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1 Introduction

In recent years the Australian National Electricity Market (the NEM) has been undergoing
the transition to a fully deregulated marketplace. In December 1998, for the first time, the
wholesale price of electricity was subject to market forces. The NEM includes the Queens-
land, New South Wales, Victorian, South Australian, Tasmanian and Australian Capital
Territory electricity markets. Almost 8 million end users are supplied by the world’s longest
interconnected power system, and the NEM trades up to $7 billion of electricity annually [20].

NEMMCO Ltd (The National Electricity Market Management Company) was established
in 1996 to manage the NEM, a role which carries with it the responsibility for setting the spot
price. The spot price is determined via a sellers’ dutch auction. Each day, each generator
submits a complex bid of prices and volumes. The demand fluctuates throughout the day,
and every 5 minutes short-term supply and demand are realigned by NEMMCO. The 5
minute dispatch price for all bidders is set to the winning bid of the marginal supplier,
and six sequential dispatch prices are averaged to determine the half-hour spot price. All
successfully bidding generators receive the spot price for their product. Currently spot prices
are artificially bound by NEMMCO to remain between —$1000 and $10,000 per MWhr.

The introduction of market forces to the NEM has provided a plethora of challenges for
mathematicians, economists and financial economists' amongst others. As electricity is not
storable the spot price process is extremely volatile. However the trend underlying the spot
price process is highly predictable and highly periodic. The supervolatility of spot price stems
from a combination of unexpected events. Unexpectedly high demand (possibly because of
an unexpected temperature change) or unexpectedly low supply (because of an unscheduled
generator outage or distributional failures /constraints) results in a rapid change in price.
There is a strong positive relationship between the spot price spikes and large changes in
demand (load).

Retail customers typically pay a fixed price for electricity. Hence the electricity retailer
manages a portfolio of floating-for-fixed swap instruments. The retailer receives a fixed pay-

!For example see recent and significant works by [5, 7, 21]
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NSW Electricity Spot Price Sample Time Series.
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(a) NSW Electricity Spot Price Series (b) Sample Daily Spot Price Series

Figure 1: Time series of NSW Electricity spot prices. Figure (a) provides a 5-year sample of
spot prices; (b) provides a daily sample series.

ment for electricity and pays a floating rate to the generator. Managing financial risk in
such a volatile market is a formidable challenge. The magnitude of this challenge is high-
lighted when one considers that the retailers financial risk is the product of load and spot
price. Insofar as there is a positive correlation between load and price, high demand implies
a doubly heavy loss for the electricity retailer. Understanding the dynamics of the electricity
spot-price/demand process is a fundamental step in developing adequate risk-management
strategies.

Much of the existing literature on modelling commodity prices deals with the assumption
of geometric Brownian motion (GBM) and methods by which the assumption of Gaussian
returns can be improved. As such, many papers deal with stochastic volatility [14, 15] and
fat tail distributions [11] and related issues. With the emergence of electricity as a traded
commodity in the 1990’s came the challenge to model the spot price behaviour. As electricity
is largely non-storable, market supply and demand must be kept in constant, continuous bal-
ance. This results in electricity prices not following a ‘smooth’ process as other commodities
do. As a result, a GBM alone cannot successfully describe the evolution of its price.

Clearly an equilibrium spot price model should include information on supply, or potential
supply, in addition to demand. A rapid shift in available supply, via an unscheduled outage, is
likely to have a similar impact on price as a rapid shift in demand. However data availability
remains an issue. While load data is readily available, potential supply data is more difficult
to obtain.

The aim of this article is to develop and calibrate a model for the spot price of electricity
as a function of market demand (load), and to calibrate this model using historical load and
spot prices from the NSW market. In particular, this model will exploit two, quite apparent,
features of historical spot price data: (i) mean-reversion, and (ii) sudden price spikes, or
jumps. Hence we shall explore the suitability of fitting a mean-reversion jump-diffusion model
to NSW spot price and load data. The justification for, and development of, these models is
given in Section 2. The exposition of a calibration methodology is given in Section 3. The
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model is fitted to the given data using this calibration technology in Section 4. We conclude
in Section 5.

