event occurs, such as a new ship being detected.
This method makes the assumption that ships are stationary, and so must also be invoked
periodically in order to re-calculate a route with updated ship positions.

3 Problem formulation

This problem can be seen as having aspects of many well-studied problems, but drawn together
in a unique way. First, it has a strong connection with the Travelling Salesman Problem (TSP)
[8]. In the TSP, a salesman wishes to visit a set of cities. He knows the cost of travel between
each pair. What is the shortest route that visits each city exactly once, and then returns to
the starting city? In the Open TSP, the requirement to return home is removed.

Our problem is much like an Open TSP (with the last city defined by the last way point).
However, unlike the standard TSP, our cities — the ships — can move. The moving target TSP
has received some attention in the literature [6, 9, 10, 13, 14, 17], but none of these solutions
are immediately applicable to the problem at hand.

One important feature of the moving target problem is that, having decided to visit a
particular target, an intercept point must be calculated. This point must minimise the flight
time from the platform’s current position to a point that intercepts the direction of travel of
the target ship. These calculations are discussed in more detail in Section 6.

Another complicating factor is the online nature of the problem. We do not know all of
the tasks that are to be performed at the start of the mission — they are revealed only as
we proceed. There has been a growing interest in online, or dynamic, routing and scheduling
problems recently — [2, 3, 5, 11, 12] to cite just a few.

The crux of the online problem can be expressed in the following question: Do I spend x
minutes visiting a target now, or will I perhaps be able to visit two as yet unseen targets in
x minutes later in the route? The answer depends on a host of variables, including expected
density of targets and remaining flight time.

Each target has a potential time window for visit. In routing terminology, a time window
is the period during which a visit may take place. Since we know the position, speed and
direction for a target, we know when it will enter the AI (if it has not already) and when it
will leave the AI. These two times define the time window for each target.

Finally, we have the requirement that as many targets as possible are visited in the
available time. In the routing literature, such problems are sometime called “prize-collecting”
problems [1, 4]. The literature also has reference to the “Close-Enough” TSP where, as in
our problem, it is not necessary to visit the actual location of the “city”, but it is sufficient
to be “close enough” [7]. To draw these all together, we can define the problem as follows:

Maximise the number of classified targets; and within this maximum, minimise the flight
time, subject to the following constraints:

e Flight time < maximum flight time.
e All way-points visited in order.
e The route never leaves the Al

In terms found in the routing literature, it is an Online Prize-collecting, Open, Close-
Enough Travelling Salesman Problem with Time Windows and Precedence Constraints.

35

4 Simulation system

A simulation system called TPP (for Travelling Pilot Problem) was developed during MISG

in order to begin answering the specific questions posed by DSTO (Section 1).

Eile Yiew

4 b

1] 100m

100% | Zzoom Ow

14

T —— = [T |

0:00:39.83

-

Y-

|\

L

d4 4

Figure 2: A screen-shot of the TPP simulation animation program.

The system had a graphical interface which allowed simulation runs to be visualised. An

example screen-shot from the animation is given in Figure 2:

e The search area is boxed in grey.

e The aircraft performing the search is the red rectangle.

The circle around the search craft is the radar detection range.

The orange line gives the currently planned route.
The grey line gives the default flight path.
Targets are the triangles. Colours indicate their status:

— Green: Classified,

Blue: Detected,

Cyan: Detected, but outside the search area (and hence ignored),

Pink: Undetected (within search area),

Purple: Undetected (outside search area).

36

Key Default Units Description

maxTimeMin 480 minutes The maximum flight time.

arealLenNM 350 n mile The x-dimension of the Area
of Interest.

areaWidNM 350 n mile The y-dimension of the Area
of Interest.

platformSpeedKnots 250 kn The speed of the platform.

targetSpeedKnots 10 kn The speed of the targets.

classifyDistNM 0 n mile The minimum distance the

platform must approach the
target, in order to classify it.

detectDistNM 100 n mile The radar range of the plat-
form.
numTargets 30 The total number of targets.

Table 1: Configuration items.

4.1 Configuration

The system has a number of configuration parameters, reflecting the variables of interest to
DSTO. These are listed in Table 1.

Values for these configuration parameters appear in a file that controls the execution of the
program. Unless varied for a particular test, the value of each parameter is set at the default
given in Table 1. All targets are assigned the same speed. This was done to understand the
effect of target speed on solutions.

The targets created are distributed uniformly over the Area of Interest (AI) and the eight
neighbouring areas of equivalent size — that is, areas of the same size are created to the North,
NE, E, SE, S, SW, W and NW of the original AI. Targets are distributed uniform-randomly
within the larger region. This allows targets to enter the AI during the simulation from a
point outside the original boundaries.

The result of this is that not all of the targets will enter the AI. A report of the number
that do is given at the end of the simulation.

4.2 Solution method

Ideas developed during MISG were implemented in the TPP system. The system uses the
idea of the “current tour” — that is, the list of targets and way-points in the order in which
they will be visited.

When we talk about visiting a target, we always mean choosing a flight path that will
intercept the current path of the target as soon as possible. This is a relatively straight-
forward calculation, although practical considerations such as limits on the turning circle of
platforms may influence the calculation. These considerations are discussed in Section 6. The
intercept calculation used in the simulation system does not account for turning circles, and
always heads directly toward the intercept point regardless of the classification distance.

