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1 Introduction

The operator of an electric power grid must make continual adjustments in response to fluc-
tuating conditions. On a short time scale (less than one hour), there have traditionally been

two main kinds of variability for which the operator must compensate:
e Fluctuations in loads, offset by certain power plants with the ability to change their

output quickly (frequency keepers).
e Unplanned outages (i.e. failures) of generators or transmission lines, offset by uncom-
mitted power plants with the ability to begin generating quickly (spinning reserve).
Wind farms are also a source of variability, due to the fluctuating strength of the wind. In
power grids where wind farms constitute only a small fraction of the total generating resource,
the resulting variability can be included in the first category above, and dealt with as part of
frequency-keeping. However, in a power grid with a large wind component (10-50% of time-
averaged generation), wind-related variability may have to be treated as a third category
of fluctuation, with specific operating procedures required to compensate for it. Both the
amount of capacity needed, and the frequency with which it is required, are likely to fall
somewhere between the traditional frequency-keeping and the spinning-reserve requirements.
This paper treats several different approaches to the problem of optimal grid operation
in the presence of wind power. All the analyses are essentially economic in nature. That is,
the cost of reserving spare capacity (either generation or transmission) is balanced against its
expected benefits. Longer-term problems of optimal capital investment are not considered,
although the methods and results here may be relevant to such problemms.
The situation of the New Zealand power grid is particularly relevant. Although wind
farms contributed only 1.5% of system energy in 2005 [1], it is anticipated that this share
may increase to more than 10% over the next decade. New Zealand is also well-endowed
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with hydroelectric generation, which can play a key role in compensating for wind-related
variability.

The essential problem at hand is the dispatch problem (also known as the optimal power
flow problem). Suppose that each power station offers one or more tranches of power to
the market, with each tranche being a fixed quantity of power at a fixed offer price. The
problem is then to choose which tranches to accept (in whole or in part) to meet demand
while minimizing the cost of power at the stated offer prices. (A similar problem would be
solved even if there were no market; in that case, the offer prices would be replaced by some
other estimates of the short-run marginal cost of generation.)

In practice, a system operator wishes to minimize the cost of power purchased over a fixed
period of time (of duration T typically of the order of 5 minutes). If the behaviour of the
power system is steady during this period, it suffices to solve the dispatch problem just once.
The solution gives the constant power outputs that each station must maintain throughout
the period.

Now consider the situation where some parameters of the dispatch problem vary with
time. In particular, the quantity offered in a tranche (such as from a wind farm) may be a
function of time (usually unpredictable in advance, i.e. a stochastic process). In this context,
the dispatch problem becomes one of stochastic control. The actual cost to be incurred over
the period is a random variable, and our objective is to minimize its expectation.

We consider several different ways to formulate such a time-varying dispatch problem. In
Section 2, we study a simple model with three power generators. We explore the optimisation
process to minimise the cost of meeting a power demand load. In Section 3, the available
wind power may be a general stochastic process, but the response of the rest of the system
is somewhat idealized (all ramp rates are treated as either zero or infinity). In Section 4,
we briefly consider the problems of collection and analysis of wind speed data for use in
wind-power generation planning. We conclude in Section 5.

2 The three-power-station model

Our initial model (Figure 1) incorporates just three power stations: a wind farm, a low-cost
(thermal) generator that can adjust only slowly to new power levels, and a fast-ramping but
high-cost (hydro) generator. To simplify the issues we assume that there are no significant
transmission losses or constraints, so that all power is effectively generated and consumed at
a single location. We also assume a constant load. As the rapid fluctuations in wind-power
generation occur, the power output of the low-cost generator is adjusted to try to balance the
load. As this low-cost generator is slow-ramping, it cannot immediately compensate for rapid
changes in the wind, and the balance must be met by the fast-ramping high-cost generator.
(A more general interpretation for this system could be as a model for the interaction of
power provision sectors rather than of individual power stations.)

Power losses due to a drop in wind need high-cost power while the low-cost generator
ramps up to its new required level. The costs due to the use of this high-cost power can be
reduced by running the low-cost generator at a higher base level, and by not using some of
the available wind power. Similarly an increase in wind power can be anticipated by using a
base of high-cost power to allow more rapid adjustment to use the additional resource.

Within this model we may study how best to balance the sources of power for the cheapest
long-term operation. This will depend upon the costs of the different generators, and the

115



Wind generator
Cost 0
(rapid fluctuations)

Cheap thermal generator Hydro generator
Cost ¢; (slow ramping) N Cost ¢, (fast ramping)

N
N

Load L
Figure 1: The preliminary power system model.

nature of the variation in wind power. The mathematical solution typically involves finding
the minimum point of a U-shaped function.

Notation for this section:
L Load, the amount of power required or that can be transmitted.

W(t) Wind speed by time

P,(t) Wind power available,

P,(t) Wind power used,

h Wind-power headspace, the maximum amount of wind power allowed
AP, Step change in wind power.

Py(t) Power from low-cost generator by time,

AP;  Excess power from low-cost generator,

cy Cost of power from low-cost generator,

r Maximum rate of change for low-cost generator.
P,(t) Power used from high-cost generator by time,
AP, Excess power from high-cost generator,

ch Cost of power from high-cost generator.

T Total time considered.

We make the following general assumptions. Power output from the low-cost generator
may be increased or decreased at a constant rate r. The changes in output of the high-cost
generator, and the wind generator, are taken to be instantaneous. The model is parametrised
by h, the portion of the load which wind power is allowed to serve. The system attempts to
cover any load not served by wind power from the low-cost power source, with occasional use
of high-cost power to match fluctuations in the wind.

In order to optimise h we require the costs for each of the power generators. For the
purposes of these models, the cost of wind power was taken to be 0, while the costs of units
of low- and high-cost power were taken to be ¢; and cp,, respectively. (We can set the cost
of wind power generation equal to zero as it is the marginal costs that are involved in the
optimisation. Wind power is likely to be the cheapest power source.)

