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2.1 Abstract

The Michelin Tire Company requires its tires to be very uniform in order to provide a smooth,
quiet ride. The design of the appropriate manufacturing technique leads to a problem in har-
monic analysis, and to the problem of the design of a statistical experiment to accurately measure
the harmonic components contributing to a measured force on the tire. Optimal designs were
developed, as well as a number of useful Monte Carlo methods. MATLAB codes of the tests are
provided.

2.2 Introduction

The Michelin Tire Company is interested in manufacturing tires that meet a certain level of
uniformity. Generally speaking, the more uniform the tire, the smoother the ride and the quieter
is the tire, in terms of rolling noise perceived by the passengers. Indeed, many of the contracts
Michelin holds for tire production require that they manufacture tires that meet certain specified
standards of uniformity.

Uniformity of a tire is evaluated by measuring the force exerted by the tire on a measuring
device, as the tire is rotated 360 degrees about an axle. The force may be measured in the
radial direction, in the axial direction, or both. This produces one or two force curves which
describe the uniformity of the tire: a flat curve indicates a perfectly uniform tire. A non-flat
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34 CHAPTER 2. EXPERIMENTAL DESIGN IN HARMONICS

curve can be expressed as a sum of sines and cosines, and the manufacturer is interested only
in the magnitude of specific harmonics of this force curve. For instance, a contract may require
that the manufactured tires have harmonics one through five with magnitudes below a certain
threshold. Thus the problem of ensuring uniformity of the tires is more precisely a problem of
minimizing, or reducing below a certain threshold, certain harmonic components of one or two
force curves.

To understand how the non-uniformities in a tire appear, and how one may control them,
it is necessary to understand the basic construction of a tire. Each tire is made up of a series
of components, or sheets of material, which are wrapped one layer on top of another, while
stretched out over a tire mold. For instance, the first layer would be an inner, airtight sheet of
reinforced rubber which will form the inner air compartment for the tire. Next comes several
layers of different types of rubber, then layers of cords and/or steel belting for reinforcement,
more rubber, and eventually the treads are laid on top to finish off the tire.

There may be as many as twenty layers built up into the tire. As each sheet of material is
wrapped around the mold, the ends are joined by glue or by melting, which results in a small
bead of material at the join. These beads will lead to bumps, or non-uniformities in the final
tire assembly. There are other factors as well that cause each layer to contribute some non-
uniformities to the final product; the causes are not in question here, but they are indicated so
it is understood that each layer somehow contributes to the uniformity or non-uniformity of the
tire.

The technician has little control over what causes the particular bumps or non-uniformities
in the layers that go into building the tire. One thing that the technician can control is the
position (starting angle of assembly) for each layer going into the tire. For instance, the first
layer may be aligned at 0 degrees relative to the mold, second layer rotated 15 degrees from the
first layer, third layer rotated at 30 degrees, and so on.

The technician would like to choose this series of rotations in order to produce a tire that
meets the uniformity requirements. This leads to a canonical problem of analysis and synthesis.
One must first analyse the layers to see how each one contributes to the final uniformity, or
non-uniformity, of the finished tire; then one must use this knowledge to design the finished tire
that meets the specified uniformity requirements. The only freedom one has in both the analysis
and synthesis is choosing the position of each layer.

Our goal in this problem is to solve the analysis problem. The task is to design an experiment
where a technician can construct a series of test tires that will be used to determine, with
statistical confidence, the contribution of each layer to the final profile, or force curve, of the
generic tire. Once the contributions are known, the synthesis problem of finding the optimally
smooth tire, or one that meets any specific uniformity conditions on the harmonic components,
is relatively straightforward, and need not concern us here.

2.3 Methodology

It was clear early that this problem would require techniques of both Fourier analysis and
statistics: Fourier techniques to describe the harmonic problem, and statistical techniques to
deal with the problem of accurately measuring quantities that come from real experimental
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measurements. A team of researchers was assembled that brought in expertise from both areas.
It turned out that Monte Carlo methods would be useful as well, and appropriate simulations
on the computer would be needed. MATLAB was chosen as the computational platform, as it
combines the power of complex, matrix linear algebra required by the harmonic analysts with
the statistical tools needed by the statisticians.