We use “visit” to refer to both target ships and way-points. Thus a tour is a sequence of
visits. The system operates using the procedure described in Figure 3.

If conditions 2a or 2b are met, we will always have a new “next visit”. If condition 2c is

37

0) At the start of operations, form an initial tour considering all detected targets,
plus all way-points. (If there are no detected targets, the tour will consist only
of the way-points in order).

1) Move towards the first visit in the current tour.

2) Each minute, check the following conditions:

2a) If the next visit is a ship, and it is within the classification distance, mark
the target as classified and remove it from the tour.

2b) If the next visit is a way-point and the distance to the point is sufficiently
small, mark the way-point as visited and remove it from the tour.

2¢) If any new targets have been detected, attempt to create a new tour
incorporating the new targets. If successful, replace the current tour
with the new tour.

Figure 3: Basic TPP algorithm.

met, we may go to a new target before classifying/visiting the current target. At steps 0 and
2c, only “eligible” targets are considered for inclusion in the tour. Eligible targets are those
that

have been detected,

have not yet been classified,
e are currently within the area of interest,

will not cause the platform to exceed the deadline at the last waypoint (using direct
flight to the target and then to the waypoint).

The method of tour construction for step 0 is a traditional construct-and-improve method,
described in Sections 4.2.1 and 4.2.2. The method for extending the tour at step 2¢ is described
in Section 4.2.3. We discuss the consequences of moving targets in Section 4.2.4.

4.2.1 Tour construction

Nearest Neighbour: One of the simplest methods for creating a route in the Travelling
Salesman Problem is called “Nearest Neighbour”. At each stage, the eligible targets
and next way-point are considered, and the next to be visited is simply the one that is
currently the closest.

Insert Heuristic: Many insert techniques have been described, for example Solomon’s meth-
ods [18]. The version used here is very basic. The route is initialised with the list of
way-points in order. Each eligible target is then considered. The cost of inserting the
target between each pair of visits in the tour is calculated. The new intercept points
of visits after the insert target are not calculated — we essentially assume all ships are
stationary. The target is inserted into the position which gives the least increase in cost.
If, after insertion, the route becomes infeasible due to a missed deadline at a target or
the final way-point, the tour reverts to the previous configuration.

38

4.2.2 Tour improvement

After construction, and after any other change to the tour, a tour improvement procedure is
called. This procedure runs a number of standard TSP improvement operators. Note that
the operators are restricted so that changes that would alter the order of way-points are not
considered.

The operators used are:
Move: Each visit is removed from its current position, and re-inserted into the (legal) position

which causes the least increase in distance.

Two-opt: The two-opt operator removes two links in the tour, and replaces them with two
others, effectively reversing the order of visits between the broken links. It is used often,
and described in, for instance, [16].

Or-opt: First described by Or [15] and also described in [16], this procedure removes a
chain of k consecutive visits, and tries to re-insert it between each pair of visits in the
remaining tour. If no improvement can be found, the procedure is repeated with chains
of length k£ — 1, and on down to length 2. A length 1 Or-opt is exactly equivalent to the
Mowe operator. In TPP, chains of length (k) up to 5 were considered.

These improvements procedures are called in the order given. Improvements are imple-
mented as they are found (i.e. first-found rather than best-first). When all three complete
without improving the solution, improvement is finished. One important consideration is
the procedure for 0-cost changes (i.e. changes where the costs before and after are equal).
0-cost changes are important as they can move the solution to a new part of the solution
space from which improvements can be found. However, accepting all 0-cost changes results
in cycling behaviour. In the method implemented in TPP, 0-cost improvements are accepted
with probability 0.5.

4.2.3 Tour extension

At step 2c of the algorithm in Figure 3, newly detected targets are incorporated into the

existing tour. In TPP, this is handled as a tour modification procedure in the following way.
1) First, an attempt is made to include the new target in the current tour. This is done by

adding the new target, and running the tour improvement procedure until completion.
If the resulting route is legal, it is accepted and we exit — we have a new tour with more
targets. Otherwise, continue to step 2).

2) The illegal tour is examined. The target (other than the new target) that causes the
greatest deviation is removed from the tour. The improvement procedure is re-run. If
the resulting tour is legal, the cost of the new tour is compared to the original tour.
If the original tour is shorter, then it is kept, and the addition of the new target has
failed. Otherwise, we move on to step 3).

3) The new target has been added, and another target deleted, with a shorter route result-
ing. With the extra time now available, it may be possible to include a target that had
previously been skipped. If there are any eligible targets not currently in the tour, the
target that is closest to the new tour (i.e. that causes the least deviation) is identified.
We return to step 1 with the identified target as the target to be inserted, and the new
tour treated as the “original” tour.

The result of this procedure is either the original tour, a new tour with more targets but
greater distance, or a new tour with the same number of targets but smaller distance. These
outcomes are consistent with the objectives of the problem.

39

4.2.4 Moving target considerations

Until now, algorithms have been described in terms which largely ignore the movement of
targets. We now consider how this target movement affects the algorithms. We have imple-
mented three variants of the algorithms described above.

