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1 Problem description

1.1 Circulated description

The following description was prepared by Alan Fleming of Nan Gall and circulated in
advance of the Study Group.

The problem involves a transducer supplied to Nan Gall by Solartron. It
is used for measuring fluid density and viscosity. Nan Gall would like to
apply this transducer for down oil-well applications. The transducer has not
been used down-hole before, though it has been used in petroleum processing
plants. Nan Gall buy only the transducer without Solartron’s electronics
and software. This is because Solartron’s electronics will not fit in our
pressure rated housing, are not rated to down-hole temperatures and draw too
much current for battery operation. For further background, see Solartron’s
website: http://www.solartronmobrey.com/density/7828.html. We do not
have a confidentiality agreement with Solartron. However, they are aware
that we are doing our own electronics development and research into down-
hole applications of the transducer. They have told me that they have
performed some simulation of the system in the past but have not released
the results to us. The transducer is based on the principle that the resonant
frequency of an element is dependent on the density of the fluid in which it
is immersed. This is presumably because some of the fluid is dragged with
the vibrating element altering the effective mass. The viscosity of the fluid
applies a damping force to the system. The Q of the resonance therefore
decreases with increasing viscosity.1

A tuning fork design is used because it is immune to external sources of
vibration. The tuning fork is excited by a driver piezoelectric element.
The resulting motion of the tuning fork is sensed by a pick-up piezoelectric
element. The voltage applied to the driving piezo is proportional to the stress
applied to the tuning fork. If the pick-up piezo is open circuit, the voltage
obtained from the pick-up piezo is proportional to the strain. Alternatively,
if the pick-up piezo is short circuit, then the current output is proportional
to rate of strain. Nan Gall’s electronic circuit applies a phase shift to the
signal from the pick-up piezo and amplifies it to a constant peak-to-peak
level. This voltage is then applied to the driver piezo. Depending on the
phase shift applied it is possible to vibrate the tuning fork ‘on-resonance’ or
to either side of the resonance. For example, if the pick-up is short circuit
then:

0◦ phase shift causes vibration on resonance.

+45◦ phase shift causes vibration at the 3 dB down point with higher
frequency (driver is 45◦ in front of pickup).

1Recall that if a resonator gives maximum response at frequency fM , and responses of half that
maximum power at frequencies fA, fB either side of fM , then the ‘quality’ of the resonance is
Q = fM/(fB − fA). So a lightly damped system has a high Q.
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−45◦ phase shift causes vibration at the 3 dB down point with lower frequency
(driver is 45◦ behind pickup).

The transducer manufacturers recommended operation at the upper 3 dB
point for measuring density. Our experiments have verified that this is the
case at least for fluids up to about 100 cP viscosity, with a very good linear
fit between frequency and density. Note that a simple model based on the
equation of a simple damped harmonic oscillator:

mẍ = F − vẋ − kx (1)

(where m is the inertia (mass of tuning fork plus dragged fluid), v is the
damping constant related to viscosity, k is the spring constant and F is the
applied force) predicts that the resonant frequency is independent of viscosity.
The frequency of the upper 3 dB point would appear to depend on viscosity.
Maybe this model is invalid because the volume of fluid dragged by the tuning
fork is dependent on viscosity.

The questions that we would like to be addressed by the study group are the
following:

1. What is the best way to operate the transducer to determine
fluid density? Why and to what degree is the frequency of the
upper 3 dB point independent of viscosity?

2. If the transducer is mounted in a cylindrical housing, how
will this affect its operation? The transducer will be mounted
inside a housing smaller than that recommended by the transducer
manufacturer, due to restrictions of running in an oil well. This affects
the resonant frequency.

1.2 Notes of presentation to the Study Group

Paul Moseley (Smith Institute) presented the problem on behalf of Nan Gall Technology.
The company would like to be able to measure the density and viscosity of mixtures of
oil and water. Capacitive methods are not accurate when water fractions exceed 40%,
and radioactivity-based methods are beset with regulatory problems: hence the interest
in this vibration-based method.

The geometry of the ‘tuning fork’ is roughly as shown in Figure 1: the tines (prongs
in common parlance) are prismatic, with segments of a circle as cross-section. The steel
base in which they are mounted has diameter 17.5 mm, and the proposed housing would
have an inner diameter of 26 mm.

