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6.1 Introduction

Operators of large mining excavators could improve their efficiency if they were provided with a real-time knowl-
edge of both the mass in the bucket and the force on the digging teeth of the machine. Although shaped roughly
like a standard construction excavator, mining excavators are many times larger. Their payload can be over
40 tonnes, with the hydraulic cylinders operating at up to 30 MPa. Obviously, the intuition and feel that an
operator may have for a smaller machine is lost on these goliaths, and any information about the forces on the
bucket is important to the operator. During normal operation, one truck is loaded on one side of the machine
while a second truck moves into position on the other side. The machine loads vehicles continuously, spending
approximately one minute with each truck. Hence, to be of use to the operator, the payload and digging force
must be obtained during normal operation of the machine with at most a one second delay.

To be economically viable, a device to measure the payload and digging force should be applicable to any
excavator without extensive modelling and fitting costs and should be constructed of robust, low cost sensors
limited to measurement of angles between the components of the excavator and pressures in the hydraulic
cylinders. One previous approach to the problem was to develop a detailed model of the dynamic behaviour of
the machine’s arm and bucket. In practice, however, it is not economical to fit such a detailed model to each
machine. Further, there are a large number of unknown effects from unmodelled dynamics, such as friction and
hydraulic elasticity, and from errors due to sensor limitations and background noise in pressure and angle data.

The ideal device would not require technical fitting or modelling of each machine, but would be a straightfor-
ward mechanical installation, with a single device suitable for any machine. The idea that a black box be installed
and trained to each machine leads naturally to the use of parametric or non-parametric regression techniques
to estimate the functional form of the dependence of the payload on the configuration of the machine. A non-
parametric model assumes only that the payload can be expressed as a function of the independent variables,
and that this function can be approximated by a weighted sum of a set of basis functions. Linear regression
is used with a set of training data to estimate the weights. In contrast, a parametric model assumes that the
payload can be expressed as a known function of the independent variables and several parameters. The training
data is then used to estimate the parameters.
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Figure 6.1: A typical excavator arm.

In this report we compare the use of parametric and non-parametric regression models and their suitability
to the problem of determining the mass in the bucket. The problem of determining the force on the teeth of the
bucket can be modelled in a similar fashion. However, it is not clear that there is a single force acting on the
teeth of the bucket during digging and not a more complex contact between the bucket and the ground. For
this reason, this report focuses on the problem of determining the payload mass. The problem of measuring the
digging force on the bucket teeth is not dealt with in any detail.

The investigation of the non-parametric regression model indicates that the black box approach is impractical
due to the large amount of training data needed to estimate the payload function. It would seem that both
extremes, the detailed model on one hand, and the black box on the other, require too much time and effort to
measure parameters to be of practical use. The parametric model requires far less data for training than the
non-parametric regression model, and even though a detailed model of each type of machine must be developed,
an exact measurement of the model parameters is not required. Hence, the parametric model appears to be the
best approach.

6.2 Modelling approach

Figure 6.1 shows a typical excavator consisting of a boom, stick and bucket connected by pin joints and hydraulic
cylinders. Using techniques from dynamics and robotics, the mass in the bucket can be specified as a function of
the pressures in the hydraulic cylinders, the angles between each component and their derivatives (see Section 6.3).
Hence, if all the parameters in this model could be determined, then determining the mass in the bucket would be
a simple matter of evaluating the function given a time history of the angles and pressures. Unfortunately, this
approach is impractical for several reasons. Obviously, even with a detailed model there are unmodelled features,
such as friction in the pins and cylinders, and the hydraulic elasticity and inertia of the cylinders. There is also
a large amount of noise in the data, particularly in the measurement of angular accelerations. However, the
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Figure 6.2: Approximation of the payload using radial basis functions. Evaluation of the function at the training
points.

most significant drawback using a detailed model is the impracticality of measuring all the parameters for each
machine. To be economically viable, a device to measure the payload should not require detailed measurements
for each machine.

Another approach, diametrically opposed to the detailed model is to use non-parametric regression to estimate
the payload function. Routines implementing these techniques are widely available. In fact, a simple search of
the Internet revealed a set of public domain Matlab routines” for the approximation of functions using radial
basis functions [2]. Briefly, this approach assumes that the function in question can be approximated by a
weighted sum of radial basis functions and uses linear regression to determine the weights. Some sophistication
is added to determine the most suitable set of basis functions. To test this method, data made available from RSI
Technologies was used to construct an approximation to the payload function. The data was obtained by placing
known masses in the bucket of an excavator and measuring the pressures and angles as the configuration of the
arm was varied. To reduce the complexity of the problem, the testing was done only on a subset of this data for
which the configuration was static. In this case, the payload function depends on the three angles describing the
configuration of the arm and the pressure in one cylinder, but not on the angular velocities and accelerations.
Figure 6.2 shows the plot of the approximated function for the data points used in the regression. To test the
ability of the approximation to interpolate, data for a mass of 275kg was reserved and the model was trained
on the remaining data. The resulting payload function was then evaluated for the 275kg data. The results are
shown graphically in Figure 6.3. The method is clearly unable to interpolate between masses in the training
data. Since the device is expected to be used for a wide range of payload masses, it is impractical to train the
device to the level of detail required. We conclude, therefore, that the black box approach of non-parametric
regression is not an economically feasible option.