Stationary ships

This is the method currently used by DSTO in their maritime surveillance search model.
The ships are assumed to be stationary. The current intercept point for all ships is calculated
each time a tour is to be created, and this position is used for all calculations.

The change in costs for the improvement operators described in the improvement are easy
to calculate in this case. Consider a tour a,b,c,d, e, and D(z,y) gives the distance between
current intercept points for visits £ and y. The cost of moving d to follow a is

D(c,e) — D(c,d) — D(d,e) + D(a,d) + D(d,b) — D(a,b).

The same formula holds true for any pair a and b on the tour, regardless of whether they are
before or after d. In fact the expression D(c,e) — D(c,d) — D(d,e) can be pre-calculated and
used for all pairs on the route.

Thus the test for acceptance of an improvement is O(1) (i.e. constant-time) operation. If
we have n visits in the tour, then we have O(n) insert positions, and O(n) candidate visits to
move — hence all Move type improvements can be tested in O(n?)

Moving ships

This is a fully-dynamic version of the algorithm. In this variant, each time a tour is
modified, new intercepts for all targets are calculated. This has a large effect on the testing
of improvement operations. Each improvement — such as the example move discussed above
— requires essentially the whole tour to be reconstructed in order to find the new intercept
points. Testing of acceptance of a move improvement is now O(n), and testing all Moves is
now O(n?).

Jumpy ships

There is a mid-point between these two variants. Jumpy ships works as follows. During a
particular iteration, the position of targets is treated as fixed, so improvements can be tested
quickly using the same techniques as the “Stationary Ships” variant. However, once a new
tour has been calculated, the position of each ship is updated. The new intercept point based
on the new route is calculated. But rather than simply updating the ship’s position, it is
moved to the mid-point between the old and new points. The improvement phase is re-run
using the new fixed positions. Improvement and update is iterated until the position of targets
converges sufficiently. If the positions do not converge sufficiently within 20 iterations, the
procedure is terminated and the position updated using the order of visits in the last tour.

The advantage of not updating the position of the target in a single step is that occasionally
a better route can be found that uses the fact that the target will be in a different area at a
different time. It is a way of preventing the solution converging to a given point too quickly,
and allows a neighbourhood of that solution to be explored.

4.2.5 Other heuristics

Pro-rata deadlines
It was seen that when there are many potential targets, the algorithms would tend to
make the platform spend disproportionate amounts of time in the first part of the AI, and

40

then have no time to explore the rest of the space. In order to overcome this, an artificial
deadline is assigned to each way-point. The deadline is calculated pro-rata, based on how far
along the default flight path the way-point is located. So, given an 8-hour deadline, if the
way-point is i of the way along the default flight path, it would have a deadline of % *8 = 2
hours.

5 Results from the simulation system

5.1 Stationary ships assumption

The first question we looked at was the validity of the “stationary ships assumption” — that
is, what is the effect of target speed on the measures of effectiveness (MOEs).

The most important MOE is the classification rate — how many of the targets that are in
the area are classified? We consider “number in area” to mean the number of targets that are
ever in the area. This can mean targets that are close to the border when the mission starts,
and leave shortly afterwards, plus those that enter the area while the mission proceeds.

This definition unfortunately introduces a bias into the statistics. An efficient tour will
mean the mission is finished early, and hence targets that move into the AI after a short
while later are not counted. Unfortunately all other methods of direct comparison considered
made a larger bias. For instance taking the “number in area” count over any defined period
disadvantages an efficient tour.

An experiment was run using 100 scenarios. Target speeds of 0, 5, 10, 15 and 30 kn were
examined. Speeds up to 15 kn are common in shipping, and the upper limit of 30 kn was also
tested.

In order to look at a wide variety of scenarios, scenarios with 25, 50, 100, 200, 500, and
750 targets were run. As described previously, these counts are for the larger area, and hence
different numbers of targets will enter the AT over the course of the mission. In general, the
“number in area” count also goes up with target speed, as targets that start further away are
able to reach the AL

The solution method described in Section 4.2 was tested. Each of the 3 methods of
updating tours — Stationary Ships, Jumpy Ships and Moving Ships (described in Section 4.2.4)
— was tested. As the improvement methods used are stochastic (in the acceptance of 0-
cost moves) each was run 5 times to arrive at a reasonable average. Average (arithmetic
mean) performance is reported here. A maximum elapsed time of 5 seconds was placed on
calculations at each time point. This equates to a restriction that a pilot not wait more than
5 seconds for a new tour to be calculated after updated positions were supplied.

The results are shown in Figures 4 to 8. The graphs show the percentage of targets
successfully classified as a function of the number of targets in the area. Figure 4 shows
that if the targets are indeed stationary, all three methods perform almost exactly as well.
The three graphs are coincident for most values. In Figure 5 (target speed 5 kn) we see that
some improvement is possible, with the effect growing with the number of targets. However
the effect is fairly marginal — Moving Ships method producing about 1.4% more classifications
than Stationary Ships (76.5% compared to 75.1%) for scenarios with 50 or more ships in area.