2 Model development

Two notable characteristics of electricity spot prices are mean-reversion and price-spikes (see
Figure 1 for a sample time series of the NSW spot price). Electricity prices can also be
highly volatile, with warmer seasons exhibiting significantly higher volatility than the colder
seasons. This indicates a higher stability of the mean price for cold seasons as compared
to the warmer seasons. In order to capture the characteristics of the electricity spot prices,
[16] indicates the need to introduce jumps and stochastic volatility into their models. In [3]
tested the effectiveness of Brownian motion (BM), Mean Reversion, GBM and Geometric
Mean Reversion (GMR) and found that the GMR Model outperformed the others, and that
including jumps into the models further improved their performance. Other papers related to
electricity pricing include those by [4, 9, 10, 17]. As noted by many of these authors, general
diffusion models of the form

dSt == a(St, t)dt + b(St, t)dZt, (1)

where dZ; ~ N(0,dt) is an increment in a Wiener process, fail to capture the large, non-
negligible observed spikes in the market.

An obvious extension to the models is to include a jump component modelled by a Poisson
distribution. This was first introduced by [18] and then extended by [7, 8] to incorporate the
mean-reversion feature. An example of a simple mean reversion jump diffusion model (MRJD)
is

dSt == CY(S* —1In St)Stdt + StO'dZt + StK dqt, (2)
where « is the mean-reversion rate, S* is the mean-reversion level, o the volatility of the spot
price, K is the jump size which may, for example, be taken to follow a normal distribution
N(u,v?) and dq is a Poisson process so that

dg =1 with probability A dt, =0 with probability 1 — X dt, (3)

(where X\ is the average number of jumps per year). Many variations of (2) exist that might
include multiple jump processes, doubly-stochastic jump processes and stochastic volatility
(see e.g. [9]). In this article we examine two classes of MRJD and within both classes examine
the performance with various forms of volatility functions.

Model 1

As mentioned, spot price is a function of both demand (state load) and available supply. To
partially verify this a scatter plot of spot price vs state load is given in Figure 2 (b). Clearly
a monotonic relationship between spot price and demand exists. To capture this relationship,
we assume that the log price Q¢(= Inp;), where p; is the current spot price of electricity,
depends on the load via

Qt = f(Lt) + Xt, where dXt = —OéXt +o dZt + K th (4)

and L; is the load at time t.
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NSW Electricity State Load Profile.
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Figure 2: Profile of the State Load (Demand) for Electricity. Figure (a) presents a sample
day state load - the same time period for Figure 1(b). Figure (b) presents a scatter plot of
Spot Price vs State Load.

From (5), X; follows a mean-reverting process (to a mean of zero), where « is the reversion
rate, K is the jump size, dg; is as in (3) and dZ; ~ N(0,dt) denotes throughout this paper
an increment in a Wiener process. We made no prior assumptions about the distribution of
the jump size K.

The dependence of @; on load in (4), will be reflected in the stochastic process followed
by Q¢. The following forms for the volatility o; will be considered:

ot = 0o, (6a)
oy = ooly, (6b)
or = oo(dLy), (6¢)
or = ope@/?, (6d)
oy = 0pe™?, (6e)
oy = 09+ o1cos(2nt) 4+ o9 cos(4nt), (61)

where 0y, 01, 09 are constants and dL; denotes the change in the load, L;, in one time-step.
In volatility model (6a) we assume a constant volatility throughout the period, while in
volatility models (6b) and (6¢) we assume that volatility depends on the load or the change in
the load respectively. As will be seen shortly, models (6d) and (6e) imply a volatility for the
stochastic differential equation (SDE) for p; of the form aopi’/ % and aopt"+1 respectively. These
were chosen for comparison with mean-reversion models of the type dr = (a+ fr)dt+ or7dZ,
for which v = 1.5 is often the unconstrained estimate [6]. A similar dependence could possibly
occur with electricity prices. The volatility model (6f) was chosen in an effort to capture the
yearly and half-yearly cycles in volatility.
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From (4) and (5) the process followed by Q is

dQy = Oé{éf'(Lt)LQ-i-f(Lt) —Qt}dt+0t dZ; + K dg;- (7)

Equation (7) represents Model 1. From it we can also derive the process followed by py,
namely

2

1 o
dp; = apy {af’(Lt)Lé + i + f(Ly) — lnpt} dt + oypy dZ; + pi(eX — 1)dg;. (8)

Note then that the volatility terms (6d) and (6e) imply the volatility forms oop;/°dZ and
oopT1dZ in (8) respectively.