"http://www.anc.ed.ac.uk/~mjo/rbf.html
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Figure 6.3: Approximation of the payload using radial basis functions. Evaluation of the function for masses not
used in training.



6.3. MODEL EXCAVATOR 71

Figure 6.4: Coordinate system for the general model.

The poor ability of the non-parametric approach derives from the local nature of the approximation. In
order to interpolate new masses not in the training data, some knowledge of the global form of the function
is required. In the following section we develop a detailed model for an excavator arm. However, rather than
measure parameters directly from the machine, we propose to use regression analysis of data for known weights
to estimate the parameters in the model. In general, there is a non-linear dependence of the payload mass on the
independent variables and the unknown parameters. To avoid the complications of using non-linear regression
algorithms, the ideas are illustrated in Section 6.4 using a simple one-armed digger. For this model digger, the
payload is a linear function of two parameters, allowing linear regression to be used for their estimation.

6.3 Model Excavator

The excavator shown in Figure 6.1 is generalized to the three link arm shown in Figure 6.4. A dynamic model
of this generic excavator is developed using the Lagrangian approach. Each component of the digger is replaced
by a single link. The links are connected by pins which allow each link a single degree of freedom and constrain
all the links to lie in the same plane. The links are numbered from 1 through 3, with #; being the angle of the
first link with the horizontal plane and 6;, i > 1, being the relative angle between links ¢ — 1 and <. The angle
0y is reserved for the rotation of the base around the Y axis.

Lagrange’s equations of motion [1] specify that the energies satisfy the following system of equations:

d (0L 0L )
a(a—ez>—a—01—Q“ z-O,...,n, (61)

where (); is the rate of work done on the system by the non-conservative forces with increases in the angle #;. The
digger arm is subject to conservative forces, due to gravity, and non-conservative forces through the hydraulic
cylinders between each link and the torque applied to the rotating base.

A coordinate system is attached to the fixed base of the first link. The X axis is aligned with the digger arm,
the Y axis vertical to the base and the Z axis perpendicular to the arm in the horizontal plane. A translated
coordinate system for link ¢ is attached to the pin connecting link ¢ — 1 to link ¢. P; is the position vector of the
i1 link in the fixed coordinate system.
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Each link is a rigid body undergoing rotation and translation. Link i rotates with angular velocity w; =
(0, 6o, Z 1 8;) and it’s base (the point P;) translates with velocity v;, where

v = 0,
v =vi—1 + (P — Pi_1) X wi_1.

The kinetic and potential energy of each link depends on the mass m;, centre of mass r; and inertial tensor I;.
For convenience, the centre of mass and inertial tensors are taken relative to position P; for each link. Obviously,
since the link is rotating rigidly in this coordinate system, r; and I; depend in a known fashion on the link angles
6, through 6;. The kinetic and potential energy of each link are given by the expressions

1 1
T; = Emi(vi “0;) +mv; - (Wi X 15) + Ewifiwfa (62)
Vi = mi(P,' + ""i) : (O,g,O), (6-3)

where g is the acceleration due to gravity. That is, T; and V; are the kinetic and potential energies of link ¢ and
L= E?Zl T; — V; is the total energy use in Equation 6.1.

Work is done by the non-conservative forces as the lengths of the hydraulic cylinders change. Let h;(6;) be
the length of the cylinder connecting link ¢ with the previous link, or the base in the case of the first link. Since
each cylinder connects neighbouring links, the work corresponding to changes in ; depends only on the function
hi(6;) and the forces on the i** cylinder as follows

Qi = Fihi(6:). (6.4)

The force Fj is proportional to the pressure difference across the cylinder minus any frictional forces. It is hoped
that these frictional forces are small enough to be neglected. However, in the event that they are not, they may
be assumed to be in proportion to the velocity of the cylinder h'(6;)6;.

The excavator bucket is represented as the third link. Hence the payload mass is m3. Since the potential
energy of the final link, P;, depends on each of the angles, the payload mass appears in equation in the system
given by Equation 6.1. That is, any one of these equations can be used to derive a function for the payload in
terms of the angles, cylinder pressures and parameters of the system. Note, however, that each equation depends
only on a single pressure. Hence, for the non-parametric approach, the payload function can be assumed to
depend on the three angles, their time rates of change, and any single pressure.

For the parametric approach, we are interested in how the payload function depends on the unknown pa-
rameters. These unknown parameters are the masses, m;, and the moments m;r; and I; of the links. Since
the energies and generalized forces are linear in these parameters, the payload mass is a rational function of
the parameters, linear in both the numerator and the denominator. Hence, the parametric approach entails a
non-linear regression analysis.

