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1 Introduction

At the outset, to appreciate the background of this project, we quote [3]:

“Over the last 10 years, major countries have been experiencing deregulation in generation
and supply activities. One of the important consequences of this restructuring is that prices
now determined according to the fundamental rule of supply and demand: there is a ‘market
pool’ in which bids are placed by generators to sell electricity for the next day are compared
to purchase orders”.

Prior to that, the regulators used to set the price based on the cost of generation, trans-
mission and distribution and the price to the consumer was essentially fixed for long period
of time. A large fraction of the literature on electricity today belongs to the economics of
deregulated electricity market from the perspective of the regulators. In the market mech-
anism now operating today, the price will be determined by the interaction of the purchase
orders placed by the retailers against the pool prices.

The deregulation of the electricity market has also led to increased trading activities
in both spot and related derivatives like forwards and options. The risk of spot-price has
forced retailers to manage the risk of the spot price through various hedging mechanisms.
Many retailers provide incentives to the consumers to enter into long term contract with pre-
determined price structure, but that still leaves the risk of buying price. It is in this context
modelling the stochastic behaviour of the spot price of electricity has become important.

One feature of the electricity market that is unique to this commodity is that electricity
is not storable, although, it may be argued that the concept of storability applies to hydro
electricity generation. Since, in general, it cannot be stored the spot price is likely to be
determined by the spot concerns, e.g., spot demand and supply constraints. The ability to
store any commodity has the effect of smoothing the evolution of the spot price to some
extent. As a result of its absence, price spikes are a regular feature of the electricity spot
prices in most countries that have deregulated this market. Price spikes are possibly due to
disruption in transmission, unscheduled outages, extreme weather changes or a combination
of all these events. Additional details about the characteristics of this market may be found
in [3].

We will now review some of the salient characteristics of the electricity prices in the
deregulated market. In standard commodity-futures markets the concept of convenience yield
plays a key role in the relationship between the spot and the forward prices. The convenience
yield is a way of expressing the fact that an investor is sure of available supply when the
demand for using that commodity arises at a future date. The non-storability of electricity
makes the concept of convenience yield difficult to apply. This implies that the spot price
itself should contain all the characteristics of the price process that would be necessary to
impute prices of derivatives contracts written on electricity prices.
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Next, we outline the important temporal characteristics of spot electricity prices observed
in most markets. A detailed description of these characteristics may be found in [3]. Mean
reversion is an important feature of spot electricity prices. The prices tend to fluctuate around
values determined by cost of production and the level of demand. The mean reversion level
may be constant or periodic with a trend. Seasonality is another obvious characteristic. The
prices change by time of day, week, month and the year in response to cyclical fluctuations in
demand. Another feature already mentioned before is that of price jumps or spikes. A point
to note is that technically price does not jump to a new level (to stay there) but spikes and
quickly reverts to their previous levels. This price spike has been the most difficult aspect to
model appropriately.

It is, therefore, clear from the above discussions that a pure diffusion process would not
adequately capture the characteristics for electricity price series. A pure diffusion process
approach has worked well in stock price modelling. For the electricity market, however, we
need to incorporate a jump component with an appropriate intensity function to capture the
spikes. Many of the traditional modelling approaches applied to financial market data e.g.
equity, foreign exchange, and interest rates etc do not work well with spot electricity prices.
This has been the experience for most researchers in this area as discussed in [3]. With respect
to the equity market though, the work by [5] is an important contribution to detect jumps (as
opposed to spikes). Their focus has been whether jump risks in stock returns are diversifiable.

In this paper we attempt to combine the ideas expressed in the cited literatures and explore
a jump diffusion model for spot electricity prices in NSW. We allow both a deterministic time
dependent factor as well as a latent factor combined with Poisson jumps to capture the
observed characteristics of the spot electricity price series. We show how to calibrate such a
model to the market data and describe the appropriate algorithm for that. The algorithm we
employ generates, in a natural way, one period ahead forecast of spot electricity price. This,
in turn, helps us determine the “goodness of fit” of such a model.