Model 2
For Model 2 we simply assume that (); follows a seasonal pattern in time with
Qi =Inp; = h(t) + X; 9)

where dX; follows the process as in (5) with the volatility as in (6a) - (6f). This then implies
the process for Q; as

th = [éh’(t) + h(t) - Qt:| dt + O'tdZt + K dqt (10)

which we call our Model 2. From (10) the process followed by the price p; itself is

ot

1
dpy = apy {ah’(t) + o=+ h(t) - lnpt} dt + oypy dZy + (e — 1)p; dgs. (11)

2a

3 Data

Integral Energy Australia provided half-hourly data for the electricity spot prices and load
for the years 2002-2006. We generated a new time series for the price by calculating the
arithmetic average of the 48 data values for each day and then taking logs of these values.
This is done rather than taking the average of the 48 log prices for each day (which would
have been equivalent to a geometric average) since we needed to analyse the jumps in the
data rather than attempt to mask them. This series is plotted in Figure 3. The daily series
is initially formed in order to test the methodology on a smaller dataset.

At first glance the price spikes in Figure 3 are prominent and seem relatively frequent.
Statistics for the Q; = In p; series as well as for the return d1np; = Inp; —Inp;_; are provided
with the figure. Notice in particular the high standard deviations in the two series and
the very high kurtosis coeflicients. The kurtosis estimates are significantly different from 3
(the kurtosis for a normal distribution) under the null hypothesis of normality and imply
leptokurtic distributions with high peaks, thin midrange and fat tails. This is supported by
the histogram of the returns in Figure 4.

In Figure 5, the average daily load is plotted from which a yearly seasonal pattern is
obvious as well as an increasing trend. Statistics for the average daily load and for d load; =
load; — load;_1 are provided with the figure.
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Figure 3: Daily log price series.

Max(ln p)= 7.16472 Max(d In p)=3.7024
Min(Iln p)= 2.4915 Min(d In p)=-4.0328
Mean(In p)= 3.2848 Mean(d In p)=-1.3744
Std(In p)= 0.518044 Std(d In p)=0.48745
Kurtosis (In p) = 18.715 Kurtosis (d In p)= 25.57

Jumps

The discontinuous jump component in (7) and in (10) controls the nature of the jumps - their
frequency and size. In order to estimate the parameters for the jumps (see Section 4.4) we
first extract them from the data.

There are various approaches by which this can be achieved depending on what is defined
as a ‘jump’. For example price returns beyond three standard deviations of the mean could
be classified as a jump. We choose a particular threshold jump size js and on finding a return
Inpi+1 —Inp; larger than js, remove that return and subsequent ones until In py x —Inp; < js.
The jump size js is chosen so that upon filtering in such a way, the remainder is a series that
can be approximated by a normal distribution. A higher js is preferable, as it would imply
fewer ‘random’ jumps.

From an examination of percentage returns within 1, 2 and 3 standard deviations of their
mean in the filtered data we chose js = 0.7 and js = 0.6 (see Table 1). Kurtosis estimates
also given in Table 1, are higher than 3, but are significant improvements on the kurtosis
estimate of the unfiltered data namely 25.57. We note that a double exponential distribution
or Levy process would seem a better choice to model the filtered data. However, here our aim
is to model the data using a MRJD model where a jump component is added to a GBM.

Using js = 0.7 and 0.6 respectively, the filtered data series and the histogram of their
returns are plotted in Figures 6 and 7.
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Figure 4: Histogram of returns dlnp; =Inp; — Inp;_

1 std from | 2 std from | 3 std from
js mean mean mean Kurtosis
0.6 74.4% 93.2% 98.3% 4.7211
0.65 75.9% 93.7% 98.4% 5.3833
0.7 TT% 93.66% 98.7% 5.3927
0.75 77.9% 94% 98.9% 5.7651
0.8 78.15% 94.3% 99% 5.8209
0.85 78.6% 94.6% 99.13% 5.8963

Table 1: Percentage returns using various threshold jump sizes js.

