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1 Introduction

Trading Technology Australia (TTA) was founded in 1996 and has a background and client
base in the financial markets. In 2002, TTA delivered its first Energy Markets project in
the form of a risk management report to the CEO of a large electricity retailer. Since then,
TTA has been working to further understand energy market issues such as the relevance of
particular models used in trading and risk.

Common measures of financial risk include [1, 2, 5] Value-at-Risk (VaR) and Earnings-
at-Risk (EaR). VaR measures the probable change of a portfolio’s position due to market
movements within a given confidence interval. For instance, suppose a portfolio has a 1-day
VaR of $40000 at the 99% confidence level. This means that, with a probability of 99%, the
value of the portfolio will decrease by at most $40000 during 1 day. Companies are required
to report their VaR to the regulators of the market.

EaR measures the probable loss in earnings due to market or volumetric movements
within a given confidence level. For instance, suppose a company calculates its 30-day EaR
to be —$20000 at the 99% confidence level. This means that, with a probability of 99%,
the company’s earnings will be at least —$20000 on the 30*" day in the future. Presently,
companies are not required to report their EaR externally, but it is a useful measure to guide
financial strategy. EaR is an equivalent measure to “profit-at-risk” and “relative VaR”, which
are terms used in the literature.

The question posed by TTA to MISG2007 was: “How independent are VaR and EaR,
specifically in the electricity market?” These quantities are computationally expensive to
calculate, and if a map from one to the other could be found, significant savings would be
generated for energy companies by making their risk reporting framework more streamlined,
transparent and risk-compliant.

Attempting to answer this question, the MISG2007 team focused on simple example port-
folios. These portfolios are particularly relevant for an electricity retailer.

In this paper we first give a brief introduction to the electricity market in Australia. Then
we present the electricity-retailer portfolio that most succinctly captures the key properties
and illustrates our key conclusions. Thirdly, formulae for VaR and EaR are derived for special
cases where the forward price is equal to the spot price, in addition to spot price being related
to demand. Finally, we state our conclusions.
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The main conclusion is that for the electricity retailer, VaR is not strongly related to
EaR in a way that can obviously reduce computational time. Of course, both measures will
increase with market volatility, but accurately quantifying EaR given VaR does not seem to
be possible. This is because of two factors. Firstly, VaR depends on forward prices, while
EaR on spot prices, and these two prices may be unrelated. Secondly, VaR is sensitive to
drops in prices, while EaR is sensitive to increases in prices and demands. Mathematically,
VaR is looking at left tails of probability distribution functions, while EaR is looking at right
tails. Since, in general, the distributions are non-symmetric there will be no obvious maps
between VaR and EaR.

Throughout this paper we assume that the “risk free rate” (the rate of interest for money
deposited in a bank) is zero. This simplifies formulae and is unlikely to change the main
conclusions. We also calculate EaR and VaR at the 99% confidence level: other levels may
be obtained by simply substituting another numerical value for the “0.01” that appears in all
the formulae. A small amount of financial knowledge is assumed. A text that is immediately
readable by applied mathematicians is [4], while a more advanced classic text is [3].

2 The electricity market in Australia

Generators, retailers and consumers form the electricity market in Australia. Generators
generate electricity, consumers consume it, and retailers are the middlemen buying electricity
from the generators and selling to the consumers. This paper concentrates on the electricity
retailers. Retailers may also be generators, and generators may also be consumers.

The wholesale electricity market is administered and operated by the National Electricity
Market Management Company Limited whose website, www.nemmco.com.au, contains a lot
of detailed and current information concerning the market. For our purposes, we can think
of the generators placing bids into a “pool”: the bids describe the quantity and price of
electricity that they are willing to supply. The demand is fixed in real time by the consumers,
and electricity gets drawn from the pool to meet this demand, starting from the lowest priced
electricity.

So, if the demand is low then electricity is only drawn from the generators who put in
bids selling electricity at a low price, while if demand is high then electricity is also drawn
(bought) from generators selling at a higher price. For instance, if generator A puts a bid of
$1/unit into the pool, and is prepared to generate 100 units at this price, while generator B’s
bid is $2/unit, then if the demand, D < 100 units, the price will be $1/unit. However, if the
demand is greater than this the total price will be $100+2(D — 100). Thus, total price (more
strictly, “spot price”) is a piecewise linear function of demand.