A third question was added to 1. and 2. above:

3. How is the device affected by inhomogeneous fluid ?

Ellis Cumberbatch asked what accuracy is required, but this was not known. The
paper [2] was referred to, in which a somewhat similar device was subject to mathematical
analysis.
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Figure 1: Diagram of tuning fork densitometer.

The fluid density ρ is calculated from the frequency fB at the upper 3 dB point by
the formula (given in [1])

ρ = K0 + K1τB + K2τ
2
B, (2)

where τB = 106/fB is the period in microseconds, and K0, K1, K2 are constants. Certain
corrections are then applied to allow for temperature, fluids of higher viscosity etc.

2 Basics of the model

We shall use a coordinate system as in Figure 1, and we shall sometimes consider the
full 3-dimensional motion, and sometimes motion in a 2-dimensional cross-section in
the (x, y)-plane. The tines are treated as conventional bending beams, subject to fluid
loading, so if u(z, t) denotes the displacement of the centroid of the beam cross-section
in the x-direction, then

ms
∂2u

∂t2
= −B

∂4u

∂z4
+

∫
D

σnx ds, (3)

where ms denotes the mass per unit length of the steel, B the bending stiffness of the
beam, D the circumference of the cross-section, and σnx the x-component of the normal
stress on the beam surface.

We begin by comparing the orders of magnitude of the different physical effects that
will be involved in σ. The typical order of magnitude of the resonant frequency involved
is f = 1500 Hz, and as usual we work with ω = 2πf ≈ 104 rad/s.
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Fluid inertia: For a segment of steel (density ρs) of width w and thickness h moving
transversely in a fluid as illustrated in Figure 2, the ratio of the added mass of fluid per
unit length to the mass per unit length of the segment itself is of the order of

ρw2

ρswh
∼ 1

2
. (4)

This is therefore an important effect, as one would expect. The concept of added mass

h

w U

Figure 2: A segment moving in fluid.

is explained in the appendix, but briefly, if a rigid body of mass M is moved with
acceleration U̇ through fluid of density ρ, then the force that has to be applied to it is
(M + Ma)U̇ + (viscous drag etc): Ma is called the ‘added mass’, and is proportional to
ρ and to the cube of the linear dimensions of the body (or the square for 2-dimensional
flow).

Viscosity: We shall see later that the viscous boundary layer thickness is

δ =

√
µ

ρω
, (5)

where µ is the dynamic viscosity and ω the frequency. Computing for figures given in [1]
we find that this is about 0.3 mm, so δ/h ≈ 0.05. Hence viscous effects are important,
but not as important as inertia.

Compressibility: The acoustic wavelength at the resonant frequency ω is about
1 m, which is much larger than any of the linear dimensions involved, so we shall neglect
compressibility.

Nonlinearity: The amplitude of vibration involved is estimated by Solartron to be
at most 10µm, which is small compared to the boundary layer thickness δ, so we shall
neglect nonlinear effects here. One nonlinear effect mentioned in discussions is shedding
of vortices from the sharp edges of the vibrating tines. It is not clear how significant this
will be — the edges are not razor sharp — but it is undoubtedly an effect that would
have to be included in a more complete analysis, though we shall omit it here.

In conclusion, we shall use a linear, incompressible model, with fluid inertia and
viscosity included. The general picture to have in mind is described by Batchelor [6,
§5.13]: there is an oscillating viscous boundary layer on the tines, and outside that an
oscillating inviscid flow in the rest of the fluid.
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3 Vibration mode shape

In the vibration mode used in the device, the tines vibrate in antiphase in their lowest
mode (as in a musical tuning fork), with the result that they do not exert any resultant
force or moment on the base. We wish now to address briefly how the displacement
u(z, t) varies with z. If the tines were to vibrate as classical clamped-free bending beams
(i.e. clamped at the end z = 0 and free at the end z = l) then (at least in vacuo) the
classical theory [3, Ch VIII] would apply and the resonant frequencies ωn would be given
by B(mn/l)

4 = msω
2
n with dimensionless wavenumbers mn that are the positive solutions

to cos mn cosh mn + 1 = 0. The lowest mode corresponds to the solution m1 ≈ 1.875.
For a parabolic segment2 of width w and height h one finds that the cross-sectional area
A, and the second moment of area I are given by

ms/ρs = A = 2
3
wh, B/E = I = 8

175
wh3. (6)

