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1 Introduction

Integral Energy is one of three franchises which provide retail electricity in New South Wales
(NSW). Integral Energy purchases wholesale electricity from the National Electricity Market
and sells this to retail customers. The electricity market is unusual because the price at which
electricity is sold to retail customers is fixed, but the price that the electricity retailer must
pay for electricity from the National Electricity Market varies. Thus price changes incurred
by Integral Energy are not passed on to their customers, introducing electricity price risk.
Integral Energy uses the electricity hedge market, customer contract management, and the
Electricity Tariff Equalisation Fund, along with market forecasting, to reduce its exposure
to electricity price risk. These contracts are used to hedge Integral Energy against risk for
electricity demand within the 95% confidence intervals of their long range electricity demand
forecasts.

This project is in part concerned with comparing Integral Energy’s electricity price risk
with that of the other two NSW electricity franchises: Energy Australia and Country Energy.
Integral Energy want a measure of the relative volatility of their demand compared with that
of the other two franchises. Integral Energy is most at risk during very high load periods,
such as very hot days in summer and very cold days in winter. Integral Energy’s customers
are largely based in western Sydney, where it gets hotter in summer and cooler in winter
than on the coast. Houses in this area also tend to be less energy efficient, and Integral
Energy believe these factors combine to produce higher demand during peak periods. Energy
Australia’s customers are largely based on the coast around Sydney. Coastal temperatures are
more stable than inland temperatures, which Integral Energy suggest results in less volatile
demand. Country Energy largely provides electricity for the rest of the state and, from
historical data, appears to have the least volatile demand.

Integral Energy provided data collected every 30 minutes from 1 January, 2002 to 31
December, 2006. The actual values for demand were given, as well as Integral Energy’s long
term forecast values and their 95% confidence intervals. The supplied data included the
temperature at Bankstown (in western Sydney), the National Electricity Market electricity
price, and various load measurements. For this project, Integral Energy wanted us to consider
the Net System Load Profiles (NSLPs) for each franchise. The NSLP is a measure of the load
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over which the retailer has no control; it is discretionary electricity consumption controlled
by the customers. The NSW State Load was also found to be of use in the modelling.

The brief from Integral Energy was to find a model for their NSLP given the temperature
in Bankstown, which is used as a proxy in lieu of detailed temperature variation for the
franchise, to estimate discretionary Load. This model would, in effect, be used to calculate
expected load based around temperature in the short term. The second major task was to
quantify the difference in volatility between the three franchise NSLP profiles.

2 Determination of the model

The data that Integral Energy provided came as an Excel spreadsheet of 87648 rows and 61
columns. The rows each represent one observation on the characteristics of the electricity
system. These observations are taken every 30 minutes throughout the day (at 00:30, ... ,
24:00), for each day of the year. Data were provided for the calendar years 2002, 2003, ...,
2006.

The decision was taken to find a model that explained the Historical NSLP for Integral
Energy over the years 2002 to 2005, and then to use the variables that were selected for that
model to predict NSLP during 2006. A resulting good fit would suggest that the basic form
of the model is satisfactory. It is important to note that this will not give exactly the same
model for 2006 as for 2002 to 2005. For example, suppose that the best-fitting model for 2002
to 2005 is Predicted NSLP = a + btemp + ctemp?. Then the model that is fitted for 2006
would be of the same form, but new coefficients a1, b1 and ¢; would be calculated.

All statistical analyses were done using version 5.1 of the statistical package JMP [3]. As
expected, the NSLP is strongly influenced by the temperature at Bankstown airport. It was
quickly apparent that the type of day (working or non-working, the latter including weekends
and public holidays), time of day, month of the year and year also had an influence, over and
above the effect of temperature. Moreover, there was an interaction between the effects of
type of day and month of year, meaning that the difference between the effects of two different
months could vary according to whether it was a working day or non-working day.

It was considered that the load on the previous day at a given time might also be a good
predictor of load on the current day at the same time. Unfortunately, Integral Energy does
not learn what its load was for the previous day until several weeks subsequently. However,
the load for the whole State can be found for the previous day, so this load was used as a
proxy for the Integral Energy load of the previous day. As this reading from the previous day
was being tried in a model, it was decided also to include the temperature at the same time
of the day previously.

Based on the above considerations, a basic model of the following form is indicated:

NSLP for IE at time ¢
=By + P1 X temperature at time t + B2 X previous day’s State load at time ¢
+ B3 X year + 4 X temperature on previous day at time ¢
+ 3,55 various parameters ; multiplied by “indicator variables”
to t_ake account of the particular type of day, month of the year,
year, and the interaction between type of day and month of year

+ random error. (1)

92



Note that it is not necessary for the statistician to construct the indicator variables in the
above model. Modern statistical computer packages can do this automatically, as long as a
qualitative variable is provided that specifies the value of the predictor (e.g., the month) at
each observation.