The demand changes continually, and the generators’ bids into the pool may change
frequently. The generators’ bids dictate the spot price of electricity. Some generators may
choose to place low bids, guaranteeing their electricity will be used almost continually, while
some generators may prefer to place exceedingly highly priced bids hoping that the demand
will spike one day and their electricity will be bought.

The retailer sits in the middle. The important point is that, they sell electricity to the
consumers at a fized price, while, in the simplest situation, they buy electricity from the pool
at the spot price. This means that the energy retailers face substantial financial risk. The
spot price is set by the generators, and because the demand fluctuates, the spot price may be
significantly greater than (over ten times) the fixed price paid by the consumers. Therefore
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energy retailers enter into forward contracts with the generators.

3 The example portfolio for an electricity retailer

Recall that the risk-free rate is zero by assumption. Our canonical energy retailer portfolio
is set up as follows. Define the following variables.

e {: the time variable. The current time is set to be ¢t = 0.
e P.: the price the customers pay the retailer per unit of electricity. Assume this is fixed.
e P(t): the spot price per unit of electricity at time ¢. This is a stochastic variable with

expected value at time ¢ of P(t). Without any forward contracts P(t) is the price the
retailer would have to pay per unit of electricity at time ¢.

e (Q(t): the demand by customers for electricity at time ¢. This is a stochastic variable

with expected value at time ¢ of Q(t).

For the purposes of calculating VaR and EaR, the retailer uses models, historical data,
or some other technique to find the probability distribution functions for P(¢) and Q(t), and
hence their expected values for future times ¢ > 0.

Now suppose the retailer enters into the following long forward contract with the generator.

e The retailer will buy from the generator Q(T) units of electricity at price Py at time
t="T.
Py is known as the forward price.

Evidently, this is a very simple portfolio, consisting of just W forward contracts with
the same price expiring at the same time t = T'. A real-life situation would consist of many
forwards and other derivatives expiring at different times. It is difficult to see how the extra
sophistication would change our conclusions, however.

Finally, define the forward price in the future:

e F(t,T) is the price specified in a forward contract set up at time ¢ which will expire
at time 7. It is a stochastic variable, but again assume the retailer can calculate its
probability distribution.

Clearly, Py = F(0,T).

3.1 VaR

The VaR can be calculated for any time, ¢, in the future. Suppose at time ¢t < T the retailer
would like to sell the Q(T') forward contracts to another party. It would sell them at price
F(t,T), so the payoff would be

payoff(t) = Q(T)(F(t,T) — P). (1)

The t-day VaR is calculated from this payoff by constructing the probability distribution
function for the payoff, Pr(payoff) (at time t) as illustrated in Figure 1. Mathematically,

Pr(payoff(t) < VaR) = 0.01 , (2)

for the 99% confidence level. In this formula, VaR will typically be negative, but its absolute
value is reported.
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Pr(payoff)

VaR payoff

Figure 1: The probability distribution, Pr(payoff) for the payoff at time ¢. The shaded region
has area 1%.

3.2 EaR

The EaR can also be calculated for any time, ¢, in the future. For times ¢ < T', the retailer
must sell Q(t) units of electricity to the customers at price P, and buy Q(¢) units at the spot
price, P(t). Thus, its cashflow is

cash flow(t) = Q(¢)(P. — P(t)) . (3)

The t-day EaR is calculated from this cash flow by constructing the probability distribution
function for the cash flow, Pr(cash flow), (at time ¢) as illustrated in Figure 2. Mathematically,

Pr(cash flow(t) < EaR) = 0.01 , (4)

for the 99% confidence level calculation.

For time ¢t = T', the retailer must sell Q(7") units to the customers at price P, so its revenue
will be Q(T')P,, as before. However, now the retailer must buy the Q(7") units of electricity
as specified in the forward contract, which costs Q(T')Py. In addition, if Q(T) > Q(T) it
must also buy the excess units at the spot price, P(T). Its total cash flow is therefore

cash flow(T) = Q(T)P. — [QUT)Py + (Q(T) - Q) PTOQ(T) - Q(T)] . (5)

where

1 forz>0
o) = { 0 otherwise .

In the following section, for simplicity we shall use equation (3) to calculate EaR. Use of
the more complicated equation (5) is not expected to alter our conclusions. EaR is sensitive
to those situations where cash flow is drastically negative. In both situations (equation (3)
and (5)) this is when @ is large, implying a large P, and the cash flow is dominated by the
large —QP term.
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Pr(cash flow)

EaR cash flow

Figure 2: The probability distribution, Pr(cash flow) for the payoff at time ¢. The shaded
region has area 1%.