2 A Model for Spot Electricity Prices

In modelling commodity prices the approach of [7] has become quite popular. Their analyses
depend upon both short dated and long dated futures contracts of the commodity. It also
relates to the convenience yield as normally applied to futures contracts. Since the electricity,
as a commodity, is different in this respect due to non-storability of the commodity for possible
future consumption, the short-term, long-term concept introduced by [7] may not strictly
apply to this market. Nevertheless, the ideas contained in [7] have important bearing in
dealing with the electricity market.

It is clear from the earlier discussions that price jumps or price spikes are a natural char-
acteristic of the electricity market and have to be built into the model. It is also useful as we
may be able to adopt the models we develop here for pricing derivatives contracts on the elec-
tricity spot prices. To reliably model contingent claims prices we have to incorporate jumps
in addition to the usual diffusion assumptions in the price process, which makes it far more
complex compared to pricing derivatives on equities. In this context we need to be mindful of
the theorem by [2] that leads to closed form solution, in most cases, of the contingent claims
when the underlying security follows an affine! jump-diffusion process (AJD). Although, we
are not strictly focusing on electricity derivatives contract in this paper, we will strive to stay

! Affine structure implies linear dependence on state variables
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close to the AJD process so that our approach can be easily adapted for contingent claims
pricing later.

Many researchers traditionally model log of the spot price of the commodity as in [7].
The existence of a significant jump component in the electricity prices it is worthwhile to
re-consider whether a logarithmic transformation is useful. The logarithmic transformation
affects the estimation of the jump component due its effect on the skewness of the distribution
of the series. Since the derivatives contracts are written on spot price level and not on its
log transformation, developing models of log transformation of spot price will not be useful.
[6] find that the model of price level fits the forward contract prices better than the log-price
level. In this paper we will, therefore, model the price level and not its log transformation.
That way the models we develop will be better suited to pricing derivatives contracts on spot
electricity prices.

In the original approach of [7] the log of the commodity price is modelled via two factors,
both unobserved. The first factor captures the short-term variations and is modelled by
an Ornstein-Uhlenbeck (OU) process whereas the second factor (the long-term variations) is
modelled by an Arithmetic Brownian process (ABM). The commodity examined in Schwartz
and Smith is crude oil and it displays non-stationarity. Hence the inclusion of the ABM
process in their analysis is not only meaningful but is also a necessity since the OU process
alone would not be able to capture the dynamics. Since our spot electricity price series is
stationary (found by Augmented Dickey-Fuller tests) we need only include the OU process
to capture the dynamics without the jumps. To capture the jump characteristic we include a
jump component in the OU process.

Another difference from the structure in [7] for electricity spot prices is the inclusion of a
time-dependent, deterministic function to capture the observed seasonality in the series. This
arises mainly due to the nature of household consumptions of electricity depending on the
season we are in. This also indicates that the intensity process for the Poisson component
capturing the jumps in the series may not be constant, and is more likely to depend on
seasonal factors.

With this background we are in a position to specify the spot price process (P;) mathe-
matically in terms of a deterministic, time-dependent function f(¢), and a state variable Xj.
Although many researchers specify their models in continuous time setting and for implemen-
tation purposes use Euler discretisation, we prefer to stay in the discrete framework from the
start. We set daily average electricity spot price, measured in dollars per megawatt-hour,

P = f(t) + Xu. 1)

The deterministic, time-dependent part is described as a sinusoidal function along with a
weekday dummy variable (wkd;). This specification is similar to that used in [6]. This last
variable is to help distinguish between the price on a weekday and a weekend. We use the
following specification for f(t):

2
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f(t) = Bo + Bit + B2 Sin{(t+ﬂ3) 365

} + By sin {(t + B5) } + Bewkdy, (2)
where wkd; = 1 if the day is a weekday otherwise it is zero.