4 Calibration

We estimate the functions and the parameters in Models 1 and 2 (equations (7) and (10))
respectively. We do this by first estimating the values in the ‘non-jump’ part of the process
(i.e. the diffusion process) using the filtered data, and then analysing the jump parameters
from the jump data set that was extracted from the raw data.

4.1 First approximations for the seasonal function and mean reversion rate

From a plot of the log price versus the load (see Figure 8), a linear relationship is indicated
so that we take f(L;) = ap + a1L; in equation (4).

The least squares fit approximations of ag = 1.7565 and a; = 0.000171 for js = 0.7 and
ap = 1.7946, a1, = 0.000166 for js = 0.6 are used as first approximations for the final fit.

For Model 2, we approximate h(t) with a truncated Fourier series

12
Z(bn sinnmt + ¢y, cos nt)

n=0

h(t) = (12)

and again find least squares estimates for the coeflicients. These are listed in Table 2. We
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Figure 5: Daily load series.

Mean (daily load) = 8487 mean(d load)=0.0927
Std (daily load) = 767.6803 std(d load) = 542.7508
Max (daily load) = 10586 max(d load) = 1892.9
Min (daily load) = 6297.6 min(d load) = -1894.1

can also estimate the mean reversion rate « in the filtered data using a least squares fit of
(Xi+1 — X3, X;) data. For Model 1 we get a = 75.58 for js = 0.7 and « =~ 69.9 for js = 0.6.
For Model 2, a =~ 119.7 for js = 0.7 and a = 115.34 for js = 0.6.

4.2 The estimation technique for the diffusion process

Paper [13] Generalised Method of Moments (GMM) is used to estimate the parameters in the
diffusion processes corresponding to Models 1 and 2. The GMM approach has the advantage
that it does not require that the distribution of log price changes be normal. As well the
GMM estimators and their standard errors are consistent even if their disturbances ¢;11 are
conditionally heteroscedastic. GMM is used by [6, 1, 12], amongst others, to empirically test
interest rate models.

We use a discrete time specification. For Model 1:

1 Ly — L
Qi+1 — Q= « (Eal (tTttl> + (ap + a1 Ly) — Qt) dtip1 + erqr (13)
E(€t+1) = 07 E(€?+1) = U?dta (14)

where we use a backward difference (BD) approximation rather than a forward difference
(FD) approximation for the derivative L'(t), as the load in the next time-step is assumed not
to be known.

For Model 2:
1 &2
Qi+1—-Qt = « [— Z(bnmr cos nwt — cynsinnt)
o n=1
12
+ Z(bn sinnwt + ¢, cosnwt) — Q¢ | dip1 + €441 (15)
n=0

64



filtered Inp series using js=0.7
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filtered Inp series using js=0.6
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load versus log price
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Figure 8: Log price vs. load.

E(et41) =0, E(e) = oidt. (16)

For a given model we let #; and 0, be the parameter vectors for the drift and diffusion
components respectively. For example for Model 1, 8; = (,ag,a1)”, and for volatility (6f),
0 = (09,01,092)T. Define the vectors

(fl)t(el) = (6t+1 ® [Ila s 7Im1]T) (17)

and
(f2)i(02) = (111 — o?dt) @ [T, .., Im,]") (18)

where I; and I;, i = 1... M denote instrumental variables (i.e. predetermined variables that
are independent of the errors) and M = m; or ms denote the number of parameters in the
corresponding parameter vector.

Under the null hypothesis that (13) and (14) or ((15) and (16)) are true, the orthogonality
conditions E(f;(#)) = 0 hold where f = f; or fo. The GMM technique replaces E(f;(0)) with
its sample counterpart gr(6), using T observations where