3.3 Summary

Equations (1), (3) and (5) demonstrate that in this situation:
e the t-day VaR depends on the probability distribution of the forward prices of the
contracts in the portfolio F(¢,T);
e the t-day EaR depends on the probability distributions of the demand, Q(¢), and the
spot price P(t).
The problem thus reduces to finding relations between integrals of the three probability
distributions. It is immediately obvious that if these three are completely uncorrelated then
VaR and EaR will be unrelated. This conclusion may be generalised to more complicated
portfolios containing more stochastic variables. In the following sections, simple correlations
are assumed which lead to potentially useful relationships between VaR and EaR.

4 Detailed analysis of special cases

In this section we present formulae for VaR and EaR for special situations which are mathe-
matically nongeneric, but which are hopefully relevant to financial situations.
To make some headway, first assume that the spot price and the forward price are equal:

P(t) = F(t,T) . (6)

This is widely used in other markets, such as gold, but may be less relevant to the electricity
markets.

Furthermore, in many markets the price is strongly correlated with the demand. This is
certainly true for electricity markets where generators bid into the pool at certain prices and
the demand dictates whose electricity gets drawn from the pool. This means that at any one
time — say ¢ = 0 — the spot price is a deterministic increasing function of demand; in fact,
as described in Sec 2, total price is a piecewise linear function of demand:

Total price = Q(0)P(0) = piecewise linear(Q(0)) .
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Unfortunately, for forecasting purposes, the generators’ bids are unknown in the future. They
can be modelled by a stochastic variable. This implies that at time ¢ in the future the
relationship between spot price and demand is unknown, but can be modelled by a positive
linear correlation. We present the linearly correlated case: more general correlations can be
similarly studied.

4.1 Correlations in general

4.1.1 Perfect linear correlation

Two variables, P and @, are perfectly (linearly) correlated if and only if their joint probability
distribution function, Prp g, is of the form

Prpq(P,Q) = 6(P — aQ — B)Prq(Q) ,

where Prq is normalised to unity: 1 = [ Prg, and § is the Dirac delta function. The variables
are positively correlated if and only if @ > 0. As the name suggests, Prg is the marginal
probability distribution for () after integrating over all P. That is,

Pro(Q) = /dP Prpo(P,Q) .

Similarly, the distribution function for P reads

Prp(P) = éPrQ (P_ﬁ) .

o

Evidently the delta function is enforcing the linear relation P = a@ + .

4.1.2 Completely uncorrelated variables

Conversely, two variables, P and (), are completely uncorrelated if and only if their joint
probability distribution function, Prp g, is a product:

Prp(P,Q) = Prp(P)Prq(Q) -

We shall study these two cases — correlated and uncorrelated — below.

4.1.3 Expectation values and the correlation coeflicient

Denote the expectation value of a variable by H. So

B(P) = / dP PPrp(P) = / dPdQ PPrpo(P,Q) ,

for instance. Statisticians sometimes use the correlation coefficient of two variables, P and
@, which is defined as

B(PQ) - B(P)E(Q)

Gl Q) = VB w0 /EQ) Q)
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Substituting the two cases above into this formula yields

completely correlated = Corr = sign(a) ,

completely uncorrelated = Corr=20.

It is not true that if Corr = 0 then the variables are uncorrelated, for Corr only picks up
linear correlations. In our case, Corr is less useful than considering the underlying probability
distribution functions.

4.1.4 Partially correlated variables

Now introduce the joint probability distribution function for partially correlated variables:

Prpo(P,Q) = Af(P)g(Q) + (1 = A)§(P — aQ — B)A(Q) . (7)

If A = 0 then the variables are completely (linearly) correlated, while if A = 1 the variables
are completely uncorrelated. The functions f, g and h must satisfy the normalised condition:

([ (f5) s o

We show below how the correlation coefficient may be expanded in powers of A or (1 — ).