The OU component X; describes the unobserved component that captures the short-term
dynamics, allows occasional jumps and is characterised by volatility clustering that is common

to most financial time series. The notion of unobserved component is in the sense of state
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space models and filtering theory. This volatility clustering is modelled as a GARCH (1,1)
process. Thus we specify:

Xt = ¢Xio1 + BYPe1 s + J(pg, 05) ATL(N), (3)

where €1 ~ N(0,1), the time varying variance hy = ag + 0415%,1:71 + aghy—1. The jump com-
ponent is controlled by a Poisson-distributed variable with time dependent intensity function
At, and the jump amplitude is governed by a normally distributed variable with mean p; and
variance oj. To capture seasonal effects in the jump component, we set

At = y1winter; + y2autumn; + y3spring; + yssummer; (4)

where the seasonal dummy variables indicate whether a particular date is in one of these
seasons.

The specifications in equations (2) and (4) are just an assumption of the form of these
functions for the dataset being analysed. These are based upon basic analysis of the data and
similar decisions taken in the literature already referred to above. In this article we have not
explored whether other forms of these functions have better properties.

The set of equations (1) and (3) describe our modelling approach to electricity spot prices
and is already in state space form. In this state space representation of our problem equation
(1) is the measurement equation and equation (3) is the state transition equation. The number
of unknown parameters in this model is seventeen and these are estimated by the maximum
likelihood method. Due to the presence of the unobserved component, X; , we resort to
Kalman filter to develop the likelihood function recursively. This process is described in
detail, along with the modification needed due to the jump process, in the appendix. The
parameter set is conveniently given by the vector,

0= {ﬁ()a :815 :82’B3a /847 /85’1365 O, 01, A2, U, 075715725735 V4, ¢} (5)

There are seventeen parameters to be estimated and it is not an easy optimisation task.

Although we have described in the appendix in detail the steps of the filtering algorithm
including the modification needed to accommodate Poisson jumps, additional insights may
be gained from Chapter 6 in [4]. In order to allow GARCH variance in the state dynamics,
we need further non-trivial modification to the standard Kalman filter [4], and in particular
Chapter 6 is an excellent reference source for this topic. Thus to conserve space, we refer the
reader to that source material.

We implemented this algorithm in Gauss and used numerical optimisation to estimate the
parameters as well as the standard errors from the information matrix. The filter algorithm
produces the one-step ahead prediction of the state vector, which in this case is Xj.

3 Data and empirical results

Data used for this study was provided by Integral Energy. This represents every half hour
NSW pool price covering the period 2002 through to 2006. We, however, use the daily
average price for our modelling. We also estimate the model for two different periods. The
first sample covers 2002 - 2003 containing 730 observations and the second sample covers
2004-2006 containing 1096 observations. Daily average prices are expressed in Australian
dollars.
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As a first step we check the stationarity of the spot price series using an ADF test. The
main focus here is to statistically reject the unit root hypothesis in the electricity spot price
series for entire sample period examined. The ADF test is based upon the following equation,
where P; is the daily average electricity spot price and A is the difference operator:

n
AP =c+yP1 + Z 0 AP + . (6)
i=1

The hypothesis being tested is Hy : v = 0 as opposed to H; : v < 0. The quantity n in the
above test is decided by a sample specific check so that the residual series is uncorrelated. The
t-statistic for this test for the sample of 2002-2003 is -13.52 and that for the sample 2004-2006
is -27.04. The critical values for this test are obtained from the econometric software Eviews
and the existence of unit root is rejected for both samples.

This unit root test convincingly supports the view that we need only the OU component
in our model as opposed to [7] where both an OU and an ABM component were needed. For
our analysis this OU component is given by the equation (3).

Focusing on the parameter estimates in Table 1, we note that the time trend component
in the deterministic part (equation (2)) is insignificant in the second sample (2004-2006),
whereas in the first component it is highly significant and displays downward bias. Although
we cannot draw any firm economic conclusion from this, it is worthwhile to keep in mind that
this market is still evolving and maturing.

Both samples display heteroscedasticity as seen from the quantity (a; + az). The persis-
tence in volatility in the short-term component (the OU part) has, however, gone down in
the second sample. It is also interesting to observe that the autoregressive parameter (¢) of
the unobserved component in the second sample is about half the size of the earlier sample.
It may stem from more efficient pricing by the participants in this market and is probably
the result of better understanding of this commodity in this evolving market.