The simplest kind of model is reactive, in which the system responds to current wind-
power generation. Upon a sudden drop in wind power, it takes time to ramp up the low-cost
generator to meet the power demand. The deficit must be met by the high-cost power station.
Even with unlimited wind power, there is likely to be a point at which it is more cost effective
to balance wind power with a contribution from the low-cost generator and to constrain the
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Figure 2: The square-wave model. The left diagram shows the reactive model while the right
diagram shows the anticipating model. The upper part of each diagram shows the square
wave output of the wind farm. The lower part shows how wind (green), low-cost (grey) and
high-cost (red) generators meet the load.

amount of high-cost power needed should the wind drop.

A more sophisticated approach can be taken if changes in wind-power generation can
be anticipated. Then, it may be worthwhile to deliberately increase power output from the
high-cost generator and ramp down the low-cost generator prior to the onset of increased
wind-power generation. This enables the wind to be more fully used as soon as it is available.
Similarly, preparations could be made for the drops in wind-power generation.

2.1 The square-wave wind-power generation model

If we assume that the potential wind-power generation is a square-wave of period 7 we can
conduct an exact analysis of the optimal strategy. Of course the actual function will be much
more complicated but this simpler form still enables us to see some of the effects of variation.
For time duration 8 the wind power P, is at its upper value P4 and for 7 — 3 it is at its
lower value Pymn- If the maximum wind-power generation Py, is always below the load
L, then the low-cost generator permanently meets the difference L — Pypaz- S0 to further
simplify the problem, without losing the features of primary interest, we assume Pypqr = L
and likewise Pypin = 0, so that

ro-{o 5Sis? Rern-no. )

First, consider what happens when the low-cost generator changes in direct response to
the wind-power fluctuations. The maximum wind power used is h and the remainder L — h of
the load is always met by the low-cost generator. This simple reactive model is illustrated in
Figure 2(a) for a case where the slow-ramping is more rapid than the fluctuations. Specifically,
h/r < B and h/r < T — . With the square-wave of equation (1), the wind power used P,,
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low-cost power P, and high-cost power P, are given by

[rt, L — rt,0], if0<t<h/r
[h, L — h,0], ifhjr <t<p
[Py, Py, Py] (t) [0,L —h+r(t—B),h—r(t—pB), fB<t<B+h/r
[0, L, 0], iff+h/r<t<r
(Pu; P, Pu] (t) = [Pu, Pr, Pa] (t + 7). (2)

Initially, there is no wind-power generation and the load is entirely met by the low-cost
generator. As there is potential for wind-power generation the low-cost generator ramps
down to allow the demand to be met by a mixture of wind and low-cost power. When the
wind-power generation ceases again the high-cost power generator must initially meet the
demand while the low-cost generator ramps up to meet the full load. This cycle is repeated.
In order to determine the optimum value of h, we calculate the total cost per time period T,
which is a quadratic,

co(LT — hpB) + cph?/(2r). (3)

The minimum for this is readily found to be at h = rfcy/cp, which corresponds to a total
cost:

ceLm — czﬂQT/(%h). (4)

If the difference in cost between low-cost and high-cost generators is too small this may
not be the cheapest strategy: the combination of power sources switching directly between
wind and high-cost power may be collectively cheaper than low-cost power (¢;7 < cp(7 — f))-
A further minor complication for this reactive model occurs when there are ranges of h for
which the slow ramping is too slow for the low-cost generator to fully decrease power by h
during the bursts of wind (of duration ), or to fully increase power by h during the lulls in
the wind (of duration 7 — ) or both of these cases. That is, if either h/r > f or h/r > 7 —f,
or both. For these ranges of h the total cost becomes a linear function and so reaches its
extreme values at the limits of the domain.

In the limiting case there is no ramping of the low cost generator. (This is used in the
analysis in Section 3.) Then the total cost function is linear over the entire range of A from
0 to L and so the optimum value of h will be either 0 or L. When h = 0, the entire power
production is by the low-cost generator and will cost ¢y L7 over the period 7. When h = L, this
low-cost generator is never used, the production being entirely by the wind generator when
this is operating or by the higher cost expensive generator when it is not. The total cost for
this case is ¢ L(7 — ) per period and so h = 0 is cheaper than h = L when ¢,7 < cp(7 — ).

The linearity, for no ramping, has resulted in the lowest cost option occurring at one of
the extremes of either having no wind generation or no low-cost generation. However, for
more general wind forms, this will not be the case. For example, if, instead of the square
wave form for wind power, we use a triangular wave form, then the optimal value of h in the
no-ramping case is again given by a quadratic expression.

This simple square-wave model also illustrates the possible savings if changes in wind
generation can be predicted. For example suppose that we anticipate the rises in wind power
(but not the falls, although their anticipation can also be used for savings (Section 2.3)). In
this case we may increase power generation from the high-cost generator and ramp down the
low-cost generator prior to the onset of the increased wind generation (Figure 2(b)). This
enables the wind to be more fully used as soon as it is available. We will also suppose that
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the slow-ramping is fast enough to complete between changes in the wind-power generation
and that the high-cost power is sufficiently costly to justify ramping. Let the slow-ramping
down of the low-cost generator begin at r/hy before the onset of the wind-power generation
so that at the beginning of wind-power generation the low-cost generator is producing L — ho
power. Then the cost function equation (3) is modified to

co(LT — hf3 — hha/r) + cp(h? + h3)/(2r). (5)

This is a quadratic form in the two parameters h and ho. The minimum cost now occurs at
the higher value of h = rfcg/(cp,—c3 /cp) with hy = cgh/cp. Substituting this into equation (5)
above we see that the second (negative) term in the total cost (equation (4)) has increased in
magnitude by the same factor (1/(1 —¢?/c2)) as h. So the total cost with anticipation is

ceLT — 02521"/(2(011 — c%/ch)). (6)

This is a saving of ¢;8%r/(2ch(ci — c3)) per period T over not anticipating the wind.