4.1.5 VaR and EaR

We shall perform an expansion of VaR and EaR around A = 0 and A = 1. In general, VaR
(at the 99% level), is defined by equation (2), which in this case reads

0.01 = / dPdQ Prpg(P,Q)
Q(P*Pf)<VaR

[T ()

(Ps—B+VaR/Q)/a
H1-N) / dQ h(Q) . (®)

—0oQ
The last expression holds only if @ > 0 (positive correlation). Otherwise the formula reads
Ps+VaR/Q o
0.01:/\/ dP f(P) (/g)—l—(l—)\)/ dQ h(Q) .
—00 (Pf—B+VaR/Q)/c

Similarly, EaR, defined by equations (3) and (4), reads

001 = dPdQ Prpq(P,Q)

/Q(PCP)<EaR

B / dPdQ §(P)g(Q)
Q(P,—P)<EaR
(1 - ) dQ h(Q) . )
Q(P.—aQ—pB)<EaR

Now let us examine particular cases more thoroughly.
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4.2 Perfect positive correlation between price and demand

In this case, the parameter A in equation (7) is zero, @ > 0, and h becomes the probability
distribution function for ). Equations (8) and (9) read

(Pf—B+VaR/Q)/a
001 = / dQ Pro(Q) (10)
0.01 = / dQ@ Pro(Q)
Q(P:—aQ—-B)<EaR
o'} Q_
= o dQ Prg(Q) + dQ Prg(Q) . (11)
+ —00
Here 5
Qi:Pc—ﬂ:I:\/(Pc—ﬂ) —4aEaR. (12)

2ce

In most financial situations the probability distributions will be such that EaR is negative (it
is greater than 1% likely the firm will have negative cash flow), so @ < 0 and the final term
vanishes, since physically we should have Prg(Q) = 0 for @ < 0.

4.3 Completely uncorrelated price and demand

In this case, the parameter ) in equation (7) is unity, f is the probability distribution function
for P, and g for Q). Equations (8) and (9) read

P;+VaR/Q
0.0l = / dP Prp(P) (13)
001 — / dPdQ Prp(P)Prq(Q)

Q(PC—P)<EaR

- /O dQ Pro(Q) / h dP Prp(P)

P,—FEaR/Q

0 Ps—EaR/Q
-I—/_ dQ PrQ(Q)/ dP Prp(P) .

—0oQ

Once again in real financial situations the probability distributions will be zero for @ < 0
(negative demand), the final term vanishes, so the EaR expression takes the form

o o

0.01 = / dQ Pro(Q) / dP Prp(P) . (14)
0 P.-EaR/Q

Finally note that solving the first expression for VaR would probably yield VaR < 0, but that

we would report, by convention, |VaR| to the regulatory bodies.

4.4 Strongly positively correlated price and demand

In this case, the parameter X in equation (7) is close to zero and a > 0. Further simplification
of equations (8) and (9) is not possible without assuming some form for the functions f, g
and h.
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Assume

The probability distribution must be normalised which implies (after changing variables to
u=P—aQ —pfandv=(P+aQ - f)/2a),

1= [
This probability distribution implies

B(P-aQ-8) = 0,
B(P-aQ -B)? = ¢/2.

Hence, this probability distribution is describing the situation when, on average, P and Q
are linearly related (P = a@Q + ), but their perfect correlation is spoiled by Gaussian white
noise, with zero mean and variance €/2.

A useful result is that in the limit of small e,

/_0; dz \/% exp (—(z — z0)?/e) f(z) = _(: dy % exp (—y?) f(zo + ey)

= [f(=zo) + jef"(w0) + O(e?) .

for (integrable, etc) functions f. This may be used to expand Prp g in small € so that it looks
more like the previous definition for partially correlated variables, Eq (7):

P+aQ+p

Prra(P.Q) = 3(P - aQ ~ AA(Q) + 3e0"(P — aQ - o ( 5

) + O(€?) .
This motivates the use of the notation ‘h’ for the probability distribution function in equa-
tion (15) when comparing with the general expression of equation (7). It also demonstrates
that € is O(A) in the notation of the previous sections. We shall now perform a power series
expansion in e of equations (8) and (9).