6.4 PIMS Digger

To compare the parametric and non-parametric approaches, consider the simple digger shown schematically in
Figure 6.5. The base is fixed, and the configuration changes only with the angle #. As there is only a single link
of length | which does not rotate, the subscripts are dropped. The centre of mass of the link is assumed to lie
on the link at a distance x from the base. However, in addition to the mass of the link, a mass M representing
the payload is attached to the end of the link. Thus, v; = 0, w; = 0 and r, = (z cosd, xsinh), and Equations
(6.2), (6.3) and (6.4) become

T = —021 + = M1202 (6.5)
V= (Ml + m:v) sin 6 (6.6)
Q = h'(0)pA (6.7)



6.4. PIMS DIGGER

Figure 6.5: The PiMS Digger: a simple, single degree of freedom digger.
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Substituting the required derivatives into Equation 6.1, leads to the relation
(I+ MI?) 6+ g(Ml+mz)cosf = b ()pA,

which can be solved for the payload mass. This is expressed as

W (0)pA — gmz cosd — I

M(p,6) = -
®.9) 120 + glcosf

The length h is given by the expression

h(6) = /% + d3 — 2d1d cos,
and so

K (8) = dyds sin(8) /h(8).

The lengths d; and ds, which describe the configuration of the piston, are assumed to be known to any desired
accuracy. Whereas, ¢, m I, and [ can only be estimated. This is representative of the real case where the centre
of mass of the payload cannot be determined in advance simply because the distribution of the load in the bucket
is not known. Further, the centre of mass and the inertial tensors of each link cannot be determined for each
machine due to economic constraints.

For the dynamic equation, the mass is a non-linear function of the three parameters. To avoid the complica-
tions of non-linear regression consider the static case. In this case, the mass can be represented as a function of
the pressure, angle and the two unknown parameters, ¢; and ¢ as and Equation 6.8 becomes

M (p,0) = ciptan0/h(0) — ca. (6.9)

where ¢; = di1daA/gl and c2 = mz/l. Note, that since many of the unknown parameters cannot be determined
to any desired accuracy, non-dimensionalization is not practical. For simplicity, the units kilograms, meters and
seconds will be used, as these are relevant to the scale of the mining excavators. Figure 6.6 shows the contours of
constant mass for the simple model as a function of the single angle § and the pressure, p in the single cylinder
using the parameter values ¢; = 10 m2s? , c; =2 kg, d; =2 m, do = 1 m.

In this simple model we have the option of using radial basis function to approximate this function, or using
linear regression with training data for M, 6 and p to estimate the parameters.

To illustrate the effectiveness of the parametric and non-parametric approaches to the problem, two data sets
were generated for testing. The first data set was generated by choosing 1000 random points in the p-6 plane,
computing the mass, M (p,6) from Equation 6.9 and adding a small amount of noise to all three variables. This
data is shown in Figure 6.7a. The ’plus’ signs represent data used for training the model and the circles represent
data used to test the resulting payload function. A second set of data, shown in Figure 6.7b, was generated using
only three values of the mass M (20 kg, 30 kg and 40 kg). Equation 6.9 was used to determine the pressure p
as a function of the mass M and angle 8. This function was then used to determine the pressures corresponding
to the three masses and a random sample of angles. Once again, noise was added to the resulting points to
represent real errors in measurement. The data points corresponding to the largest and smallest masses were
used for training, and the data for the middle mass was used for verification.

The function M (p, #) obtained using approximation by a radial basis functions trained on these two data sets
is shown in Figure 6.8. Comparing the two contour plots to the exact contour plot of Figure 6.6 clearly shows
the need to train the approximation on a large, uniformly distributed sampling of data.

Since the model is linear in the two parameters, it is straightforward to perform a linear regression using
Equation 6.9 to estimate both ¢; and ¢, for each data set. Figure 6.9 shows the contour plots of the approximate
functions using the two data sets. Although the errors are much larger for the second set, the parametric method
produces far better results than the non-parametric method.
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Figure 6.6: Contours of the exact payload function for the PiMS Digger
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Figure 6.7: Data sets for training and testing of the models. The training data is marked by cross-hairs and the
testing data by circles.
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6.5 Conclusions

Our testing of both parametric and non-parametric methods of reconstructing the mass function from data
indicate that the non-parametric black bozx approach to the problem is not likely to be economically feasible.
Although in theory the approach is simple to implement and can be applied to a variety of machines with no
additional modelling, in practice, the number of data points necessary for the training of each box is too large.
On the other hand, it is clear that the parametric approach can be used to estimate the mass function without
knowledge of the exact geometry of the machine, so that a single, parametric, ‘grey’ box can be applied to a
wide variety of machines with the same basic geometry.

In this report we considered only a simple linear model to illustrate the advantages of parametric regression
over non-parametric regression for this particular application. For the full machine, it is likely that non-linear
regression techniques must be applied. It remains to be shown that these methods will converge for the data
available for training. Since the normal operation of the excavator is not to be interfered with, the actual device
would necessarily use the full dynamic model rather than the simpler static model explored here. Interestingly,
there is less uncertainty in the dynamic motion of the digger arm than in the static situation. In the kinetic
case, the frictional force in a cylinder is a function of the piston velocity. In contrast, the magnitude of the
static frictional force will depend on the history of motion. That is, even in theory, when frictional forces are
included, the mass in the bucket can not be determined from pressure and angle data alone. A continuum of
configurations are possible for the same mass.
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