1 T
gr(0) = = > 14(0),
t=1

and then estimates the parameters in the vector 6 that minimises the quadratic form
Jr(6) = gr(0)" War(6),

where W is a positive definite, symmetric, weighting matrix with the sample estimate adjusted
for serial correlation and heteroscedasticity using the method of [19] with Bartlett weights.
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js=0.7 | p-val || j7s=0.6 | p-val
o 3.179222 | 0.000 || 3.172496 | 0.000
b1 0.173213 | 0.000 || 0.172806 | 0.000
c¢1 | -0.047912 | 0.022 || -0.046492 | 0.024
by | -0.049416 | 0.010 (| -0.045357 | 0.024
ce | -0.075053 | 0.000 (| -0.074299 | 0.000
b3 0.046542 | 0.007 || 0.045453 | 0.010
cs | -0.012851 | 0.412 || -0.007405 | 0.511
by | -0.018237 | 0.402 || -0.018950 | 0.349
Ca 0.072677 | 0.001 || 0.070253 | 0.000
bs 0.049531 | 0.013 || 0.047362 | 0.012
Cs 0.006828 | 0.620 || 0.003013 | 0.872
be 0.016508 | 0.295 || 0.014970 | 0.303
c6 | -0.003616 | 0.654 || -0.005839 | 0.608
bz | -0.012291 | 0.611 || -0.012048 | 0.736
cr 0.008393 | 0.929 || 0.010194 | 0.981
bs 0.005076 | 0.649 || 0.006002 | 0.719
cs 0.011422 | 0.816 || 0.010589 | 0.880
bg | -0.014460 | 0.485 || -0.013943 | 0.511
Co 0.007826 | 0.732 || 0.005344 | 0.740
bio | -0.003157 | 0.786 || 0.000214 | 0.953
c1o | -0.021833 | 0.298 || -0.021451 | 0.220
b11 | -0.012577 | 0.429 || -0.012940 | 0.462
c11 | 0.027130 | 0.141 || 0.026998 | 0.123
bi2 | -0.005397 | 0.589 || -0.007792 | 0.635
c12 | -0.015081 | 0.274 || -0.011100 | 0.364

Table 2: Estimates of Fourier series coefficients in equation (12).

Paper [13] shows that setting

W = (B(f0)£:(0)7) ",

delivers an estimate for the vector # with the smallest asymptotic covariance matrix for
the GMM estimates of . With the number of unknowns exactly equal to the number of
orthogonality conditions, the model is exactly identified and so Jr(6) = 0.

4.3 Results

Results for Model 1 using js = 0.7 are listed in Table 3. For Model 2 using js = 0.7 the
Fourier coefficients in Table 2 are used as no significant improvements in SSE were found with
GMM. The other parameters estimated are listed in Table 4. Tables 5 and 6 list the results
for Models 1 and 2 respectively when the data is filtered using js = 0.6.

For both threshold jump sizes js = 0.6 and 0.7, Model 2 outperforms Model 1. The
performance of the volatility is also consistent. From an examination of the SSE (sums of
squares of errors) and the MSE (mean square errors), the volatility o; = 0ge™?t performs best
in all models, followed by o; = aeri/ 2 then oy = 0g + 01 cos 27t + o9 cos 4nt. Volatility with
a dependence on load does not perform significantly better than a constant volatility oy = oy.
The volatility with a dependence on the change in the load performs least well, perhaps not
surprisingly as the change in load related to the previous time-step.
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parameter ¢ value p value SSE (MSE)
value Eq (1) | Eq (2)
o | 67.51146 10.28 <.0001
ap | 3.593127 24.72  <.0001 | 67.682
a; | -0.00005  -2.73 0.0064 | (.0389)

o = 09 oo | 3.791098 31.28 <.0001 12.0717
(.00694)
oy = ool oo | 0.000445 31.28 <.0001 12.1124
(.00696)
oy = oodLy oo | 0.003843 4.08 <.0001 13.9356
(.00891)
oy = 00e?/? | o9 | 0.745511  30.23 <.0001 11.106
(.00683)
oy = 0pe"?t | a9 | 0.376201 3.88 0.0001
n 0.696733 8.89 <.0001 11.0441
(.00635)
o = oo+ oo | 3.672192 34.15 <.0001
oyrcos2nt+ | o1 | 0.183404 1.11 0.2681 11.819
o9 cos 4t o2 | 0.669647  4.05  <.0001 (.0068)

Table 3: Parameter estimates for Model 1 with js = 0.7.

In Model 1 we notice that a1, the coefficient of L in the function f(L;) is negative for both
thresholds. As the log price is an increasing function of the load, this indicates that the BD
approximation for the derivative L'(t) is not a good estimate for the slope. Re-estimating the
parameters for Model 1 using a FD approximation for L'(¢) using volatilities (6a), (6d) and
(6e) yield the values in Tables 7 and 8.