2.2 Numerical simulations

The three-power-station model was simulated for the reactive case. For each simulation a
constant minimum level of low-cost generation was maintained. As far as possible, wind
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generation is used to meet the remaining load h. If, during operation, low-cost and wind
outputs together are insufficient to meet the load then high-cost power is used to meet the
balance while the low-cost generation ramps up to compensate. If, instead, the wind and
low-cost power is greater than the load, then wind is spilled and the low-cost generator ramps
down (unless it is already at its minimum level).
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Figure 4: The four graphs on the left show the components of different power sources used
to meet the load and the wind-power spilled for a sample wind-speed time series. The curve
on the right shows the relationship between average total cost and h for an illustrative set of
power prices.

The simulations were conducted with h values from 1% to 100% of the load. For each
value of h there were 100 random realisations of the realistic wind speed time-series generated
from the model

W(i+1) =0.99W (i) + 2N(0,1) (7)

where the W (3) are the values of the wind at discrete time intervals and N (0, 1) is a Gaussian
random sample [2]. The power generation response P, to wind speed W is not linear (although
this was used initially as a first approximation). During the initial rise in the wind the
response is cubic but for high winds the power generation is bounded and for very high winds
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the wind must be spilled to protect the generator and so there is no power output. The
power-generation response used takes the form

3
‘% Pmaa:, if0<W< Wlimit
Pw - Pmaa:; if Wlimit <W< Wmaw (8)
O, if W > Wmax

which is typical of a single wind generator. The response curve is shown in Figure 3 together
with a sample wind speed time series and its power output.

The cost of meeting the load’s power demand is found for each realisation. These costs
were averaged over the 100 simulations for each of the different h values. This average is shown
in Figure 4. Again the relationship between cost and h is a U-shaped curve for which we have
an optimal h. Numerical simulations of this kind can be readily extended and adjusted for
more sophisticated models, as in Section 2.3.

2.3 Optimum settings for accommodating variation in wind power

Here we revisit the problem of choosing optimum settings for accommodating variation in
wind-power for more realistic wind power forms which essentially change at random with the
available wind. A step down in wind power needs to be replaced by other power, whereas a
step up in wind power need not be used. For this reason it is necessary to consider separately
the cases of a step down and a step up. This is done in the next two subsections.
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Figure 5: Power sources during a drop in wind power: (a) (left) no additional low-cost power;
(b) (right) additional low-cost power replaces some wind power, reducing the need for high-
cost power. The top diagram shows the total power output composition and the lower diagram
shows the individual power outputs. (Green - wind power used; Cyan - unused wind power;
Blue - low-cost power; Red - high-cost power; Magenta - available wind power).
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2.3.1 Step change down in wind power (AP, < 0)

First, we consider the use of additional low-cost power to provide a buffer for the variation in
wind power. This low-cost power replaces some of the wind power, reducing the amount of
wind power used. However, it also reduces the need for high-cost power immediately following
a drop in the wind.

Figure 5 shows the effect of a step down in wind power. A portion of high-cost power
(red) is needed to replace the wind power until the low-cost generator can ramp up to take
over from the reduced wind power. In Figure 5(a), the wind power is fully used, whereas
in Figure 5(b), a higher level of low-cost power is used and this replaces a portion of the
wind power. For the expense of replacing some of the wind power with low-cost power, the
requirement for high-cost power is significantly reduced.

Thus additional low-cost power APy is used to accommodate changes downwards in wind
power AP, at the expense of not using all the available wind power during normal operation.
Initially we assume one step change down in the period T'. It is noted that although there are
continuing random changes in the wind the expected change is close to zero. So, we initially
assume that the average of wind changes following the step change is zero.

There is no extra benefit from additional low-cost power above —AP,, and so this case
can be ignored. The total cost is:

T
o / Pi(t)dt + cAPT + S (-AP, — AP,)? )
0

To find the minimum cost, we differentiate with respect to AP, and equate this to zero to
obtain:

APy = —AP, —rTcy/ch. (10)

Thus the optimum AP, is always less than —AP,, (which is positive), and is limited by
zero when the second term becomes too large. If high-cost power is sufficiently expensive then
there will be an advantage in using additional low-cost power instead of wind power. The
optimum amount of excess low-cost power also depends on the time interval T used, with
longer time intervals indicating less excess low-cost power. The time interval used could also
include a step in the opposite direction as considered in the next subsection.

Instead of assuming a fixed size of step change over the time interval 7', now we assume
that for step changes below —A P, (negative and of a greater magnitude) the size is determined
by the probability:

P(APy(u) : APy(u) < —APy;T) .
Rather than equation (9) the following total cost now applies:

cy fOT Py(t)dt + ceAPT +
& [V P(APy(u) : APy(u) < —APy, T)(—AP,(u) — AP)?du. (11)
To find the minimum cost, differentiate with respect to AP, (to get a simpler but approximate

result, assume that the probability term is essentially constant, a method for correction of
this and other approximations by adjusting the value of T' is suggested in a later subsection):

T —cpfr /01 P(AP,(u) : APy(u) < —APy, T)(—APy(u) — AP;)du. (12)
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Set this to zero and solve for AP;:

_ - 3 P(APy(u) : APy(u) < —AP;, T)AP,(u)du — rTey/ch

AP, A
Jo P(AP,(u) : APy (u) < —AP,, T)du

(13)

After dividing by the denominator, the first term gives the average size of the larger step
changes, while the second term is adjusted to account for the probability of a step change
down occurring. This is unfortunately an implicit equation for A P, but as it involves a single
variable it is easily solved numerically for particular cases.

As noted above there is a problem in the choice of the value of T'. This is considered in
Section 2.3.4.
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Figure 6: Power sources during a wind power increase; (a) (left) no high-cost power; (b)
(right) some high-cost power replaces low-cost power. Diagrams are as in Figure 5 (Green -
wind power used; Cyan - unused wind power; Blue - low-cost power; Red - high-cost power;
Magenta - available wind power).