As the research progressed, our industrial collaborator from Michelin provided some very
useful information based on their experience with manufacturing and analysing their tires. In
particular, he indicated what types of statistical experiments had been performed, what tests
looked promising, what constraints and costs could be expected in running the test. This
information directed much of the research below, and details are indicated where appropriate.

A number of very promising, and even optimal, designs were obtained over the course of
the workshop. Given the limited time available in a one week period, it was impossible to
obtain complete characterizations for these designs, their robustness, and other features. With
MATLAB, some good verifications were produced that are quite convincing. Thus, the results
brought the analysis problem all the way to a solution, and our industrial collaborator has
indicated it is a significant, valuable answer to their problem.

2.4 Simplifications

While the original problem involved a choice of one or two force curves to measure, it was
quickly decided to work with just one force curve. This is only a minor simplification. The
Monte Carlo methods developed for one curve can easily be extended to two curves. Also, in
the optimal designs developed, the designs depends only on the harmonics studied under the
test; thus, two curves can be included in the design by simply including the harmonics for both.
Since the physical construction of test tires is expensive, it turns out this is a rather efficient
way of minimizing the number of tires needed to test any number of force curves.

It was also noted that the force curves are in fact only sampled at 256 points, thus the
problem of infinite dimensional spaces of curves is avoided. Indeed, a large simplification is
obtained by noting a finite, discrete Fourier transform (which is easily done on the computer)
reduces the harmonic problem to a natural setting.

In practice, the technician is not completely free in his choice of angles used to lay out
components of the tire. In the development below, we assumed any angle could be chosen
(though perhaps not all layers would be adjusted at the same time), and then one would use
robustness results to see what happened when the choice of angle was restricted.

A statistical simplification is to assume the layers of the tire act independently, and additively,
in producing the final force curve of the tire. This assumption is supported by the experience
of the Michelin group of researchers.

Another major simplification was to get the whole team speaking a common language of
Fourier series, least square approximation, and using MATLAB tools.
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2.5 Fourier Series Formulation

The tire’s characteristic force curve can be described as a continuous function on the interval
[0, 1] with periodic boundary conditions. As the problem was originally posed, it was suggested
that these periodic functions f € C]0, 1] be expanded in terms of sines and cosine functions:
that is, one writes

o
ft) = Z an, cos(2mnt) + by, sin(27nt),
n=0
where a,, b, are real coefficients encoding the magnitude and phase of the corresponding har-
monic. Algebraically, it is more convenient to use complex exponentials to expand the periodic
function in a Fourier series, as

o
ft) =) ce™™,
for complex coefficients ¢,,. Since f is real, there is some redundancy in this expansion requiring
C_n = Cn, the complex conjugate of ¢,, for each n.
More important is the redundancy due to the fact that the continuous function f € C[0,1]
is observed only at finitely many points ¢, = k/256, for kK = 0,1,...,255. The Fourier series
expansion at these discrete points

0
f(tk): Z cn€27ri%

n=—oo

collapses to a finite sum, because of the periodicity of the exponentials, so one may write a
discrete Fourier expansion, with

128
Fte) = Y ca€® e 1, =10,1/256,2/256,...255/256.

n=—127

It is worth noting in passing that the Fourier coefficients ¢, are quickly calculated using an
FFT software routine, and so this formulation of the problem does not introduce any additional
complexity in the problem.

In the problem at hand, a function f is considered the signature of a given tire component
or layer that will affect the final force profile. If this component is rotated by an angle 6, the
signature function f is shifted and the corresponding Fourier coefficients change. Introducing
the notation Sy for the shift operator, one obtains

(Sof)(t) = f(t—10))

— E : cn€27rin(t—0)
n
— E :(6727rm06n)627rmt

n
_ 0 2mint
= E c,€ .
n
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That is, the Fourier coefficients transform under the shift by 6 as a linear transform ¢, —

e~2mn9¢c  Equivalently, the vector of coefficients ¢, transforms as

e | = & | = e~2mmY Cn

which is just multiplication by a diagonal matrix Dy whose entries are complex exponentials.