The estimates for a; are positive. As well, comparing SSE in Tables 4 and 7 and again
in Tables 6 and 8, Model 1 outperforms Model 2. However, for the purpose of forecasting, a
FD approximation could not be used as it is anticipatory and assumes knowledge of load in
the next time-step.

As an alternative measure to gauge relative performance of the models, we test their
forecast powers for (filtered) price changes and squared (filtered) price changes using the
coefficient of determination R? metric. The R? metrics of the drift and diffusion measure
the proportion of the total variation in the ex-post price changes (R?) and squared price
changes (R3) that can be explained by the conditional expected price changes and conditional
volatility measures. The metric provides information about how well each model is able to
forecast the future level and volatility of the filtered price. The order of performance in the
R? statistics from best to worst is naturally the same as the order of performance of the
models by examination of the SSE. Model 1 using the FD approximation for the derivative
L'(t) provides the best measures with values of R? = 21.36% and 31.5% and R3 = 44.2%
and 47% for js = 0.7 and 0.6 respectively. The forecasting ability of this SDE is very good
compared to other stochastic models.

The best values for Model 2 were R? = 15.21% with js = 0.7 and R? = 15.1% with
js = 0.6 and R? = 35.7% and 33% with js = 0.6 and js = 0.7 respectively and volatility
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parameter ¢ value p value SSE (MSE)
value Eq (1) Eq (2)
a | 85.13754 0.1141 | 61.5419
(.0353)
oy = 0y oo | 3.598054 30.97  <.0001 9.7136
(.0055)
oy = ool oo | 0.000422 30.93  <.0001 9.7736
(0.0055)
oy =oodLl; | oy | 0.00357 4.24  <.0001 11.2403
(0.0064)
o =00e?/? [ oo | 071121  29.34  <.0001 8.9661
(0.00515)
or = 0ge™@ | oy | 0.303368  3.74 .0002 8.9114
n 0.744553  9.16  <.0001 (0.00512)
oy = 0o+ op | 3.477864 33.54  <.0001 9.5688
orcos2nt+ | oy | 0.236683  1.50  0.1333 (.0055)
o9 cos 4t 09 0.626515 4.15 <.0001

Table 4: Parameter estimates for Model 2 with js = 0.7.

(6e). Model 1 with a BD approximation for L'(t) does not perform as well.

4.4 Estimating the jump parameters

As described in Section 2, the jumps are filtered from the data using a threshold jump size of
js = 0.7 and also using js = 0.6. From the extracted jump data we estimate the parameters
in the jump component in Models 1 and 2 (equations (7) and (10) respectively).

We assume that the jumps were instantaneous to the first approximation. In effect we
collapse jumps that may have had a duration of 2 days (which occurred 34.78% of the time)
into an instantaneous jump on a single day. Hence in the filtering process, when a return
is found above the threshold, the jump size is then taken as the sum of this return and if
applicable, the subsequent positive return after this. This is necessary for the model to attain
extreme jumps. The mean-reversion characteristic of the models allow the prices to return
quickly to the pre-jump level without the need to impose any conditions on the jumps.

Statistics for the jumps are provided in Table 9 and their histograms given in Figure 9.

With the distribution of the jumps difficult to determine with so few data points, and the
frequency of jumps inconsistent across the months, we use for the term K dg; in (7) and (10)

12

> K; dg; My
7j=1

where M;; = 1 if the date ¢ belongs to the jth calendar month and 0 otherwise, while dg; = 1
with probability A;, and dg; = 0 with probability 1 — A;. Each K is a random number from
a discrete set 1); of equally possible elements. These are listed in Table 10.