Hence the frequencies are given by

ω2
n = (E/ρs)

12
175

h2(mn/l)
4. (7)

Taking the figures in [1], we have ρs = 7960 kg/m3, and Young’s modulus E in the range
190–210 GPa, h = 6.05 mm, and l = 45 mm. This gives a lowest frequency f1 in the
range 2150–2260 Hz in vacuo, with f1 = 2206 Hz for E = 200 GPa. However, if ρ = 0
is used in (2) to estimate the natural frequency in vacuo, one finds it is 1908 Hz. This
discrepancy, with the actual frequency lower than that of a clamped-free bending beam,
is probably due to the lower end of the tine not being perfectly clamped. (This of course
is necessary, otherwise it could not be driven.) In operation of course, E depends on
temperature and this has to be allowed for in the coefficients.

We then have to address two further questions about the mode shape:

1. How is the mode shape affected by the fluid ?
If the fluid were constrained to move in independent 2-dimensional slices z =
constant, then the added mass per unit length would be constant along the tine,
and the mode shape would not be affected: only the frequency would be reduced.
However, this is clearly not the case for 2 reasons. First, the flow around the end
of the tine violates the 2-dimensional assumption. Second, since the tine bends,
the flow got by stacking up scaled copies of the 2-dimensional potential flow is not
irrotational. We conclude that the added mass per unit length will certainly vary
along the length of the tine, as it will depend on the whole 3-dimensional flow.
Therefore, the fluid will to some extent affect the mode shape.

2. How is the vibration mode shape affected by the method of forcing ?
We do not have details of the method of forcing, but in outline, it is as illustrated
in Figure 3. On the drive side, longitudinal strains are induced in the piezoelectric
material, and since it is off-centre with respect to the tine axis, it exerts a torque

2The parabolic segment is an approximation to the circular, easier to calculate for. There are
exact formulae for a circular segment, given for instance in [4]. But for our dimensions a = 12.7 mm,
h = 6.05 mm (and w = 2

√
h(2a − h) ), the formulae (6) give the value of I/A accurate to about 1%.
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Steel tine
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Figure 3: Diagram of forcing mechanism.

on the tine, thereby exciting it in bending. On the pick-up side, a physically
identical arrangement results in longitudinal strain in the piezoelectric material,
giving rise to the output signal. If the data in [1] are representative, then the facts
that the system is forced within 45◦ of resonance, and has a high Q, imply that
the forcing frequency is close to the resonant frequency. Hence the mode shape
in the forced vibration is close to the resonant mode shape — though of course it
cannot be identical to it. The details of the analysis of the drive mechanism and
its effect on the vibration mode shape would require knowledge of the geometry of
the mechanism, and also the stiffness of the piezoelectric element.

In spite of these questions being unanswered, we can still proceed to a lumped parameter
model, but these considerations do indicate that certain ‘constants’ in the model will in
fact have dependencies on frequency that we are neglecting.

4 Lumped parameter model

We now proceed to a model more on the lines of (1). We shall let F be the force applied
by the driver piezo to the base of the driven tine, and x be the displacement measured
by the pick-up piezo. Since we are considering a linear model, and are looking only at
the resonant behaviour, we shall let F = Re(Fce

iωt) and x = Re(xce
iωt), so Fc and xc

are the complex amplitudes of the force and displacement. Then we shall show that the
basic model takes the form

Fc = −m0ω
2xc − ρV1ω

2xc + (iω)3/2√µρA1xc + v0iωxc + kxc. (8)

The first term here represents the tine inertia, m0 being the effective mass of the tines,
so it would be m0ẍ in the time domain. In the second term V1 is an effective volume, and
ρV1 the effective added mass of fluid, so this would be (ρV1)ẍ in the time domain. The
third term we shall treat in a little more detail below in section 4.1. The fourth term
v0iωxc is the intrinsic damping in the tuning fork, and would correspond to a damping
term v0ẋ in the time-domain, and the last term represents the elastic stiffness of the
tines and would be just kx in the time domain.