The “random error” term is included in the model to account for the fact that, if observa-
tions are made at two times with exactly the same values of each of the predictor variables,
the NSLPs will almost certainly be different. Random error does not mean that any mis-
takes have been made; the term is simply used to account for the variation that cannot be
explained by any (combinations of) variables used in the model. If hypotheses about the
parameters need to be tested, it is usual to assume that the random errors are independent
observations from a N(0,0?) population; that is, they come from a bell-shaped distribution,
and no random error is inherently likely to be more variable than another. However, if no
hypotheses will be tested, and the chief aim is to estimate the parameters Sy, £1,. . ., it suffices
to assume that the random errors are uncorrelated and have a constant variance, o2. In this
case, the parameters are estimated by the method of Ordinary Least Squares. This method
gives unbiased estimators of the parameters even when the data are correlated, which is an
important point to consider, as we subsequently show that the data are not uncorrelated.

In assessing how well a model fits the data, it is common to use the coefficient of de-
termination, R?. This measures what proportion of the variability in the values of NSLP
can be predicted by the model being used. The higher that R? is, the smaller on average
are the squared discrepancies between the actual values of NSLP and those predicted by the
model. It is important to note that a high R? does not necessarily mean that we have the
correct model; it simply indicates that the model is good at predicting the values of NSLP.
For example, if there were only a slight quadratic trend to the NSLP over a limited range
of time, and a straight line was fitted to the data, there might be a very high R?, but this
would simply indicate the good predictive ability of the model, and not its appropriateness.
A referee cautions that there will be some instances where a high value of R? will not be
associated with good predictive ability. We believe that its use in this investigation to select
a model has not misled us, as evidenced by the satisfactory manner in which a model based
on 2002-2005 data is then applied to 2006 data.

When the model in (1) was fitted to the 2002 to 2005 data, the resulting value of R?
was 0.8343, which is quite reasonable for an initial model. The standard deviation, o, of the
unexplained variation is estimated by the Root Mean Square Error (RMSE); for this model,
the RMSE was 0.1831.

Subsequent investigations found that there was a benefit from including in the model the
interaction between the effects of time of day and type of day, and also the interaction between
the effects of time of day and month of the year. However, with these terms in the model,
there was no significant value in including the temperature at the same time on the previous
day, so it was deleted from the model.

A comparison of the values of NSLP predicted by this model with the actual values of
NSLP indicated that the model was quite satisfactory for moderate values of temperature,
but was failing to predict the NSLP adequately when the temperature was high. The in-
vestigators then considered the possibility of allowing an increment to the predicted value of
NSLP when the temperature exceeded a certain figure (a ‘breakpoint’). They also considered
the possibility of including the square of temperature in the model, to provide a quadratic
expression in temperature.

On the last day of the MISG meeting, Professor David Griffiths suggested that we consider
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Figure 1: An illustration of a ‘jump’, and a different curve, on either side of a breakpoint at
25°.

the possibility of giving different weights to different observations when fitting the model. He
subsequently also suggested that we consider the possibility of applying not just an increment
when the temperature exceeded a breakpoint, but instead allowed a different model of the
dependence on temperature. An illustration of this is provided in Figure 1, where there is both
a ‘jump’, and a different quadratic curve, when the temperature exceeds 25°. [Please note
that this Figure is for illustrative purposes only. The values on the y-axis are not indicative
of any actual model.] However, not everyone agrees with this approach. A referee says ‘My
gut reaction is of distaste for a curve which has a jump at a particular point.’

Breakpoints at 18°, 19°, ..., 32° were investigated, and it was eventually determined that
20° yielded the best results. However, there is little to pick between any of these breakpoints.
All resulted in R? values over 0.89, and the value for 20° was 0.9044, with an RMSE of
0.1391. If a differential weighting of various observations is ignored for the moment, the
resulting optimal model is of the form:

NSLP for IE at time ¢

1 X temperature at time ¢ + 82 X (temperature at time ¢)?

I(temp. > 20)(85 4+ BF X temp. at time ¢ + 85 x (temp. at time )?)
B3 X previous day’s State load at time £ 4+ 54 X year

+ 4+ + +

Eiz 5 various parameters (3; multiplied by “indicator variables” to take
account of the particular type of day, month of the year, year, interaction
between type of day and month of year, interaction between type of day
and time of day, interaction between month of year and time of day

+ random error, (2)
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(a)  Analysis of Variance