2.3.2 Step up change in wind power (AP, > 0)

High-cost power (which can be altered rapidly) could be used to replace some low-cost power
to enable sore rapid utilisation of an increase in wind power. Figure 6 shows the effect of a
step up in wind power. In Figure 6(a) some of the wind power cannot be used as the low-cost
generator cannot adjust sufficiently fast. Figure 6(b) shows the same increase in wind power
but with some high-cost power replacing part of the low-cost power. Now it can be seen that
more of the wind power is used.

Using more high-cost power than the step in wind power is clearly a waste. The total cost
when AP, < AP, is:

T
ce / Py(t)dt — ceAP,T + c, AP, T — ;—:Apg + (AP, — AP,)%. (14)
0

Ch
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As before, the value of AP, at the minimum is found by differentiation:
APy, = AP, —r(cp, — co)T/cp. (15)

This always gives AP, < AP,, when ¢, > ¢o- When the difference between high and low-cost
power is not too large, high-cost power can be used to take advantage of rapid increases in
wind-power generation.

If we consider a cycle of a step up then a step down with both allowing time for the low-
cost power to adjust so that 7' > 2AP,,/r. Then by applying this inequality to equation (15)
we have

AP, < APw(2c@/ch - 1). (16)
Thus it is seen that for AP}, to be positive we should have ¢, < 2¢.
With a probability distribution for AP, (u) we have:
(APy(u) : APy (u) < APy, T)APy,(u)du — r(cp — co)T/cp,

o P
AP, = -
JIP(AP,(u) : AP,(u) < APy, T)du

(17)

Thus AP, is always less than a weighted sum of the AP, values.

The quantity AP, is the reduction for the target power of the low-cost generator. The
low-cost generator moves towards its target at its limited slow ramp rate. The actual power
allocation will be the amount currently generated by the low-cost generator, plus either the
wind power needed to reach the required total power, or, if this is not sufficient, the maximum
wind power with the remainder coming from the high-cost generator. Again, selecting the
value of T' is a problem.

2.3.3 Simulation of wind power generation

Sections 2.3.1 and 2.3.2 have provided formulae that show how extra amounts of low and high-
cost power can help reduce the expense of wind power variation management. Equations (13)
and (17) can be used for a given value of T' to determine the amounts of additional power to
be generated. (It can be easily verified that these two formulae act independently.) These
formulae will now be tested for a numerical simulation similar to that of Section 2.2.

A table can be constructed giving the values of AP, and AP, for for each wind speed.
For every case the distribution of wind speeds after the time interval T is also calculated.
For the demonstration here a normal distribution with standard deviation 3.0 is used as 7' is
assumed small enough for this to be sufficiently accurate. (Another distribution of changes
in wind speed could be used if thought appropriate.) From the distribution of wind speeds,
and a power versus wind speed relation, the distribution of power after time interval T' can
be determined. The power relation, typical of a single wind generator, can be seen as the
magenta curve in Figure 7:

30(W/15)3, if W <15
Py, = 1 30, if 15 <W <25 (18)
0, if W >25.

Once the distribution of power changes is obtained, equations (13) and (17) can be solved to
obtain target values of AP, and AP}, as illustrated in Figure 7.
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Figure 7: Targets for power generation given wind speed: Magenta - potential wind power;
Green - wind power target; Cyan - unused wind power; Blue - low-cost power target; Red -
high-cost power target. This illustration is for the values: L = 50; r = 2; ¢, = 40; ¢;, = 80;
T =2.

Due to the slow dynamic performance of the low-cost generator, it may not be able to
provide the specified target value for a given wind speed. In this case any deficit is made up
first by wind power, if available, and then by high-cost power, while the low-cost generator is
ramped towards the target.

Given the table of target values, a simulation can be performed of the wind generation
over time. The formula for the wind speed:

Wi =aW;_1 +3N(0,1), (19)

is similar to that given in [2]. We chose a (0.9798) to give 15 as the standard deviation of the
wind speed. (A Fourier Analysis was done of wind speed data in [2]. The Power Spectrum
had two clear peaks corresponding to 24 and 12 hour periods and a possible indication of a
component with an 8 hour period. The wind speed models, equations (7) and (19), in part
arise from this analysis. That paper also found several different forms for the daily variation,
rather than a typical average behaviour.)

Figure 8 shows a portion of the simulation results. The variation in wind speed is seen to
be amplified in the wind power P,. These variations then drive the variations in the other
power values.

2.3.4 Determination of the time interval

There remains the value of 7' to be determined. This can be done by a direct search using
simulated wind speeds. Ten thousand time steps were used with the same random wind profile
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Cyp = 40, Cp = 60

T(AP)

T(AP) 2 8 14
2 1773.6  1765.7 1765.2
8 1779.0 1770.1 1769.5
14 1780.3 1771.6 1771.0

ce = 40, cp, = 80

T(AF)

T(AP) 2 8 14
2 1843.4 1843.1 1843.2
8 1836.5 1835.7 1835.9
14 1836.7 1836.2 1836.5

cg = 40, ¢, = 100

T(AF)

T(AP,) 2 8 14
2 1902.2 1912.3 1914.4
8 1888.8 1898.2 1900.9
14 1888.7 1898.2 1901.0

Table 1: Cost of generation for different power costs and 7" values

for each run.

Table 1 gives the effect of a range of values values for 7" and for the cost of high-cost
power. The value of T for a step up in wind power has been assumed independent to that
for a step down. Except where noted the same values as in the previous subsection have
been used. In this table it should be noted that a higher value of T' corresponds to reduced
additional power.

In the first case the cost of high-cost power is not much more than that of the low-cost
power. It is seen here that low values of T'(AP,) give the lowest cost, corresponding to an
addition of high-cost power. Additional low-cost power (low T(APF;)) increases the costs in
this case.

The second case has the high-cost power twice the cost of the low-cost power. Here we
see the effect of the additional low-cost power (low T'(APF)) is close to zero, but too much
high-cost power (low T'(AP)) increases cost.

The final case has a higher value for the high-cost power. Here we see the advantage of
using additional low-cost power to avoid the use of the high-cost power. Additional high-cost
power (low T(APy)) increases the costs.