We now focus on the jump component, i.e., the parameters (us,0) . Both these param-
eters are highly significant in both samples. Although the mean jump amplitude is higher in
the second sample, its volatility is an order of magnitude higher in the second sample. That
it might be so is also apparent from Figures 1 and 3 which are plots of the electricity spot
prices over the whole periods. This may result from the supply concerns in the second sample
period or the reflection of uncertainty in the regulatory environment governing this market.
In this paper we are not in a position to shed further light on this aspect of the results. The
appropriateness of the time varying jump intensity as captured by equation (4) is supported
by the statistical significances of the estimated parameters in both sample periods.

Finally, we check on the predictive power of the model in both sample periods. Since
the filtering algorithm recursively produces one step ahead projection of the state variable,
we have shown in Figures 2 and 4 the possible price paths, i.e., the expected electricity spot
prices. Using this information and the subsequently realised prices we can make comparative
judgement about the usefulness of the model. In the traditional statistical sense the forecast
ability of a model is judged by some measure of association between the forecasts and the
realizations. However, there is an alternative to R-square measures and this is given by
Theil’s Inequality Coefficient. It was originally proposed in 1961 and has been employed by
several researchers since then. We have applied Theil’s Inequality Coefficient (TIC) to test
this performance.

The TIC (Theil’s Inequality Coefficient) is given by the following expression. We assume
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that the variable of interest is z; for t = 1,2,...T', and its estimated value is given by 2; :

VTS G—a?
\/1/T Y 7+ \/1/T i £

This coefficient always lies between zero and one, where the smaller the coefficient the better
the estimate. For additional application of this measure the readers may refer to [1].

The computed value of TIC is smaller in the first sample compared to that in the second
sample. Both values, however, indicate reasonable success in capturing the price path one
day ahead. The lower value of the autoregressive parameter (¢) in the second sample may
have contributed to lower predictive power in the second sample.

TIC =

(7)

4 Summary and conclusion

We have explored the modelling? of the electricity spot prices in New South Wales through
a jump-diffusion process mixed with time varying deterministic trend component. The un-
observed factor is driven by a diffusion process with time varying variance and a Poisson
distributed jump component. We have outlined the algorithm needed to extract this latent
factor from the observed price series and find that its one-step ahead prediction does con-
tribute to the forecast of a complex electricity spot price series.

The very nature of the likelihood function of the Poisson mixture of Gaussian distribution
requires some approximation for implementation purposes. To keep the computation burden
low we have kept the upper limit of the infinite series summation to a small value. This
is consistent with published articles in this area of research. One way to extend this study
would be to experiment with this upper limit to check whether it improves predictive accuracy.
Although we have allowed the jump amplitude to be a normally distributed variable, there
may be other distributions that could prove useful in improving the predictive accuracy. This
remains another possible extension of this study.

Standard errors are in parentheses below the parameters. TIC represents Theil’s inequality
coefficient, a measure of model’s ability to predict the observed data. This is described in the
text.

Appendix

State space model (SSM) with Poisson jumps and Kalman filter
The SSM in its basic form retains a VAR (1) structure for the state equation,

ye =Ty +wp + G (8)

where the state equation determines the rule for generation of the states y, p X 1 vector, from
the past states y; 1, for all time points t = 1,2,...,7. For completeness we assume that w;
are p X 1 independent and identically distributed zero-mean normal vectors with covariance
Q:. We assume that @); is diagonal and may be constant. When we allow GARCH effect

’In the published research in electricity spot price modelling, jump-diffusion model has emerged as the
main technique. In the absence any other viable approaches it is not practical to compare the forecast ability
of our model with a competing model as yet.
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2002-2003  2004-2006
Bo  11.88430  1.02417
(3.4316)  (0.0070)
B -7.19647  0.00953
(1.4750)  (0.0078)
B 0.91000  1.01030
(0.0260)  (0.0052)
B3 1.03455  1.01031
(0.0152)  (0.0052)
Bs  0.81608  1.01055
(0.0423)  (0.0052)
Bs 106108  1.01057
(0.0159)  (0.0052)
Be  1.30011  1.04473
(1.5468)  (0.0122)
ap 011923  1.05235
(0.0559)  (0.0064)
a1 0.55549  0.33955
(0.0075)  (0.0013)
a; 025873 0.33867
(0.0040)  (0.0013)
py 1112589 16.18870
(1.2141)  (0.9561)
oy 240.36013 1333.91930
(13.0915)  (57.0935)
v 197147  2.14528
(0.1567)  (0.1322)
v, 192343  1.88024
(0.1460)  (0.1174)
v3  2.48438  1.94322
(0.1686)  (0.0306)
vy 1.84487  2.07050
(0.1436)  (0.0381)
¢ 0.16446  0.08159
(0.0265)  (0.0218)
TIC  0.3839 0.5489