Source DF Sum of Squares Mean Square F Ratio
Model 641 12719.143 19.8427  1025.172
Error 69438 1344.003 0.0194 Prob > F
C. Total 70079 14063.146 0.0000
(b)  Analysis of Variance
Source DF Sum of Squares Mean Square F Ratio
Model 641 13567.202 21.1657  1038.847
Error 69438 1414.745 0.0204 Prob > F
C. Total 70079 14981.947 0.0000
(¢)  Analysis of Variance
Source DF Sum of Squares Mean Square F Ratio
Model 641 14225.576 22.1928  983.0530
Error 69438 1567.589 0.0226 Prob > F
C. Total 70079 15793.165 0.0000

Table 1: Basic Analysis of Variance tables when the same model is fitted to the 2002 to 2005
data, and (a) all observations are equally weighted, (b) those observations corresponding to
temperatures greater than 28° have twice the weight of all other observations, and (c) those
observations corresponding to temperatures greater than 32° have twice the weight of all
other observations.

where I(z) is the indicator function, taking the value 1 when z is true, and 0 otherwise.

The possibility was considered of giving more weight to observations associated with
temperatures exceeding some value. Weighted regression is usually applied to data where it
is thought that the variances of the observations are unequal (e.g., where the observations
are the means of differing numbers of observations), with the aim of making the weighted
observations have equal variance. In a situation such as the present one, where the data are
regarded as having equal variances initially, the use of a weighted regression is a nonstandard
attempt to make the model fit the NSLP values at higher temperatures. However, it is
difficult to know what weights to use. Furthermore, the resulting R? values are not directly
comparable. The value of R? is the ratio of the Model Sum of Squares (SS) to the Total
SS. For unweighted regression, only the numerator changes when different models are fitted,
so one can directly compare the values of R? for competing models. However, the effect
of fitting a weighted regression is to alter both the numerator and denominator of the R?
statistic, making a direct comparison of R? values less intuitive. This is illustrated in Table 1
by the basic ANOVA tables for a model with a breakpoint at 20°, for three sets of weightings:
(a) equal weight for all observations, (b) double the weight for observations associated with
temperatures greater than 28°, and (c) double the weight for observations associated with
temperatures greater than 32°.

The maximum residual (discrepancy between observed and predicted values of NSLP) is
minimized when the weight is doubled for observations associated with temperatures above
32°, but this does not have the greatest (weighted) R? or least (weighted) RMSE. This makes
it difficult to find a consistent set of criteria with which to select a weighting scheme. Does one
select the model that gives the least “weighted R?”, or the least RMSE, or the least maximum
residual? The authors’ suspicion is that the selection of the appropriate breakpoint at which
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Figure 2: Residuals (on the Y-axis) vs Predicted Values for the 2002-2005 data under
model (2).

to institute a greater weight is very much data-driven, and that a breakpoint appropriate for
one data set (e.g., 2002 to 2005) may not be appropriate for a different data set (e.g., 2002
to 2006).

An assessment of model (2), when used with equally-weighted data, includes an exam-
ination of whether the assumptions of the analysis are met. For Ordinary Least Squares
estimation, the main assumption is that the observations have equal variance. The usual way
to examine this is to plot the residuals against the corresponding predicted values, and to
see if there is any systematic pattern in the vertical spread of the residuals. (The predicted
values are the values which the model predicts for each observation, and the residuals are
the differences between the actual observations and the predicted values. The residuals are
the best estimates of the error terms.) The lack of a systematic pattern will suggest that the
variance is relatively constant.

Figure 2 displays the plot of the residuals against the predicted values for the model given
in (2).

In order for tests of hypotheses about the terms in the model to be valid, the residuals
should also appear to come from a single Normal distribution. However, the residuals from
model (2) failed the Shapiro- Wilk test of Normality. A histogram of the residuals in Figure 3
indicates that there are an abnormally large number of residuals in each tail of the distribution
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Figure 3: Histogram of the Residuals for the 2002-2005 data under model (2).

(particularly the upper tail). One must therefore view any tests of hypotheses with caution.
Notwithstanding this, the Analysis of Variance for the terms in model (2) gave p-values of
“<0.0001” for every term in the model (counting an interaction, e.g. type of day by time of
day, as one term), which suggests strongly that each term does belong in the model.

An additional assumption of the tests of hypotheses is that the error terms are uncorre-
lated. This assumption is examined by seeing whether the residuals are essentially uncorre-
lated. As the data take the form of successive observations over time (a time series), this
is best considered by examining the autocorrelation between observations one, two, ... time
units apart. When the temperature at the same time on the previous day was included in the
model, there was negligible autocorrelation between residuals. However, when this term was
deleted, the autocorrelation became pronounced. Figure 4 shows the values of the autocor-
relation function, and partial autocorrelation function, of the residuals for lags of 0,1,...,48
units of 30 minutes. The autocorrelation decreases, and then steadily increases as the lag ap-
proaches 48 (i.e., where we consider the correlation between a reading and the reading taken
at the same time on the previous day), as would be expected. The partial autocorrelation,
which shows the remaining autocorrelation at lag (z + 1) after accounting for the autocorre-
lation at lags 1,...,z, is small after a lag of 1. This suggests that the times series pattern
in the residuals might be modelled by an autoregressive function with a lag of 1: AR(1).
The existence of this autocorrelation is another reason to view any tests of hypotheses with
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Supplier R? RMSE
Integral Energy  0.8934 0.1666
Energy Australia 0.9171 0.1299
Country Energy  0.9379 0.0832

Table 2: Results of applying (2) to the 2006 data of each energy supplier individually.

caution.