2.3.5 Additional comments

This illustration uses the power curve for a single wind generator. The largest adjustment to
power and hence costs, are seen close to the steepest parts of the wind power curve (Figure 7).
In practice the power output of a wind farm will be the total from multiple wind generators
and so will be smoother than that used here. This will reduce the benefits to be gained.
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Figure 8: Simulation results showing the effect of variation in wind speed on power generation

In some cases the high-cost power cost is large, and then there are significant benefits in
scheduling a margin of low-cost power. Avoiding high-cost power here decreases the marginal
power costs that determine what customers pay.

By using additional low-cost power to buffer possible drops in wind generation, the wind
farm is being penalised for the variability of its supply by not having all the available power
scheduled for use. Replacing some low-cost power with high-cost, to better utilise possible
increases in wind power, is only of benefit when the costs of high and low-cost powers are
close.

3 Optimal dispatch with simple ramp rates

In this section again, as earlier, we make the important simplifying assumption that wind
farms share the network with power stations of two kinds: fast and slow. The fast stations
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Figure 9: The one-node model.

effectively have an infinite ramp rate as before; they can quickly be re-dispatched in response
to any fluctuations in the output of wind farms. However, here, the slow stations are taken
to have essentially zero ramp rate; their dispatch, once chosen at time ¢ = 0, may not be
altered during the time period 0 < ¢ < T considered. Broadly speaking, the “fast” behaviour
is an idealized model of a hydroelectric station, while the “slow” behaviour models a thermal
power station.

In such a model, the conventional least-cost dispatch serves only to minimize the instan-
taneous cost at time ¢ = 0. However, the true objective is to minimize the expected overall
cost over the period [0,7], allowing for the adjustments that will become necessary as the
wind fluctuates. (From the perspective of t = 0, the actual cost to be incurred is a random
variable, due to stochasticity in the wind; its expectation value is our objective.) To minimize
cost in this sense, a different initial dispatch may be required.

3.1 A one-node model

Again we begin by considering an example in which all power is effectively generated and
consumed at a single location (Figure 9).

A total load of 200 must be met from the following generator offers. A wind farm offers a
time-varying quantity P, (t), at zero price (marginal cost). We suppose that 0 < P, (¢) < 100
and P, (0) = 50. A thermal station offers 100 at price ¢, and a hydro generator offers tranches
of 100 at price ¢; and a further 100 at price co. The offer prices satisfy 0 < ¢1 < ¢r < co.

The decision to be made at time ¢ = 0 is essentially the quantity z to dispatch from
the thermal station. At subsequent times t € [0,7], the power required will be made up as
follows: z from the thermal, P, (¢) from the wind farm, and the balance from the hydro.

The least-initial-cost solution would be = 50, i.e. dispatch the wind farm, the cheaper
of the two hydro tranches, and (partially) the thermal. If the available wind power should
subsequently rise, it will displace H; hydro generation, saving water with value ¢;. In the
event of a decrease in available wind power, hydro generation from Hs will be used to make
up the shortfall.

However, if ¢y is very much greater than the other prices, this seems like a poor solution.
One wonders if it might be better, in that case, to choose a higher initial thermal dispatch,
and reserve some of the H; tranche for possible future use. On the other hand, if ¢; is very
low (perhaps almost zero) and cy is not prohibitively large, a good initial dispatch might
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include some of Hy (as well as all of Hy), so as to increase the likelihood of fully using the
cheap water. Note that both of these situations involve “out-of-order” dispatching, in which
an apparently expensive tranche is dispatched while a cheaper one is not. In fact, both can
occur, as the following analysis shows.

Formally, the instantaneous cost of the generation at time ¢ is

zer 4+ 100¢; + (100 — z — Py(t))ee, if z + Py,(t) < 100
= 2
ole, Pu(t) {xqﬁ%%ﬂ—x—Rﬂﬂkh if z + Py(t) > 100 . (20)
The instantaneous marginal cost is found by differentiating with respect to x:
) e — o, if.’I,‘+Pw(t) < 100
cde%“D__{QM—Q, if 7+ P, (t) > 100 . (21)

We want to minimize the expected average cost over the period 0 < ¢ < 7', which is:

C(z) = B [% /0 " e P () dt] . (22)

This expression involves averaging over both time (the integral) and a probability space (the
expectation). We can make the notation less cumbersome by defining 7 to be a random
variable distributed uniformly on [0, 7], independently of P, (t), and V = P,(7). Then

C(z) =E[c(z,V)]. (23)

When V has a well-behaved distribution, we may differentiate inside the expectation to obtain
the marginal cost with respect to x:

C'(z) = Elcs(z,V)]
= (cr — c2)P(V <100 — 2) + (cp — c1)P(V > 100 — )
= (CT_CI) — (CQ—cl)P(V S 100—.’[)).

This is clearly an increasing function of z, and so C(z) is convex in z. The optimal z can be
found by setting this expression equal to 0.

For a more specific example, assume that P,(t) follows a Brownian motion model, so
that P,(t) ~ N(Py(0),0%t). (We neglect the bounds 0 < P,(t) < 100.) Then V ~
N(P,(0), 30°T). Solving gives an optimal initial thermal dispatch

2\ 1/2 o
z* = P,(0) — (ﬂ) i (H) : (24)
2 Cy — C1

where @ is the standard normal cumulative probability distribution function. This expression
may be either more or less than the least-initial-cost solution (x = 50, here), depending on
the relative costs of the various tranches. into play.

3.2 Line reservations

The line reservation technique considers only initial dispatches that arise in a particular way:
by reserving capacity on transmission lines. That is, we solve a dispatch problem which differs
from the conventional one only in that the assumed line capacities may be less than the actual
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Figure 10: The two-node network.

capacities. The “reserved” line capacity is then available to accommodate fluctuations in the
wind during the period 0 <t < T.