We investigate the relationship between jumps and load. For the 5 years of data provided,
jumps occurred when the load in the previous time period was above the average load for
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parameter ¢ value p value SSE (MSE)
value Eq (1) Eq (2)
a | 64.88192 10.38 <.0001 | 58.1593
ap | 3.541309 26.61  <.0001 | (0.0338)
a; | -0.00004  -2.62 .0089
o = 0y oo | 3477373 3496  <.0001 7.2578
(.00421)
o = ooy oo | 0.000408 35.22  <.0001 7.2001
(.00417)
oy = oodLy oo | 0.002767 2.73 .0064 8.887
(.00515)
or = 00e?/? | og | 0.683717 33.52  <.0001 6.7307
(.0039)
oy = 0ge™@t | o9 | 0.400374  3.78 .0002 6.6874
n 0.656174  8.03  <.0001 (0.00388)
oy = oo+
o1 cos2mt+ | op 3.38278 39.48 <.0001
o9 cos 4t o1 | 0172996  1.19 0.2337 7.0723
o9 | 0.623552 441  <.0001 (0.0041)

Table 5: Parameter estimates for Model 1 with js = 0.6.

parameter ¢ value p value SSE (MSE)
value Eq (1) Eq (2)
a | 87.81233 0.88 0.3769 | 52.9991
(.0307)
ot = 0p oo | 3.264612 36.04 <.0001 5.8113
(.00337)
o = ool oo | 0.000384 37.01 <.0001 5.7977
(.00336)
oy =o0odL; | oy | 0.00274 3.33 0.0009 7.1084
(.00412)
or=00e®/? [ og | 0.644729 38.67  <.0001 5.4202
(.00315)
oy = 00e™? | o9 | 0.373755  4.16 <.0001 5.4036
n 0.662956 8.9 <.0001 (0.00313)
ot = 0o+ oo | 3.226232 39.18  <0.0001 5.6859
oicos2mt+ | o1 | 0.222965  1.63 0.1033 (0.0033)
o9 cos 4t o2 | 0.594682  4.45  <0.0001

Table 6: Parameter estimates for Model 2 with js = 0.6.
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parameter ¢ value p value SSE (MSE)
value Eq (1) Eq (2)
a | 67.68492 11.52 <0.0001
ag 0.223646 0.26 0.7963
ai 0.000353 3.46 0.0006 | 57.075
(.0328)
oy = 09 oo | 3.380626 34.27 <.0001 8.153
(.0046)
o= 00e9/2 | o | 0.683908 27.87 <.0001 7.5619
(.00433)
or = 0pe™@t | og 0.304197 3.28 0.0011 7.4219
n | 0732653 7.87  <.0001 (0.0042)

Table 7: Parameter estimates for Model 1 using js = 0.7 and FD for L'(1).

parameter ¢ value p value SSE (MSE)
value Eq (1) | Eq(2)
a | 62.50735 12.06 <0.0001 | 42.7666
ag | 0.935759  1.55 1210 | (.0248)
a; | 0.000268 3.77 .0002
o = 0y oo | 2.925856  34.88 <.0001 4.737
(.0027)
or = 00e®/? | oo | 0.580077 35.91 <.0001 4.484
(.0026)
oy =0pe"™¥ | oo | 0.288463  3.31 0.001 4.453
n | 0.708476  7.62 <.0001 (.0025)

Table 8: Parameter estimates for Model 1 using js = 0.6 and FD for L'(1).
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Figure 9: Histogram of jumps using (a) js = 0.7 and (b) js

= 0.6.
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js=0.7]355s=0.6
frequency of jumps 46 53
mean of jumps 1.8621 1.7255
std of jumps 0.8818 0.9418
max jump 4.2484 4.2484
min jump 0.7074 0.6015

Table 9: Statistics for ‘jumps’.

that month in the year. This occurred 9 out of 12 times in the first year, 4 out of 7 times in
the second year, 6 out of 9 times in the third year, 7 out of 11 times in the fourth year and 3
out of 7 times in the fifth year. 85% of jumps occurred when the current load was above the
average load for its month/year and all jumps occurred when either the load in the previous
time period or the load in the current time period to the jump were above the average load
for the month/year when the jump occurs.

This information is only be useful for predicting jumps if we can predict the monthly
averages for the loads and the load for the next time period. Regression estimates for the
average monthly loads can be used to predict future monthly averages. Using the five year
data provided, approximate estimates are

Yian = 7.1029 + 1.0271¢ — 0.3343t* + 0.0392¢>
7.0833 4 1.0903t — 0.2816t% + 0.0276¢°
Ymarch 7.7564 — 0.0026¢ 4 0.0354¢>

Yapril = T7.5167 +0.1342t +0.0013¢°
8.3784 — 0.1209¢ + 0.0478t>
Yiune = 9.0757 —0.3430¢ + 0.1021¢*

Yiuly = 8.7571 +0.5941t — 0.2405¢ + 9.1434¢3
Yaug = 8.5218 +0.1136t + 0.0164¢

Ysep = 7.3469 + 0.8225t — 0.2285¢> 4 0.0239¢3
Yoot = T7.7909 —0.0047t + 0.0262t>

Unoy = 8.0474 —0.1060t + 0.047¢2

Ydee = T.6714 +0.1737¢

Yteb

Ymay

where t represents the time (in years). With more data these estimates could be improved.