H-7



4.1 Oscillating boundary layer

Much the simplest example of an oscillating boundary layer is an infinite half space z > 0
of fluid, with the boundary plane z = 0 oscillated in the x-direction with displacement
xce

iωt. The part of the actual tine that this is most closely analogous to is the flat end
face. The fluid velocity then is u = (uc(z)eiωt, 0, 0) and the Navier-Stokes equations
become simply ρiωuc(z) = µd2uc/dz2. The velocity at z = 0 is uc(0) = xciω, so the
solution tending to 0 as z → +∞ is

uc(z) = xciω exp(−
√

iωρ/µ z) = xciω exp(−
√

i z/δ). (9)

This analysis is the origin of the formula (5) for the boundary layer thickness δ. From
this, the shear stress on the boundary surface is calculated as

(σxz)c = µ
∂uc

∂z

∣∣∣∣
z=0

= −(iω)3/2√µρ xc. (10)

For a general body shape, a result with this same dependence on ω, ρ and µ will be
obtained, provided that |xc| � δ. The reason for this is essentially that the flow outside
the boundary layer is the inviscid flow that gives rise to the added mass term: this
matches the normal velocity of the tines, but does not match the tangential velocity.
Hence the flow relative to the tines inside the boundary layer just has to match to
the tangential shear between the tines and the outer flow, and therefore has just the
form analysed here. The general theory of oscillatory boundary layers is discussed by
Batchelor in [6, §5.13], and other relevant references are [10], [11].

4.2 Phase angle control

|xc|

ω0 ωA ωB

ωM

Figure 4: Response diagram (schematic).

In operation, the system electronics includes a frequency controller that adjusts the
frequency until a certain (adjustable) phase relation obtains between drive and pickup.
Taking the case where the pickup is short-circuit, a phase angle ∆ corresponds to the
force Fc being ∆ ahead of the velocity iωxc, so

arg(Fc) = arg(ei∆iωxc). (11)
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The points ∆ = −π
4
, 0, +π

4
correspond to points A, M , B, on the response diagram in

Figure 4.

5 Nan Gall’s questions

With this model we can begin to answer Nan Gall Technology’s questions.

1. What is the best way to operate the transducer to determine fluid
density ? Why, and to what extent, is the upper 3 dB point (fB = ωB/2π)
independent of viscosity ?

From the model above, the equation determining the frequency ω for a given phase
shift ∆ is

1
2
π + ∆ = arg(ei∆iω) = arg(Fc/xc) = arg(−m0ω

2 − ρV1ω
2 + (iω)3/2√µρA1 + v0iω + k).

(12)
So if we want the frequency ω to be approximately independent of fluid viscosity then we
must choose ∆ so that the third term has no influence. This will be when ∆ = +π/4, so
that the third term already has the required phase angle 1

2
π +∆ = 3π/4. The remaining

four terms must then also have a phase angle of 3π/4, which requires

−m0ω
2
B − ρV1ω

2
B + k = −v0ωB. (13)

Writing this in the form

ρ =
1

V1

(
−m0 +

v0

ωB

+
k

ω2
B

)
, (14)

we then have exact agreement with the form of the Solartron formula (2).
Moreover, at ∆ = −π/4 we shall have

−m0ω
2
A − ρV1ω

2
A + k = v0ωA + ω

3/2
A

√
2µρA1, (15)

and this will be the basis of the method of estimating viscosity. Essentially the difference
ωB − ωA is approximately proportional to

√
µ as stated in [1].

2. If the transducer is mounted in a cylindrical housing, how will this affect
its operation ?

The radius of the circumcircle of the tines is 12.7 mm, and the inner radius of the
proposed housing is 26 mm, as illustrated in Figure 5. With a boundary layer thickness
of 0.3 mm, the viscous term is unaffected by the housing — it is the added mass term
ρV1 that is going to be altered. It will certainly be increased by this constraint on the
flow, and the question is: How much ? The increase could be calibrated, calculated
or estimated. To calibrate it, one would simply measure the resonant frequency of the
device in its housing, for a variety of fluids of known density, and fit to a formula of the
type above. One would expect that the constants K0, K1, K2 would all be decreased
somewhat, and in the same proportion as each other. To calculate the change, one would
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Figure 5: Tines in housing.

need to do a 3-dimensional added mass calculation, with some assumed bending shape
of the tine. Since the added mass can be represented in a variational form, as mentioned
in the appendix, it would not be too difficult to carry out this calculation accurately.
Alternatively, if we just want an estimate, we can proceed more simply.