The line-reservation technique is only a heuristic method, and the initial dispatch found in
this way may not be optimal for our real objective (that is, another initial dispatch may have
lower expected overall cost over the period [0,7]). Notice, for example, that line reservations
would be of no help with the problem in the previous subsection, in which there are no lines.
However, it does at least have the advantage of being easy to implement.

3.3 Wind matching over a single line

We shall now consider networks in which the power stations and the load are each located at
one of a number of nodes which are interconnected by transmission lines of finite capacity. We
begin with the wind-matching problem on a two-node network (Figure 10). In this network,
a lossless transmission line of capacity M connects two nodes; a load L is taken off at the
right-hand node. Generators offer power as follows: at the left-hand node, a wind farm
offers a time-varying quantity P, (t), at zero price (marginal cost). A thermal station offers
unlimited quantities at price ¢,. At the right-hand node, a hydro station offers a relatively
cheap tranche of quantity Py at price ¢, and a more expensive tranche at price c.. Another
thermal station offers unlimited quantities at price ¢g. We assume M < L, 0 < ¢, < ¢4, and
0<cp <ceg < ce-

The least-initial-cost solution would dispatch the generators in the order of their offer
prices, starting with the cheapest. This might mean, for example, dispatching the wind and
H; hydro tranches, then Thermal 1 to the extent allowed by the transmission capacity, and
finally Thermal 2 for the remainder. This leaves the transmission line constrained, with no
capacity to spare. If the wind output should subsequently rise above its initial level, the
excess wind power must be spilled, as there is no way to make use of it.

An alternative approach would be to leave some “headroom”, via a reduction z in the
quantity dispatched from Thermal 1 and a corresponding increase in the quantity dispatched
from Thermal 2. This leaves unused capacity z in the line. Any subsequent rise in available
wind power (up to z above the initial level) can then be used to displace hydro generation
from H;, saving water with value ¢;. Only if the wind rises above its initial level by more
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than z must the excess be spilled.

Note that under either solution, a decrease in the wind farm’s output must be compensated
for by increased hydro generation from the Hy tranche. If ¢, is large, the use of Hy water
might represent a sizable contribution to the overall expected cost. However, having reserved
line capacity does not help with this situation. (One would instead need to reserve spare
capacity directly within the H; hydro tranche, as in the example in Section 3.1.)

Determining the amount of headroom to leave requires solving an optimization problem.
Suppose a decision is made at time ¢ = 0 to leave an initial headroom x > 0, by shifting
generation from Thermal 1 to Thermal 2. This commits the system to an ongoing additional
cost (per unit time) of (c¢g — ¢;)x, relative to the least-initial-cost solution. At a time ¢ > 0,
the instantaneous further cost (or benefit if negative) of additional water used (or saved) due
to wind shifts is

(Pw(0) — Pu(t))ce,  if Py(t) < Pu(0)
f(t) = q —(Pw(t) — Pu(0))ep, if Py(0) < Py(t) < Py(0) +2 (25)
—xzcp, if P,(t) > P,(0) +z ,

or, more compactly,

f(t) = ce(Pw(0) — Py(t))+ — cpmin(z, (Py(t) — Py(0))+), (26)

where the notation z; denotes max(z,0). Thus at time 0, the expected average cost per unit
time incurred over the time interval 0 <¢ < T is:

T
Ola) = E[% [ (e + 10y at

= E [(Cd — €)% + ce(—0)1 — ¢p min(z, 5+)] )

where § = P, (1) — Py(0), with 7, as before, a random variable independent of (P,(t))
distributed uniformly on [0, 7.

Suppose we wish to choose z so as to minimize C(z). Assume for simplicity that P, (%)
has a continuous probability distribution. We see that for = > 0,

%C(x) = (ca—ca) —aE [%min(w,éﬂ]
(Cd - Ca) —cE [16>a:]

= (ca—cq) —P(6 > z).

It is clear that this is a continuous increasing function of z, and hence that C(z) is a smooth
convex function of z. If P(6 > 0) < (¢q — ¢4)/cp then C(z) increases with z for all z > 0,
and so the optimal choice is £ = 0. Otherwise, the optimal z can be found by solving the
equation
P(6 > z) = (cqg — ca)/ch- (27)
In some situations (e.g. when P,(0) is neither 0 nor the maximum output of the wind
farm, but somewhere in between), it may be reasonable to suppose that P(§ > 0) = % (In
other words, the wind is as likely to rise as to fall.) In this case, it is worth reserving headroom
only if
Cqg — Ca < Cp/2. (28)

One can see this intuitively: the first unit of headroom costs ¢4 — ¢, to create, whereas the
average cost of not having it is ¢, for half of the time.
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Figure 11: The six-node loop network.

3.4 Wind matching and sloshing in a network loop.

We now apply a similar analysis to that in Section 3.3 to a more complicated problem (Figure
11). Here we have two wind farms sharing a six-node loop network with two slow stations
and a fast hydro. The only transmission capacity constraint of significance is the maximum
flow of 150 on the dashed line in the diagram.

The six lines are assumed to be lossless, but with equal reactances. This means that power
flowing from any station to the load will divide itself between the two possible paths in inverse
proportion to the number of lines traversed. That is, % of the power from Thermal 1 flows to
the load via the limited-capacity line, while % flows via the other five lines. For Wind 1, the
flows divide in proportion (%, %), for Thermal 2, (%, %), for Wind 2, (%, %) The Hydro has
the most advantageous position: only % of its power flows over the limited-capacity line, with
the other g taking the more direct route. The network flows due to different power stations
may be linearly superposed.

Let us suppose that the initial wind outputs are Py1(0) = Py2(0) = 60. The corresponding
least-initial-cost dispatch is perhaps not apparent by inspection, but it can be found by solving
a linear program. If we let P,P,Ps,P;,Ps, and Ps denote the quantities dispatched from,
respectively, Thermal 1, Wind 1, Thermal 2, Wind 2, Hydro Hi, and Hydro Hj, then the
linear program is

min 40P, + 45P5 + 48P5 + 60P
s.t. Pi+ P+ P+ Py + Ps + Py = 300
3P + 3P+ $Ps+ 3Py + §(Ps + Ps) <150
0 < P <100, 0 < P, <60,
0 < P3 < 200, 0 < Py <60,
0 < P5 <60, 0 < Ps < 90.
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Figure 12: Response of the six-node network to wind changes.