4.5 Simulations

Simulations of Model 2 with volatilities of the form (6a) and (6e) and using parameter values
as in Tables 4 and 6 are provided in Figures 10 — 13 with jump size thresholds js = 0.7 and
0.6 respectively.

As the volatility (6e) depends on the price level, in the simulation, if a jump occurred at
one time, ¢, then dZ;, the random term in the volatility in the next time step ¢t 4 dt is set
to its expected value of 0. Also, jumps were not allowed if the price was above 4.2. From
a comparison of the trajectories and histogram of returns in Figures 10 and 12 with the
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Calendar js =0.7 js=0.6
Month
1 A1 = 6/155 A1 =T7/155
P ={0.7,1,1,1.7,2.5,2.9} | ¢y = {.62,.72,1,1.1,1.7,2.5,2.9}
2 X2 = 6/141 Ao = 7/141
Py = {1,1,1.5,1.6,2.5,4.1} Py = {.62,1.1,1.5,1.6,2.5,4.1}
3 Az = 1/155 A3 =1/155
g = {4.25} g = {4.25}
4 A1 =1/150 A1 =1/150
¥y = {0.71} ¥y = {0.71}
5 A5 = 5/155 A5 =5/155
¥s = {1.1,1.3,1.6,2.24,2.3} ¥s = {1.1,1.3,1.6,2.24,2.3}
6 Ae = 6/150 Ae = 6/150
v ={1.4,1.5,1.5,1.6,1.8,2.4} | 1 = {1.4,1.5,1.5,1.6,1.8,2.4}
7 A7 = 6/155 A7 = 6/150
W7 = {1.3,1.77,2,2,2.2,2.2} Yr = {1.77,1.9,2,2,2.2,2.2}
8 As = 1/155 Xs = 2/155
g = {0.93} s = {0.66,0.93}
9 A9 = 2/150 A9 = 4/150
e = {1.3,1.7} 1y = {0.66,0.69,1.3,1.7}
10 A0 = 2/155 A10 = 2/155
¢10 = {32,37} /(/110 = {37,38}
11 A11 = 6/150 A1 = 7/150
Y1 ={1,1.5,1.8,2.5,3,3.5} | ¢11 = {0.69,1,1.5,1.8,2.5,3,3.5}
12 A1z = 4/150 A12 = 5/150

Y12 = {0.81,1,1.3,1.3}

P12 = {0.6,0.81,1,1.3,1.3}

Table 10: Data values for the jump component k dg.
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trajectory in Figures 3 and 4, our models seem to capture the critical features observed in
the spot electricity market, and reproduce the price levels observed in the data. Further, the
volatility of the form ¢; = 0ge™@* in particular, matches the observed magnitude of price
fluctuations.
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Figure 10: Simulated time series of prices and corresponding histograms of returns, simulated
using Model 2 and parameter estimates in Table 4 when o; = oy .
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Figure 11: Simulated time series of prices and corresponding histograms of returns, simulated
using Model 2 and parameter estimates in Table 4 when o; = gpe"9* .

78



simulated In p

T
Tr i
6 i
Q.
57 1
4k i
3 i
2 1 1 1 1 1 1 1 1 1
0 200 400 600 800 1000 1200 1400 1600 1800 2000
time in days
histogram of returns
(b) 900 T T

800

700

600

500

400

300

200

100

1 ——
4

Figure 12: Simulated time series of prices and corresponding histograms of returns, simulated
using Model 2 and parameter estimates in Table 6 when (a) o = oy .
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Figure 13: Simulated time series of prices and corresponding histograms of returns, simulated
using Model 2 and parameter estimates in Table 6 when o; = gpe"9* .
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