Consider the motion in a 2-dimensional cross-section. The motion of a single tine
will generate a fluid motion that is dipole in the far field. The motion of both tines in
antiphase will generate a motion that is quadrupole in the far field. Obviously the outer
boundary is not really in the far field since b/a ≈ 2, but still the simplest analogous
question to ask is: How is the added mass for a quadrupole of radius a affected by a
concentric housing of radius b ? For this, consider a circle of radius a with a radial velocity
U cos 2θ on its circumference as illustrated in Figure 6. (This is a suitably scaled version
of the velocity field on the circle r = a due to a point quadrupole at the origin: it is just
intended to be generally similar to that due to the vibrating tines.) In an unbounded

Figure 6: Quadrupole-style imposed motion on surface of cylinder.

fluid, the resulting flow is represented by the complex potential w = −Ua3/2z2, and the
added mass corresponding to this can be calculated as 1

2
πρa2. With a circular housing

of radius b in place, the potential is modified to

w = − Ua3

2(b4 − a4)

(
b4

z2
+ z2

)
, (16)
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and the added mass is increased to

1
2
πρa2

(
b4 + a4

b4 − a4

)
. (17)

Hence with b/a ≈ 2 this indicates that the added mass will increase by about 12%. In
terms of the parameters in the basic equation (2), this would reduce the constants K0,
K1, K2 by 12%.

3. What happens in an oil-water mixture ? Will the time-average of the
estimated density give the true mean density ?

The preceding analysis has assumed throughout that we have a homogeneous fluid
around the tines. In a ‘slugging’ 2-phase flow, where slugs of oil (lighter) and water
(denser) pass alternately, the device could give a successful indication of the duration
of each phase. However, when an inhomogeneous fluid is present, in the form of oil
and water, there are immediately various complications. Every oil-water interface will
have oscillatory viscous boundary layers on each side, because of the different fluid
densities, as shown in the appendix. If the fluid near the tines is reasonably well-mixed
(e.g. with droplets up to perhaps a few mm in diameter) then it should be possible to
estimate its mean density reasonably well by the device. However, even in the well-mixed
case, viscosity measurement is likely to be a problem: the viscous effects depend on the
boundary layer on the tines, and so we run into questions of whether that boundary
layer is in the oil or in the water, which in turn will depend on whether oil or water
preferentially sticks to the tines.

If the fluid is not well-mixed, then further potential problems may arise —

1. The frequency controller may fail to lock on to the required phase relationship,
because the instantaneous value of the added mass is continually changing due
to the flow, and the frequency controller is trying to lock on to this changing
frequency. Unless the flow is particularly fast, it should be possible to cover this
within the electronics, but it is a point to be borne in mind.

2. When a density reading is acquired, it will be representative of a spatially weighted
average density near the tines. But the water fraction in the housing will not
necessarily be representative of the net water fraction in the flow: firstly because
the flow in the well will be in one of the various possible 2-phase flow regimes
depending on the speed, inclination and relative proportions of the fluids; and
secondly because the device itself will disturb that flow, and so there is no guarantee
that the fluid in the housing is a representative sample of the total fluid mixture
present. This problem is likely to be particularly acute if the well is not vertical,
because of the tendency of the water and oil to stratify.

On a more positive note, we can be sure that any increase in fluid density above that
of oil indicates that some water is present. (This is a consequence of point 7 in the
discussion of added mass in the appendix.) One suggestion to try to ensure that the
fluid in the housing is a representative sample is to have something that artificially mixes
the flow before it enters the device. If there is gas present as well as water and oil, the
situation will of course be further complicated.
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A Appendix: Added mass