A similar story is told in Figures 5 and 6, with the difference growing. For target speed
10 kn, the comparison is 71.4% vs 68.4% - a 3% improvement. For 15 kn, the improvement is
4%. At the extreme (target speed 30 kn), moving ships performs 5% better on the 50+ scenar-
ios. In each case, the Jumpy Ships method produced an inferior value. For scenarios with less

41

Percent Classified

Percent Classified

Classification Rate - Target Speed 0 KT

100 ——r—r—r—r—
90 -
80 — —
70~ -
E‘J — —
50— .
40— 1
w — —
- —= Moving Ships .
20k «~--+ Jumpy Ships .
- +--+ Stationary Ships &
10~ 1
ob— 1 o+ 1 . | | L 1 o | l
0 10 20 30 40 50 60 70 80 90 100

100

90

80

70

Num In Arca

Figure 4: Classification Rate — target speed 0 kn.

Classification Rate - Target Speed 5 KT

L =—= Moving Ships
- +--= Jumpy Ships
- + -+ Stationary Ships

60
Num In Arca

Figure 5: Classification Rate — target speed 5 kn.

42

Percent Classified

Percent Classified

100

Classification Rate - Target Speed 10 KT

%A

80

70

—= Moving Ships .
«--= Jumpy Ships —
+--+ Stationary Ships &

20 40 60 B0 100 120 140
Num In Arca

Figure 6: Classification Rate — target speed 10 kn.

100

Classification Rate - Target Speed 15

=—= Moving Ships A
+--= Jumpy Ships —

+ -+ Stationary Ships 4

20 40 60 80 100 120 140 160
Num In Arca

Figure 7: Classification Rate — target speed 15 kn.

43

Classification Rate - Target Speed 30

(L1}] o o o e S S A I A e B A B B S A I B

60

50

Percent Classified

40

3

T T ST 7 =l ST T YT T

—= Moving Ships S
¥

20 «--+ Jumpy Ships

+--+ Stationary Ships

10

I} ‘ 1 | 1 ‘ 1 | 1 | 1 ‘ 1 | 1 ‘ Il | 1 | Il ‘ 1 | 1 | 1 ‘ 1 | 1 ‘ Il
0 20 40 60 B0 100 120 140 160 180 200 220 240 260 280 300 320
Num In Arca

b

Figure 8: Classification Rate — target speed 30 kn.

than 50 ships, the Moving Ships and Stationary Ships methods are almost indistinguishable.

The conclusions from this are pretty clear. For the simple methods considered thus far,
the stationary ships assumption is reasonable for scenarios with fewer than 50 ships. If there
are more than 50 ships, however, the stationary ships assumption yields inferior results. Up
to 5% more ships might be classified for targets travelling at 15 kn. At the extreme, 12%
more classifications were achieved using the Moving Ships method. The Jumpy Ships method
should not be used.

5.2 Time to complete mission

Next we examined the time to complete mission, that is, how long it took to reach the final
way-point. We looked only at a “typical” case of target speed 10 kn. The results from the
experiments reported in Section 5.1 for target speed 10 kn were used. The results are shown
in Figure 9. The graph clearly has two parts. In the first part — up to about 40 targets —
there is sufficient time to visit all targets. In the second part, the flight time is limited by the
8-hour maximum.

This divergence at 40 targets is also interesting in the context of Section 5.1, as it partly
explains why the results there seemed to have two distinct parts. The differences between the
algorithms are very small — of the order of only 1 minute in 8 hours for scenarios with less
than 40 targets. The conclusion is that there is not much difference between methods on the
time-to-complete MOE. Section 7 also gives some results on estimating tour length.

44

Flying Time

500 T T T T T T T T T T T T T

450 —

400 —

350 -

I'ime (mins)

300

I —= Moving Ships g
«==+ Jumpy Ships
50— +-+ Stationary Ships

200 1 | 1 | 1 | | | | 1 |
0 20 40 60 80 100 120 140
Num In Arca

Figure 9: Total flying time — target speed 10 kn.

5.3 Execution time

The final question from DSTO regarded the execution time of the methods. The methods
were tested on a Linux system with 2 Intel Pentium III-based CPUs, each running at 2.13
GHz and 2048 Mb cache. Figure 10 shows the average time to calculate a new route when a
new target is detected. Note that a 5-second maximum time was in force during execution.

All the methods run fairly quickly, and the 5-second maximum was seldom reached. The
full moving ships code runs faster than jumpy ships. This means that the time it takes for
a jumpy-ships solution to converge is more than the time saved by the faster check. Hence
(again), jumpy ships is not recommended. The full moving-ships code is still quite fast enough
- even for the larger problems. An answer is usually returned in less than a second. These
results indicate that execution time may not be important in a standalone system. However,
the effect of the execution times will need to be tested in the context of repeated runs within
the larger DSTO maritime surveillance model.

6 Determining the heading to intercept a moving ship

In this section we consider the problem of which heading a plane should take in order to
investigate a moving ship. While easy to solve in its simplest form, the solution becomes
complicated when the physical restrictions of a finite turning circle are included and when
the plane only needs to get within a certain radius of the ship in order to investigate it.