The formula for VaR reads

(Pf—B+VaR/Q)/a €
0.01 = / 4Q (M(Q) + oh"(Q) + () - (16)
The formula for EaR reads
o Q- €
001 = ([ “ag+ [ a0) (@) + (@ +0@) | (7)

where @1 is given in equation (12). Boundary terms encountered during the derivation of
these expressions are zero through assuming a well behaved h. As mentioned before, it is
likely that @_ < 0, so for financially realistic cases with h(Q) = 0 for @ < 0, the second
integral is zero (more generally, much smaller than the first integral).
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4.5 Weakly positively correlated price and demand

In this case, the parameter A in equation (7) is close to unity and a > 0. Further simplification
of equations (8) and (9) is not possible without assuming some form for the functions f, g
and h. It is not possible to make the large € expansion of equation (15), since this does not
yield Prpg(P, Q) = f(P)g(Q) as the first term.
Instead, assume
Prpo(P,Q) = f (P —eaQ) g(Q — €P/a) ,

with o > 0. For € = 0 this reduces to the completely uncorrelated situation, Prpg = fg.
The probability distribution must be normalised. Upon changing variables, u = P — eaQ
and v = @ — eP/a, and expanding to first order in €, the normalisation condition reads
1 =(ff)([g)- The functions f and g may be arbitrarily scaled without changing the form

for Prp g, so let us choose
/lez/g-

The normalisability also implies that both f and g vanish at oo, which shall be employed
below when we use integration by parts.
Expanding to first order in e gives

Prra(P,Q) = f(P)o(Q) — caQf (P)g(Q) — ¢ [(P)g(Q) + ()

Hence
Pro(P) = f(P)~<f'(P) [ 4Q aQe(Q) + O(€)
Pro(@) = 9(@) - ed'(@ [ dP PI(P)/a+O()
which yield
B(P) = [dPPA(P)+caB(Q).

EQ) = / d4Q Qg(Q) + E(P)/ar ,

to first order. The expectation value of P depends on the expectation value of (), and vice
versa, so there is a weak positive correlation between the two variables.
VaR, equation (8), becomes

0.01 = ( / Frva dp f(P)> —eaf(P; + VaR/Q)E(Q) (18)

-0

EaR, equation (9), becomes

0.01 = /Ooong(Q) / T P+ /O 12 4@ [ T ap )

P.—EaR/Q —00 —00

o ( / (; -/ °°) 4Q Qg(Q)f (P, — FaR/Q)

Rilm

(f 1 - [7)ar preEar/ e - ) (19



Once again, the integrals over the positive domains dominate since it is likely that the func-
tions f and g are small or zero for negative argument.

4.6 Discussion

In this main section of the paper, we have studied a number of situations in which VaR and
EaR might be able to be related. Examining equations (10), (13), (16) and (18) demonstrates
that VaR depends upon the left tail of a distribution. Conversely, equations (11), (14), (17)
and (19) demonstrate that EaR depends upon the right tail of a distribution. Physically this
corresponds to VaR measuring the likelyhood of a large decrease in derivative price (which is
equal to spot price in this section), while EaR measures the likelyhood of a large increase in
demand or spot price.

5 Conclusions

VaR and EaR are calculated from integral equations involving (joint) probability distribution
functions for spot prices, forward prices and demands, as well as potentially other more exotic
option prices. The MISG team was asked by Technology Trading Australia whether VaR and
EaR were related in some way which might reduce time spent computing these risk measures
while additionally making risk reporting more streamlined, transparent and risk-compliant.

In some cases the probability distribution functions involved are related and this implies
some simplification of the computations required to extract the two measures of risk, since
in real-life situations a large amount of computational time is spent using historical data to
build the probability distribution functions. However, in all but the most trivial situations,
such as symmetric probability distribution functions, this does not appear to imply simple
algebraic expressions relating VaR to EaR.

Our main conclusion is that for electricity retailers, VaR and EaR are not related in any
useful way. In rough financial terms, the VaR, for an electricity retailer is sensitive to drops in
(forward) prices, since then the value of a portfolio is reduced. However, the EaR is usually
more sensitive to increases in electricity prices and demands since these will cause losses in
earnings. This strongly suggests there is no simple map from VaR to EaR. Other markets may
not share these features. However, in these cases any theoretical, simple relationships between
VaR and EaR may be inaccurate in practice due to the large variety of rather indpendent
stochastic variables that they depend upon.

Our recommendations for reducing time spent on computing VaR and EaR are:

e Identify the probability distribution functions required for VaR and Ear, and compute

any that are common between VaR and EaR only once.

¢ It may be easier to use the stochastic set (demand, bid structure) than the set (demand,

spot price) since in some cases the bid structure fluctuates only a little, or may even be
considered fixed.

e In some cases it may be appropriate to assume the forward prices are equal to the spot

prices, which will reduce the number of variables in the problem.

e The probability distributions would be simple to calculate if the underlying stochastic

processes could be found and calibrated from historical data. In this method, it is the
calibration (and continual recalibration required by regulators) that is difficult.
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