3 Validation of the model

The terms in model (2) were then used to fit a model to the 2006 data, with all observations
being equally weighted. Note that the year effect is omitted, as it is constant for all observa-
tions in the data set for 2006; any effect due to 2006 is automatically included in the initial
constant in the model.

It was found that the same model as in (2) gave an R? value of 0.8934, and an RMSE of
0.1666. Of course, the actual values of the coefficients of the various terms will be different
from those for the 2002 to 2005 data, but the same form of model was used. The plot of
Residuals vs Predicted Values had the same basic shape as in Figure 2. The Residuals again
failed a test of Normality, and their histogram was similar to the one in Figure 3. All terms
in the Analysis of Variance table, which tests the statistical significance of these terms, had
p-values of “< 0.0001”. As before, the lack of Normality means that these p-values can only
be taken as indicative.

We conclude from this validation that the model in (2) will be suitable for the combined
2002 to 2006 data, and should also be suitable for any additional data, provided that no
systematic change occurs in the nature of the electrical operations or weather being measured.

4 Comparison of relative volatilities

The same form of model (2) (i.e., the same terms were in the model, but the coefficients were
calculated from the data for the particular supplier) was applied to the 2006 data of the other
two suppliers. All observations were equally weighted. Table 2 gives the results for all three
electricity suppliers.

Thus, although the model had been determined from Integral Energy data, it provided a
better fit (as measured by R?) for the other two suppliers, and the measure of the variability
of the unexplained variation was smaller for the other two suppliers than for Integral Energy.
This suggests that the relative volatility in demand is greater for Integral Energy than for the
other two suppliers. However, as the NSLP data has been scaled for each supplier so as to
have a mean of 1, it will be necessary for Integral Energy to rescale it in order to get a true
figure for the RMSE. [Note: if the raw data are multiplied by a factor of z (say), this will
also multiply the RMSE by a factor of z.]

As the temperature was measured in Bankstown, it is likely to be more applicable to
the Integral Energy data than to the data for each of the other suppliers. Despite this, the
NSLPs of the other two suppliers were better forecast by the common form of the model.
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Figure 4: The autocorrelation function (higher figure), and (b) partial autocorrelation func-

tion, of the Residuals for the 2002-2005 data under model (2). 99



This demonstrates further that the Integral Energy data have greater volatility than the data
from Energy Australia or Country Energy.

5 Discussion

The general form of the model given in (2) provides a quite satisfactory fit to the data, and
we confidently recommend the use of this model to predict values of the NSLP. We have not
specified the exact equation for the model, as its nature depends upon how any particular
statistical software package deals with qualitative variables. For example, some software
packages would treat the first month as a ‘baseline’ month, and measure the effect of month
i (4 = 2,...,12) upon the NSLP by the departure of its effect from the effect of month 1;
another package might treat the last month as the baseline. Moreover, as there are over 640
individual terms in the model, specifying the estimated value of each individual parameter
would not be practical. A prospective user should set up a model of the form in (2), and
then apply it to all the data (e.g., from 2002 to the present) that will be used to construct
the model.

From consideration of the problem and the data, other predictors may prove useful to
Integral Energy in modelling the NSLP load. In particular, using temperature measurements
from around the franchise may provide more insight than just using the Bankstown temper-
ature. Different observations may also be weighted (given more importance) on the basis of
customer or usage density. Humidity may be a key predictor, as suggested in [1]. There may
be information from the psychology literature, or from studies in physiology, to suggest at
what temperature band people tend to change their behaviour, or to indicate whether there
is an interaction between the effects of temperature and humidity. Also, other socioeconomic
factors and demographic factors may be useful in predicting NSLP more accurately.

We have restricted the analysis to a conventional multiple regression that could be done in
any of the standard commercially-available statistical software packages. However, a recent
statistical innovation known as semiparametric regression is likely to be of use in trying to
model the NSLP. An early reference on this is [2]. The R software [4] could be used to carry
out any analyses that were planned. The software is free, readily downloaded, and widely
used by statisticians. However, it is a package that is not easy for statistical novices to use.
A referee strongly argues for the use of semiparametric regression and the R package in this
problem, as they will provide a more robust analysis, not dependent on the normality and
independence of the error terms.
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