For clarity we initially consider the simple problem of the straight line intersection of
the plane and ship trajectory, since this provides a gentler introduction to the methodology.
We then generalise this to when the plane only needs to come within a certain distance r
of the ship (the classification distance) and then to the case where the plane is only able to

45

CPU Time

4 T T T T T T T T T T T T T

=—a Moving Ships
+--+ Jumpy Ships x
\

s Stationary Ships y 1
4 ‘

Execution Time (s)
ra
T

”\" ik bbbt hadid LLLE TPYVTY PR TINI BT VTTTINY PPy
0 50 100 150 200 250 300 350
Num In Arca

Figure 10: Execution time.

undertake a finite turning circle with radius r.. The plane is assumed to have a constant
speed v, and initial heading ¢;, with the ship moving with constant speed w, fixed heading
0 and initial position (zg,yo). The aim is to find the optimal heading of the plane ¢, and
the resultant time to intersection, ¢;. We assume the plane is at (0,0) when ¢ = 0, the time
when it decides to intercept. This is illustrated in Figure 11. The angles & and &; are the
parameter angles representing position around the turning circle at the beginning and end of
the turn. The angle 7 is the parameter representing position around the detection circle.

6.1 Straight interception

Here we assume the plane has no turning circle and that it needs to intercept the path of
the ship exactly. The plane is assumed to initially be at (0,0). The interception point of the
plane and ship is when

zo +wtcosd = wicos¢
yo +wtsind = wvtsing (1)

which we have to solve for £ and ¢. Squaring and adding both equations gives
(zo + wtcos 0)? + (yo + wtsin0)? = v (2)
which, in anticipation of later solutions, is written as

at’> + Bt +v =0, where (3)

a=w?—1v? B=2zywcosd+ 2ywsinh, v = IE(Z) +y8,

46

detection
radius

turning
circle

Figure 11: Tllustration of a plane turning to intercept a ship. The plane is initially on a
heading ¢;, moving with velocity v, and begins turning at (0,0) at ¢ = 0 with a turning circle
of radius r, which has centre (z.,y.). It ends the turn at ¢ = t; at (z1,y1) and moves along a
heading ¢ until it detects the ship at the end of its detection radius r. The ship moves with
velocity w along a heading 6.

giving the obvious solutions

‘o = ,;gj —20{7’ 4 = cos—) <x0+wtcos9). 4)

tv

In equation (4), @ < 0 since the plane is faster than the ship, and v > 0, so the equation
always has real roots. In addition, /2 — 2ary > abs(8), so there is at exactly one positive
solution for ¢.

6.2 Interception including detection zone and turning circle

In order to consider the effect of a non-zero classification distance, a simulation system was
written in MATLAB that looked at flying between two way-points, with a variable number
of targets to be visited along the way. A MATLAB library routine using a genetic algorithm
was used to solve the routing problem.

For around 10 intermediate visits, the route length was of the order of 2.5 to 3 times the
length of the straight line path linking the way-points (i.e. the default flight path). Further
simulation runs suggested that this path may be reduced by up to 25% in length if the
classification range was extended to 20 nautical miles.

47

This emphasises that a large classification range can have a very beneficial effect on flight
distances if it is fully exploited.

Since the plane only has to come within a distance r of the ship in order to investigate it,
the plane path z(t),y(¢) must intersect the circle around the ship defined by

z(t) = xzo+ wtcosh+rcosn
y(t) = wyo+ wtsinf + rsiny (5)

where 7 is the angle parameter defining the detection circle as shown in Figure 11.
The position of the plane is governed by three equations:
e for ¢t <0, prior to the plane beginning to turn,

T =wvtcos¢, 1y = vtsindg; (6)

e for 0 <t < i1, when the plane is turning,

vt . (vt
$=$c+?"cCOS(—+fo>, y:yc+T051n(_+£0) (7)
Te Te

where (z.,y.) is the centre of the turning circle, & is the parameter angle at the start
of the turning circle when t = 0;

e for ¢t > t1, when the plane is on a heading to the ship,
z=z1+v(t—t1)cos¢, y=uyi+v(t—1t1)sind. (8)

where (z1,y1) are the coordinates around the circle when the plane has finished turning.
Some of these variables are easily determined. For example, setting ¢ = 0 in equation (8)
gives the centre of the turning circle as

T = —1¢cos &y, Ye = —TeSInEy. (9)

The angle around the turning circle when the plane begins to turn is & and &; when it finishes
its turn, so by geometry

§0=¢i—g, §1=3§+¢- (10)
We note that these equations assume a counter-clockwise turning circle in the geometry given
in Figure 11 and code can easily be implemented to account for a variety of geometries
although care must be taken to program all geometries carefully. Hence, similar equations
can be derived for the clockwise turning situation. The time ¢; that the plane finishes turning
is

= (27T+¢_¢i)% (11)

at position (z1,y1) given by equations (7) with ¢ = ¢;. Note again that for some geometries
the additional 27 is not necessary.
Thus equating (8) and (5) and using equations (7) and (11) gives

zo+rcosn+wtcos® = z.+r.sing+v(t—t1)cosd (12)
yo +rsinyg +wtsind = y,—r.cosd+v(t —t1)sing (13)

48

where our unknowns are the plane heading ¢, the intersection time ¢, and the detection circle
angle n with ¢;(¢) given in equation (11) and z.,y., 0,7, 7, v, w all known quantities. This
system is solved for ¢(7), #(n) by squaring and adding the equations, in much the same way
as equation (1), and then 7 is determined by minimising (7).