Table 1: Maximum Likelihood Estimates of the Parameters of the Jump Diffusion Model

88



in some of the elements of the state vector, the corresponding element in @); would then be
time varying. The noise term (; introduces the jump in the process and is assumed to be
represented by

G~ N(G-ps,j-03),i=1,2,..,00. (9)

In equation (2) j is a Poisson distributed random variable during a small interval At
characterised by a single parameter A\;At. The state process is assumed to have started with
the initial value given by the vector, yg, taken from normally distributed variables with mean
vector ug and the p X p covariance matrix, Y.

The state vector itself is not observed but some transformation of these is observed but
in a linearly added noisy environment. Thus, the measurement equation is given by,

zy = diy + Apys + vy (10)

In this sense, the ¢ x 1 vector z; is observed through the ¢ x p measurement matrix A;
together with the ¢ x 1 Gaussian white noise v;, with the covariance matrix, R. In equation
(3) d; is a purely deterministic time dependent variable. We also assume that the two noise
sources in the state and the measurement equations are uncorrelated.

The next step is to make use of the Gaussian assumptions and the independence of Poisson
distributed events and across times and produce estimates of the underlying unobserved state
vector given the measurements up to a particular point in time. In other words, we would like
to find out, E(y[{#t-1, 22, -+, 21}) and the covariance matrix, Py, 1 = E[(yt — Ys1—1) (Yt —
yt|t,1)’ ]- This is achieved by using Kalman filter and the basic system of equations is described
below.

Given the initial conditions yog = po, and Fyo = 3o, for observations made at time
1,2,3..T,

y§|]2—1 = Fyrsj—-)ut—l (11)
Pt(é)fl = Ppt(i)l\tqu +Q: (12)
yiﬂ) = yt(\jt)_l + K (2 — Atyt(ft)_l), (13)
where the Kalman gain matrix
K = P A[A Py, 1 Ay + B! (14)

and the covariance matrix Py, after the t*" measurement has been made is

P =[1- K7 4]PY) . (15)

Equation (4) forecasts the state vector for the next period given the current state vector
and the Poisson jump. Using this one step ahead forecast of the state vector it is possible to

define the innovation vector as _
ng) (‘J)

M (16)

=2t — Aty 1
and its covariance as

Zgj) _ AtP(j)

vi-1Ar + R. (17)

The description of the above filtering algorithms assumes that the parameters are known.
In fact, we want to determine these parameters and this is achieved by maximizing the
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innovation form of the likelihood function. The one step ahead innovation and its covariance
matrix are defined by the equations (9) and (10) and since these are assumed to be independent
and conditionally Gaussian, the log likelihood of the Poisson mixture of normal distribution
is given by

In(L) =Y In [y w(h,j)

t=1 =0

{en? o) eo (-7 @z @1 @) |

<.

(18)

In this expression © (collection of all the unknown parameters) is specifically used to
emphasize the dependence of the log likelihood function on the parameters of the model.
Once the function is maximized with respect to the parameters of the model, the inferred
state vector is also available.

In practice the infinite sum in the above log likelihood function has to be approximated
by something more appropriate for computation. The published papers in this area using
equity market data normally use 10 as an upper limit for the summation term. For example,
Kim, Oh and Brooks [5] use 4 for their study of jump risks in equity return. In this paper
we use 6. Higher value will of course give better approximation but at the expense of rapidly
increased computation time.

There are different numerical approaches that may be taken to carry out the maximization
of the log likelihood function. The computational complexity and other numerical issues are
beyond the scope of this paper.
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