The solution is P, = P, = P3 = Py = P; = 60 and P; = 0. (Note that even though the
thermal offers are cheaper than the hydro, the transmission constraint has prevented their
full use.)

However, this leaves the limited-capacity line constrained, which will make it difficult to
accommodate subsequent fluctuations in wind power. If the output of either wind farm (or
both together) should increase, the extra wind power cannot be used to displace hydro power
from Hy, as this would increase the flow on our constrained line. Even a slosh from Wind 2
to Wind 1 (i.e. a decrease in output at Wind 2, and an equal increase at Wind 1) could not
be dealt with, although a slosh from Wind 1 to Wind 2 could be.

It might, perhaps, be a better idea to choose a different initial dispatch which does not put
the network into such a constrained configuration. Suppose we require the initial dispatch to
reserve spare capacity (headroom) z in the limited-capacity line, for later use in responding
to changes in the wind. The best way to achieve this can be found by changing the right-
hand-side of the inequality constraint to 150 — z in the dispatch problem, and re-solving.
Furthermore, the additional cost (at the margin) of creating the headroom can also be read
off: it is the value at optimality of the dual variable corresponding to the inequality constraint
of the dispatch problem.

We will assume that 0 < z < 20; to create each unit of headroom within this range requires
shifting 3 units of generation from Thermal 1 to Thermal 2; the cost is thus 3 x (45 — 40),
or $15 per unit headroom per unit time. (To create more than 20 units of headroom, some
generation must be moved from Thermal 2 to Hydro Hs; this requires further analysis, which
we omit.)

Now consider the situation at time ¢ > 0. The power available from the wind farms is now
P,1(t) and Pys(t); we may adjust the Hydro dispatch, but not the Thermals, in response.
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The optimal response is the solution to a new version of our linear program in which only the
Wind and Hydro dispatches are variables, with the Thermal dispatches being constants. Less
formally, we can observe that each unit of headroom on our limited-capacity line allows the
network to carry 2 units of extra power from Wind 1, all else being equal. (The extra wind
power displaces hydro power, effectively requiring a new flow from Wind 1 to the Hydro to
be superposed onto the existing flows; half of this new flow travels via the limited-capacity
line.) Similarly, each unit of headroom allows 6 units of hydro power to be displaced by wind
power from Wind 2. The network will thus remain unconstrained provided

1 1

where Asz (t) = Pwi(t) - sz(()) for i = 1, 2.

The responses are shown in Figure 12. The network is unconstrained in regions R; and Rj.
In Ry, the total available wind power has declined (AP, (t) + APy2(t) < 0), requiring Hydro
H, to be dispatched to make up the shortfall; in Ry, additional wind power has displaced
generation from Hydro H;i. In regions R3 and Ry, the network is unable to carry all of the
available wind power, so some must be spilled. It is always better to spill wind at Wind 1 than
at Wind 2, since the amount that must be spilled is smaller (by a factor of 3); the amount of
usable wind power is thus constant along horizontal lines in these two regions. In R3, there
has been a decrease in hydro dispatch, while in R4 there has been an increase. Note that in
part of R4 the total available wind power has increased, but the total usable wind power has
decreased, due to sloshing from Wind 2 to Wind 1.

Let APy (t) = (APy1(t), APy2(t)). The change since t = 0 in the wind power used by the
system is ® ® ®

APy1(t) + APys(t), if AP,(t) € R1URy

u(z, APu(t)) = { 22 + 2AP,(t),  if APy(t) € Ry U R .

The instantaneous cost of generation at time ¢ (relative to the least-initial-cost solution) is
thus

(30)

c(z, APy (t)) = 15z — p(u(z, APy(1))), (31)
where
o) ={g0r HoZ0. (52)

The overall expected cost of reserving headroom x for the time period 0 < ¢ < T is then

T
Clz)=F [% /0 o, AP (1) dt] — Ble(z, 6], (33)

where § = AP, (1), with 7, as usual, a random variable independent of AP,,(¢) and uniformly
distributed on [0, T'].
If (Py1(t), Py2(t)) has a continuous probability distribution, then
C'(z) = Elca(w,0)]
E [15 - p'(u(m, (S))’U,;U(I, 5)]
= 15— 2(48P(6 € R3) + 60P(6 € Ry)).

Note that C'(z) is increasing in z, and hence C(z) is convex in z. To find the optimal solution
for z, we must attempt to solve the equation C'(z) = 0, that is, to find z € [0,20] with

2(48P (8 € R3) + 60P(J € Ry)) = 15. (34)
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The left-hand side of this equation represents the marginal value of the water that might be
saved by allowing an additional unit of headroom; the right-hand side the marginal cost of the
headroom. A solution will fail to exist only if C'(0) > 0 (in which case the optimal solution
is z = 0) or C'(20) < 0. In the latter case, it may be that z = 20 is optimal, or it may be
that even more than 20 units of headroom are called for.

4 Analysis of wind farm data

Data on wind velocity and power output, from existing and potential sites, is useful for two
purposes. First, it is needed as input into models for parts of the grid that are affected by
wind-farms. Secondly, it can provide understanding of how wind and power are related across
sites, in time; it will inform us about sloshing, evening-out and possibly forecasting. During
the MISG week, group members examined the wind speed data provided from the Tararua
wind farm, and also the Garrad Hassan report [3]. The first item raises questions about the
properties that wind speed data needs so that it is fit for purpose. The second raises questions
about further analysis of the dataset that it uses.

4.1 Desirable qualities in wind-speed data

The main purpose for wind speed data is to estimate wind-power output, and to investigate
how this rises and falls. Hence the need is for time-series that mimic the behaviour of a turbine
(or farm). The wind meter or meters need to be in the right location and at a suitable height.
The series also need to be collected at time intervals or by equipment that makes the power
estimates from them behave like turbine output.