The concept of added mass, also called virtual mass, can be approached either in terms
of accelerated motion or impulsive motion, and some standard descriptions are given
by Lamb [7, Chapter VI], Milne-Thomson [8, 9.22], Batchelor [6, §6.4], and Lighthill
[9, Section 8.3]. Briefly, if a body of mass M is at rest in an unbounded region of
incompressible fluid of density ρ(x) which is also at rest, then in order to suddenly
impart a velocity U to the body, the impulse that must be applied is (M + Ma)U:
MU is the impulse that would have to be applied to get the mass moving in vacuo,
and I = MaU is the additional impulse that has to be applied to get the fluid moving
compatibly with the motion of the body — this Ma is the added mass. Equivalently, if
(again starting from rest) the body is given an acceleration U̇, the force that must be
applied to it is (M + Ma)U̇, just as if the actual mass M had been increased by Ma.
The references mentioned apply to the case where ρ is uniform, but we shall extend the
description here to the case of an inhomogeneous fluid where each fluid element retains
its initial density, so Dρ/Dt = 0, and consequently the velocity field u obeys ∇.u = 0 as
usual. This is what we need for the case where both oil and water are present, as in Nan
Gall Technology’s third question. Since the fluid is treated as incompressible, the motion
of the body is transmitted to all parts of the fluid instantaneously. However, since we
are only looking at the initial motion, before any viscous boundary layers are established
or any separation takes place, the effects of viscosity are confined to a vanishingly small
layer on the surface of the body. Added mass calculations are therefore carried out on
the basis of inviscid flow.

The initial motion of the fluid when the body begins moving impulsively with velocity
U can be characterized by Kelvin’s minimum energy theorem: If any number of points
of a dynamical system are suddenly set in motion with prescribed velocities, the kinetic
energy of the resulting motion is less than that of any other kinematically possible motion
which the system can take with the prescribed velocities. (See for instance [5, §108].) So
the initial motion of the fluid (‘dynamical system’) is such as to minimize its kinetic
energy subject to the incompressibility condition (‘kinematically possible motions’) and
the constraint on the normal velocity (‘prescribed velocities’) at the surface of the body
(‘points of the dynamical system suddenly set in motion’).

If the fluid is of uniform density, then this minimum occurs when ∇∧u = 0, and (for
a multiply-connected fluid region) when there is no circulation.3 So we have potential
flow, and this is the usual form in which one meets Kelvin’s minimum energy theorem.
In the inhomogeneous case, the minimum occurs when ∇∧(ρu) = 0. In fact ρu = −∇P
where P is the pressure impulse that occurs when the motion starts, so

∫
C

ρu.dx = 0
for any closed curve C in the fluid, and this is the analogue for inhomogeneous flow of
the usual circulation condition. A consequence of this should be noted: the condition
∇∧(ρu) = 0 implies that on an interface between fluids of different densities ρ1, ρ2,
the tangential velocities ut1 and ut2 are related by ρ1ut1 = ρ2ut2. Hence there is in
general a discontinuity in tangential velocity across the interface, and so a boundary
layer will develop there in viscous flow. This is an example of the creation of vorticity

3We use ∇∧u to denote the ‘curl’ or ‘rotation’ of the vector field u: it is sometimes also written as
∇× u.
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by inhomogeneity, which is discussed in [12, Ch.1 Sect.4].
There are various points to note about added mass:

1. For an asymmetric body, or an asymmetric density distribution ρ(x) in the fluid,
the impulse I = MaU need not be parallel to U, so Ma is not a scalar, but a tensor
— which we shall think of as a 3× 3 matrix. It is in fact symmetric, with positive
eigenvalues, like an inertia tensor.

2. The kinetic energy imparted to the fluid when the body is started into motion
impulsively with velocity U is T = 1

2
U.I = 1

2
U.MaU.

3. If the body is axisymmetric about a line L, and U lies along L, then MaU will
also lie along L, so L is a principal axis of Ma.

4. If U lies in a plane of symmetry of the body, then MaU also lies in that plane.

5. Ma is proportional to the cube of the linear dimensions of the body in 3-dimensional
flow, or the square in 2-dimensional.

6. In the homogeneous case, Ma is directly proportional to the density ρ of the fluid.

7. In the inhomogeneous case, if ρ1(x) and ρ2(x) are two density distributions with
ρ1(x) ≥ ρ2(x) everywhere, then the added mass for ρ1 is at least that for ρ2,
Ma1 ≥ Ma2. (By this inequality of symmetric matrices, we mean as usual that
U.Ma1U ≥ U.Ma2U for all vectors U.)