Hence, the equation analogous to (2) is,

(2o +7cosn — ze + wtcos0)? + (yo + rsinng — ye + wtsin0)? = r2 + v (t — ;)2 (14)

which is a quadratic in ¢, as in equation (3), with

a = w?—v? (15)
B = 2(zg+rcosn—z)wcosb+ 2y + rsinng — y.)wsinb + 20t (16)
v = (wo+rcosn—z)®+ (yo +rsing —y.)? —r2 — tivi (17)

The resultant solution #(¢) is substituted into equation (12) to give an implicit equation for
¢ which must be solved numerically. Because 7 is still not determined for this most general
case, a numerical solution involves iterating over all n € [0,2n] and solving the resultant
¢ numerically for each n before choosing the value of n which minimises ¢. Whilst this is
relatively easy to program, a simpler approximate solution would be desirable.

6.3 Approximate solutions when yo >> r, 7,

A simpler approximate solution is possible when the distances between the ship and plane are
all large relative to the detection radius and the turning circle. In the limit when r,7. — 0
we naturally recover the simple straight intersection solution outlined earlier. Without loss
of generality the problem can be rescaled with o = 0 and yg = 1 hence allowing us to write
7 = € where ¢ is a small parameter. Once the perturbation solution is found it is a simple
matter to program the re-scaled solution. Thus we assume a regular perturbation system
with
¢ _ ¢*0+6¢*1—|—---, t:t*0+et*1+---, (18)
Te = TLE, To=T,€, Yo =UY,€, 11 =t]¢,
since we expect T, T¢, Ye, t1 all to be of similar small order.

The zeroth order solution to ¢** and ¢*¥ is the straight intersection solution given earlier.
The O(e') solution is

wcos —wvcos dp*® 0y sin p*° A
wsin® —vsin¢*® —t*% cos $*° o*!

[zt +rising™® — tivcos ¢*0 — cosn

y¥ —r?cos ¢p*0 — tivsin ¢* —sinyp

(19)

which can be inverted to find t*! and ¢*!. However, the value of 7 still needs to be evaluated.
This can be done by minimising ¢ as outlined earlier, but this has to be done numerically. As
we are only concerned with a simple approximation we take n = 7 + ¢°* which is the case for
slow moving ships.

Figure 12 shows this approximation along with the exact solution for a specific case where
the ship initial position is (zg,yo) = (0.5,1), ship heading is § = /8 with speed w = 2, the
plane velocity is v = 4 with turning circle r. = 0.1, and detection radius r = 0.25, all in
non-dimensional units. Initially the plane is on a heading ¢; = 37/2 + 7/6. Even for this
relatively large detection radius the perturbation solution is a good approximation.

49

1.5 == ship

plane exact
1rinoturning circle

1 detection circle
----- zeroth approx

= = = first order approx

0.5

14 1.6

Figure 12: Tllustration of the exact and perturbation solutions for a plane intersecting a
ship with parameters (z9,y9) = (0.5,1), 0 = 7/8, w = 2, v = 4, r, = 0.1, r = 0.25 and
¢; = 31/2 4 /6.

7 Estimating tour length

There is a theoretical result [19] that gives bounds on the shortest travelling salesman tour
length of a standard TSP on a unit square with n cities, in the worst case the tour length is

a*v/n + o(y/n) where 1.075 < o* < 1.414 (20)

We are motivated by the above result to generate empirical estimates for the tour length
under perfect and incomplete information. Under perfect information the problem is simply
to generate a tour on the set of known targets. With incomplete information, a tour is
generated on the current set of detected targets and is updated each time new targets are
detected.

A simulation program was written for this experiment in MATLAB. The program solves a,
TSP problem using a genetic algorithm. The TSP algorithm was sourced from the MATLAB
Central file exchange.

The problem instances for estimating tour length all have an AT with dimension 400 x 100
n mile. The coordinates of the two way-points are wy; = (50,50) and we = (350, 50). These
way-points represent the start and end points for a tour.

For the air platform with perfect information, the detect radius is co and classification
radius is 0. In the incomplete information case, we have detect radius 50. The classification
radius is still set at 0. The vessels in each instance are all stationary and are assigned random

50

e

\

Figure 13: The solid rectangle is the Al and the way-points are shown by filled circles. The
large dashed circle denotes the detection radius about the platform at its current position
and the vessels are denoted by triangles with arrows representing velocity vectors.

Perfect Info Incomplete Info

N ships K Ot K g N(%)
5 427.03 | 52.36 | 400.76 | 47.85 | 87.8
10 557.47 | 60.85 | 510.32 | 66.84 | 90.5
15 672.81 | 70.19 | 617.20 | 72.73 | 92.6
20 T777.72 | 78.20 | 734.62 | 81.77 | 95.0
25 879.27 | 79.07 | 834.60 | 83.54 | 96.4

Table 2: Results for estimating tour length

positions in the AT according to a uniform distribution. The experiment is run with number
of vessels N = 5,10,15,20,25. The experiments were repeated for 1000 instances of each
parameter combination. The results are presented in Table 2.