The Tararua data is measured at 10 minute intervals, and is very volatile over these
intervals. The data was studied for a 21 day period, which gives 3024 ten-minute intervals,
144 per day. This data was converted to a smoothed time series, a day effect, and residuals.
The smoothed series was calculated as the moving average of 144 values, and centred by
averaging adjacent pairs of the moving average values. The day effect was calculated after
subtracting the centred moving average.

The 21-day data is shown in Figure 13. The actual series contains: cycles of about three
days in length, a small day effect and residuals that are much larger than the day effect and
of similar size to the cycles. Figure 14 shows behaviour over one day. The five years of data
could also be examined for an annual effect, but the MISG group did not have the resources
for this.

The day effect appears to have two components: a smooth part that rises and falls in an
autocorrelated way, so probably reflects a small but persistent effect over these 21 days, and
a fluctuating part that one would expect in the means of 21 independent haphazard events.

The residuals show haphazard or volatile behaviour: short-term fluctuations from one
reading to the next. They also show autocorrelated movements of length about half a day.
The smoother has excluded these from the smoothed series of course. They need further
investigation.

The main conclusion about this data is that the actual series has short-term fluctuations
that are large compared with the features of real interest. For future data collections, these
would need to be removed either by meter design or by logging data at short intervals and then
processing it to separate the components. In wind generation, we are interested in change; if
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Figure 13: A 21-day part of the Tararua wind speed time series data; (a) (above) Blue - the
actual data series; Magenta - a 24-hour smoothing of this; (b) (below) Magenta - the overall
day (diurnal) effect repeated for each day; Blue - the residuals after subtracting the smoothed
values and the day effect.
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we look at change by differencing this series, the short-term fluctuations are even more of a
nuisance (Figure 14).

The study helped clarify what we should look for in wind speed data and the issues include
these: how does wind speed behave over time, and in particular how does it rise and fall?
Hence the series of differences is important. Some of this behaviour may be predictable. We
can expect (from meteorology) cycles of irregular lengths of a few days, daily cycles and annual
cycles. These three features can be planned for. We would expect plenty of autocorrelation.
Unfortunately, we also found plenty of short-term variability. This dominated the series of
differences.

The study also clarified how data should be collected. A turbine has inertia, and will
therefore smooth out short-term effects. A collection of turbines will have a further smoothing
effect. There are two solutions. The first is to use a meter that mimics the behaviour of a
turbine or collection; the second is to use a meter that measures velocity at short intervals
(one minute or less), with its inherent volatility, but then smooth the data with a set of
weights that mimics the smoothing effect of the turbine’s inertia and size. Further smoothing
could imitate the smoothing effect of the collection of turbines. The time-interval needs to
be much shorter than the typical ramping-up or ramping-down time for a turbine.

In mimicking the behaviour of a turbine, we need, as well as smoothing, to transform
speed into power. If speed and power are collected for an existing turbine, this data can be
used immediately to plot the power/speed function for this type of turbine (at this location).
In converting speed into power, we need to look for a lag effect: initially when wind-speed
rises, some wind-energy may be accelerating the turbine rather than producing power output.

It could be useful to log wind-speed at a shorter interval (like one second), and then
examine it for the short-term variability. This may occur in a particular frequency-band. The
results would assist in design of data collection (instruments and intervals) for the future.

Variation and change is very important in wind generation, and leads to ramping of
power output. If one site is more variable than usual, then it will be more complex and more
expensive to manage substitutes for its down-times. Hence data collection design needs to
enable analysis of variation.

4.2 Data for relationships among sites

The Garrad Hassan report uses a rich dataset that contains wind-speeds (and theoretical
power outputs) at 10 minute and longer intervals, for 16 North Island and 5 South Island
sites, for over a year. The report contains a thorough look at two aspects of this data:
“correlations” between sites, and examination of events with large rates of change.

A common question at the workshop was “Are any of the correlations negative?”. In fact
the report uses R? values, which measure the strength of the linear part of the relationships.
These relationships can be investigated further, by looking for non-linearities and relationships
with time-lags. A second aim could be to compare variability of sites, since that affects the
usefulness of the site as an energy source. North and South Islands have separate parts of
the grid, so relationships within islands are the main interest.

A data visualisation approach would involve steps like the following.

Firstly, produce the matrix of scatterplots, and join the dots. The scatterplots reveal much
about the relationships (strength, direction [positive or negative], linearity or non-linearity,
presence of clusters and outliers). The dot-joining will reveal something about the behaviour
of the relationship over time, such as whether cycles in two series are in phase or out of phase.
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Secondly, plot two, more, or all series against time together, and look for whether they
move in phase together, out of phase, or independently. Then lag one series by a range of
time intervals and check whether this strengthens or weakens the relationship.

In the above steps, it may be necessary to choose the time interval between readings, and
the length of series used, so as to best reveal the behaviours.

The approach could provide useful information on how a set of wind-farms behave, so that
this behaviour can be fed into models of parts of the grid.

5 Conclusions

The team working on this MISG problem have considered issues relating to electric power
grid management for the case when wind power is a significant proportion of the total power
generation. The topic is of importance as the proportion of wind power generation in New
Zealand may significantly increase in the future. A number of approaches and simple models
have been used to study aspects of production and transmission. There is scope for further
extension of the work.

The three-power generator models illustrates the problems in maintaining power supply
at a reasonable cost as the wind power rapidly varies. We have approached the problem of
load balance considering the case when the low-cost alternative to wind can only be ramped
slowly.

In our later approach the model is simplified further by taking the low-cost power output
to be constant. More complicated networks of power stations have been considered which
have further included the problem of managing limited capacity in power transmission lines.

The MISG group also considered the use of measured data for predictability and time
profile of the wind as this is important for wind power production.

Although wind-power generation provides great opportunities for meeting energy require-
ments, its planning and management presents new challenges. When these have been met we
will be able to more fully utilise this resource.
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