It is perhaps worth demonstrating points 1, 2 and 7 here, since the proofs given in
the cited literature depend on assuming homogeneous fluid. If the body is impulsively
set in motion with velocity U and then is immediately given an acceleration U̇, the force
required for this is MaU̇, and so the rate at which that force is doing work is U.MaU̇.
This must be equal to the rate of change of kinetic energy of the fluid. However, the
kinetic energy of the fluid is certainly some positive quadratic form in U, say 1

2
U.M1U

where M1 is symmetric and positive. Hence

U.MaU̇ =
d

dt
(1

2
U.M1U) = U.M1U̇. (18)

This holds for any U and U̇, so Ma = M1 is indeed symmetric and positive, which proves
points 1 and 2. Point 7 follows from Kelvin’s minimum energy theorem, since for any
velocity distribution u in the fluid region F ,

T1 =

∫
F

1
2
ρ1|u|2 ≥

∫
F

1
2
ρ2|u|2 = T2. (19)

The constraints on u (incompressibility and compatibility with the motion of the body)
do not depend on ρ, and hence 1

2
U.Ma1U = minu(T1) ≥ minu(T2) = 1

2
U.Ma2U. (This

argument, in a more general context, is due to Rayleigh [3, §79].)
Generalizations of the concept of added mass can be made to cases where there are

other bodies present, including rigid boundaries, and to cases where the moving body
is not rigid. To describe this latter generalization briefly, suppose the body moves with
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local normal velocity Uf(p)n at point p on the surface. In fact, we could imagine the
interior of the body to be constrained by a light frictionless ingenious device operated
by a plunger such that when the plunger displacement is ε, the normal displacement of
point p on the body surface is εf(p)n. Then immerse the body in fluid of density ρ
and ask what impulse I has to be applied to the plunger to set the surface in motion
with velocity Uf(p)n ? This impulse I will be proportional to U , and so if we write
I = MaU then Ma has the dimensions of mass and is the added mass associated with
this velocity distribution. It is this concept that we are using when discussing the case
of the quadrupole motion, where we take f(p) = cos 2θ at the point p = (a cos θ, a sin θ).

A.1 Example of an added mass calculation in inhomogeneous
fluid

Suppose we have 2-dimensional flow, with a circular body of radius a immersed in fluid
of density ρ0 extending from r = a to r = b, which is in turn surrounded by fluid of
density ρ1 extending from r = b to infinity, as in Figure 7. To calculate the added mass

r = b

U

ρ0

ρ1

r = a

Figure 7: Circular body in inhomogeneous fluid.

in this situation, we must calculate the inviscid flow that is set up when the circular
body of radius a suddenly starts moving with velocity U , which we may take along
the x-axis. The pressure impulse P will clearly take the form P = P (r) cos θ in polar
coordinates, and the fluid velocity is given by ρu = −∇P , and must obey ∇.u = 0. This
means that we have potential flow in both a < r < b, and r > b, so P (r) = Ar + B/r
in a < r < b, and P (r) = C/r in r > b. To match at r = b we need the pressure
impulse continuous, P (b−) = P (b+), and the radial component of velocity continuous,
P ′(b−)/ρ0 = P ′(b+)/ρ1. And for compatibility with the motion of the circular body we
need P ′(a) = −ρ0U . This gives 3 linear equations to solve for A, B, C, from which the
added mass Ma can be found. It is a scalar in this case obviously, and is given by

Ma − ρ0πa2

Ma + ρ0πa2
=

a2

b2

(
ρ1 − ρ0

ρ1 + ρ0

)
. (20)

This shows the expected features:

1. If ρ1 > ρ0 then ρ0πa2 < Ma < ρ1πa2, and Ma varies monotonically with b, tending
to ρ1πa2 as b → a, and ρ0πa2 as b → ∞.
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2. If ρ1 → ∞ then Ma → ρ0πa2(b2 + a2)/(b2 − a2), which is the value of the added
mass for a circle of radius a surrounded by an annulus a < r < b of fluid of density
ρ0 with a fixed outer boundary of radius b: the fluid of infinite density effectively
forms a rigid boundary.

3. If ρ1 → 0 then Ma → ρ0πa2(b2 − a2)/(b2 + a2), which is the value of the added
mass for a circle of radius a surrounded by an annulus a < r < b of fluid of density
ρ0 with a free outer boundary of radius b.
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