The entries in Table 2 show the means and standard deviations of the tour lengths in the
perfect and incomplete information cases. The final column of the table shows the average
proportion of the targets that are classified. The results show that the average tour length
with perfect information is greater than the tour length with incomplete information. This
can be attributed to some of the targets being missed in the incomplete information case.
Table 2 also shows that the number of targets detected and classified increases with the target
density.

8 What proportion of ships do we detect?

To gain a better perspective on how effective a search pattern is in detecting ships we consider
how many ships enter the search area versus how many are detected. For example, Figure 14
shows a plane’s circular detection region moving from left to right with a random distribution
of ships moving in and out of the search region with a distribution of velocities. In the
simulations shown here the plane moves left to right with speed 150 kn, the plane detects
ships within a 50 n mile radius, and the ships were scattered over a 300 by 300 n mile square
region.

If we take the ship velocities as v;(t), i = 1,...,n; the detection radius is , and p(t) the
plane path then the proportion of ships detected is

_ SN H (J3 1= H(vi - p| - r)at)
! SN H (fOT1 — H(|v,| € R)dt)

51

Figure 14: A plane moving left to right has a circular detection region within the rectangular
search region. Various ships move in and out of the search region hence only a proportion of
ships will be detected.

where R is overall search region and H is the Heaviside function, that is H(z) = 1ifz > 0
and H(z) = 0 if z < 0. Hence if ship ¢ enters the detection region then |v; —p| — 7 < 0 so
that 1 — H(|]v; — p| —r) = 1 when a ship is detected. By integrating this over all times and
applying a second Heaviside function means that the numerator is the number of ships that
are detected. The denominator is similar with H(|v;| € R) = 0 if a ship is within the search
zone. Thus ¢ is a mathematical way of expressing a rather simple numerical calculation of
counting the number of ships entering the space and the number that is counted.

In Figure 15 we show the proportion of ships detected, ¢, for 1000 different simulations
and a histogram of this proportion. Here the ship velocities were normally distributed with
mean 15 kn and variability & 1 standard deviation. The ships were scattered in a uniform
random distribution with random direction.

Figure 16 shows the mean of the proportion detected as a function of the mean ship
velocity. Different ship velocity distributions are compared, with the ships having either
a uniform distribution of velocities, a constant velocity or a normal distribution with two
different variances. As expected when the velocity of the ships increases then less are detected
— since more ships move in and out of the region without being spotted. If all the ships have
velocity v; = 0 then all will be detected giving ¢ = 100 %. If the ships have velocities with
a larger standard deviation, then the proportion falls, since with more ships move out of the
region before being detected.

Figure 17 shows how the proportion detected changes with the variation in the ship

52

% of Ships Detected

0 200 400 600 800 1000
Number of lterations
60
[%2]
c
o
T
3 40
kS
L 20
1S
>
z
0
60 65 70 75 80 85 20 95 100

% of Ships Detected

Figure 15: Proportion of ships detected for 1000 simulations. The lower plot shows the
histogram for all simulations.

velocities. Shown is the mean proportion and upper and lower bounds represented by the 25
and 75 % levels on the detection distribution. In all cases the mean ship speed was 15 kn. As
the variation in ship velocities increases, so the proportion detected decreases, as discussed in
Figure 15. Not obvious however, is why the proportion detected has slope near zero for low
variation and then changes to uniform slope for higher variations.

The simple simulations shown above are illustrative only, with the aim of showing the
general trends in detection rate with ship velocity. However, similar simulations can be
done with realistic flight paths, to estimate how effective a plane’s path is as measured by
detection rate. Further work needs to be done on this to obtain mathematical results which
allow prediction of these simulation results.

9 Conclusions

The group looked at a number of issues concerned with route planning within the context of
maritime surveillance. The routing problem is very complex. The factors to be considered
include moving targets, dynamically changing data, time windows, precedence constraints,
intercept points, and demand prediction.
A simulation system was developed which went some way to answering the main questions
posed by DSTO.
e For the typical scenarios faced by the RAAF, ships can be treated as stationary, but
slightly better results (in terms of number of classifications and distance travelled) can

53

100

~ Uniform Distribution
~~~ = = = Equal Velocities
98 D L Normal Distribution with Var 10
S T~ Normal Distribution with Var 15|
96/ e
~
-~
~
94+ e
~§
3 .
5 92 ~~~
g PYC YL T - .~
g 9or .’."w LS
= RS ~
n ’~,~/ e
G 88- ~’~,. S
X '~ S
. ~a .~
e, ‘w, .
86+ Ty, S ~
,,,,,,, ‘~, .
,,,,, ~ ~
gal S, Se
.,
~,
///// §,~
g .
80 L L L L L ”\
0 5 10 15 20 25 30

Velocity (Knots)

Figure 16: Mean proportion of ships detected as a function of mean ship velocity.

be obtained by more realistic modelling. However, modelling suggests that with only a
few fast-moving ships, the detection rate can be badly affected. Further investigation
is required to test this effect.

e Flying time can be improved with better algorithms. With standard TSP algorithms,
these gains are modest; but we would expect that better treatment of the online aspects
of the problem would yield better results.

e The computation times for all the methods tried were quiet modest (for the typical
problem sizes used), but the effect needs to be tested in the context of the larger model
within which the search model sits.

We also examined some additional areas of interest. In particular, the flight paths which
account for turning circles and non-zero classification distances. The effect of large classifica-
tion distances is particularly interesting, as large savings seem to be possible.

This study indicates that, while some questions have been answered, more questions have
been raised. These suggest that further study in a number of areas would help produce better
answers to the problems seen in maritime surveillance - particularly better handling of the
online aspects of the problem, exploiting large classification distances, and investigating the
effect of fast-moving ships.

Acknowledgements

Thanks very much to the industry representatives, David Marlow and Jason Looker from
the Defence Science and Technology Organisation, Fishermens Bend, Victoria. This report
captures the input from a large group of people who contributed during the week. The
organisers and industry representatives would like to thank those who participated — including

54



86

Dl Sl S — |\lean

= = = Bounds

82

80r

% of Ships Detected

5 10 15 20 25 30
Variation

Figure 17: Proportion of ships detected as a function of variation in ship speeds. The ships
have a normal distribution of speeds with mean 15 kn and variation ¢ shown on the z axis.

Jos Beunen Robert McKibben Judy Shand
Jonathan Crook Geoff Mercer Lauren Coulter Smith
Scott Greybill Phil Neame Virginia Wheway
Steve Ha Sarah Neville Richard White

References

[1]
[2]

[3]
[4]
[5]

[6]
[7]

8]

Balas, E. (1989) The prize-collecting traveling salesman problem, Networks, 19, 621-636.

Bent, R. & Van Hentenryck, P. (2005) Online stochastic optimization without distribu-
tions, In ICAPS’05, Proc. 15th Int. Conf. Auto. Plan. & Sched.

Chen, X-L, and Xu, H. (2006) Dynamic column generation for dynamic vehicle routing
with time windows, Trans. Sc., 40, 74-88.

Feillet, D., Dejax, P. & Gendreau, M., (2005) Traveling salesman problems with profits,
Trans. Sc., 39, 188.

Gendreau, M., Guertin, F., Potvin, J-V. & Seguin, R. (2006) Neighborhood search
heuristics for a dynamic vehicle dispatching problem with pick-ups and deliveries Trans.
Res. Part C: Emerg. Tech., 14, 157-174.

Grob, M. (2006) Routing of platforms in a maritime surface surveillance operation Euro.
J. Oper. Res., 170, 631-628.

Gulczynski, D., Heath, J. & Price, C. (2006) The close enough traveling salesman
problem: A discussion of several heuristics, In Alt, F.B., Fu, M.C, & Golden, B.L.
editors, Pers. Oper. Res., 36, 271-283.

Gutin, G. & Punnen, A. editors. (2002) The Traveling Salesman Problems and its Vari-
ations, Kluwer Academic Publishers.

55



[9]

[10]

[11]
[12]
[13]
[14]
[15]
[16]

[17]

18]

[19]

Hammar, M. & Nilsson, B. (1999) Approximation results for kinetic variants of TSP.
In Wiedermann, j. et al., editor, ICALP’99 Proc. Auto. Lang. Prog.: 26th Inter. Coll.,
1644, 392-401.

Helvig, C., Robins, G. & Zelikovsky, A. (1998) Moving-target tsp and related problems
In Bilardi, G., Italiano, G., Pietracaprina, A. &, Pucci, G. editors, Algorithms - ESA
’98: 6th Ann. FEuro. Symp. Proc., 1461, 453-464.

Hvattum, L., Lgkketangen, A. & Laporte, G. (2006) Solving a dynamic and stochastic
vehicle routing problem with a sample scenario hedging heuristic Trans. Sc., 40, 421-438.
Jaillet, R. & Wagner, M. R., (2006) Online routing problems: Value of advanced infor-
mation as improved competitive ratios Trans. Sc., 40, 200-210.

Jiang, Q., Sarker, R. & Abbass, H. (2004) Tracking moving targets and the non-
stationary traveling salesman problem, In Proc. 8th Asia Pac. Symp. Intell. Evol. Sys.
Miele, A. Weeks, M. & Ciarcia, M. (2007) Optimal trajectories for spacecraft rendezvous
J. Opt. Theor. Appl., 132, 353-376.

Or, I. (1976) Travelling Salesman-Type Combinatorial Problems and Their Relation to
the Logistics of Blood-Banking PhD thesis, Northwest Uni. USA.

Savelsbergh, M. (1985) Local search in routing problems with time windows Ann. Oper.
Res., 4, 285-305.

Schumacher, C., Chandler, P., Pachter, M. & Pachter, L. S. (2006) Optimization of
air vehicles operations using mixed-integer linear programming J. Oper. Res. Soc., 58,
516-527.

Solomon, M. (1987) Algorithms for the vehicle routing and scheduling problem with time
window constraints Oper. Res., 35, 254-265.

Supowit, K.J., Reingold, E.M., & Plaisted, D.A. (1983) The travelling salesman problem
and minimum matching in the unit square SIAM J. Comput., 12, 144-156.

56