2.6 The Component Problem

A tire is built up from a number of layers (tread, cords, airtight inner rubber, etc), usually on
the order of m = 20 components. Each layer contributes a signature f*(t) € C[0,1] to the
observed force profile

) =3 40,
k=1
where the assumption (based on Michelin’s experience) is that the contribution is additive, and
thus each layer’s contribution is independent of the others. The component functions f*¥ cannot
be measured directly; however, a factory worker may modify the construction of the tire by
changing the positioning of individual layers within the test tire. Each layer may be shifted
independently by some angle 6. Applying a vector of shifts © = (61, 6,,...,0,), where 6y, is the
rotation angle for k-th layer, gives an operation on the observed force profile as

m
(SoF)(t) = (Sp.f*
k=1
In Fourier components, this becomes

© 2mwint __ —2minbg .k 27rint
2 Caermt = ZZ h

n n

— E : § :6 27rzn6kc 2mnt’
n k

and by equating terms in the Fourier expansion one obtains the transform directly on the

coefficients as
m
— § :6727””9’“67]3.
k=1

In particular, one observes there is no mixing of harmonics: that is, the n-th harmonic of the
observed (transformed) force curve is a weighted sum of the n-th harmonics of the contributing
layers.

The analysis problem is to determine the coefficients ¢® from the observed C?, using some
choice of the vector of angles ©. Since the observed spectra are real, it is enough to consider
only non-negative n in determining the harmonics, and the constant term (n = 0) is irrelevant.



38 CHAPTER 2. EXPERIMENTAL DESIGN IN HARMONICS

In practice, only a small values of n are of interest (eg. n = 1,2,...,5), as these correspond
to certain low frequency vibrations, but the coefficients must be determined for all layers (eg.
k=1,2,...,20). Also note this is a statistical data problem, as the measured coefficients include
measurement error and statistical deviations due to variations in the construction of these real
tires.

2.7 The Linear Model

The problem is to determine individual coefficients ¢, for all layers k = 1,...,m, from obser-
vations of the lumped coefficients C°, where the experimental design involves choosing some
appropriate vectors of angles © = (6,6s,...,0,). The design also should find the number of
vectors ©!, 02 ... OF required to accurately determine the coefficients cf. These coefficients
must be determined for a range of harmonics, say n = 1,...,¢, and it will be convenient to
design the experiments to work for all these harmonics simultaneously.

It is natural to group the coefficients into column vectors, as

C1
| =7
k
Cq
and
o)
Cy
: — (°
o)
C’q

The linear model encompassing all layers, and the range of harmonics, can thus be written in
block form as

ce' Dy Dy ... Dy, &
6_;92 De% Dag P Dg%n EQ
) = i X ) +€
C_Y'QR De{i D02R P Darlr%L élm'
where ©!,... O is the choice of vectors of angles set in the experiment, the Dy are g X g

diagonal matrices with entries e=2""% on the diagonal, and € is the statistical measurement
error. 3

More succinctly, the linear model is represented by C® = D&+ € with D a matrix in block
form, each block a diagonal matrix as above. If these were real matrices, the solution via least
squares is clear. It was a simple exercise, undertaken in the course of this workshop, to verify
that even for complex matrices, the least square solution is obtained in a straightforward manner
via computations with the usual complex inner product. Namely, one solves for ¢ as

¢=(D'D)"' D¢,

where D* indicates the complex conjugate transpose of the matrix D. Similarly, the variance
estimates for the inversion will depend on the properties of matrix (D*D)~'.
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Noting that D*D is also in block form, it is convenient to permute rows and columns (es-
sentially grouping terms by layers, rather than harmonics) to obtain a matrix X = Perm(D)
so that X*X is in block diagonal form, with

(Z1) 0
Z
X*X = ( 2) . ,
0 (Zy)
where each m x m block (Z,) has entries

R

(Zn)jk — Z 627rin(0,§—0;-)‘
r=1

This greatly simplifies the analysis, since each block (Z,,) may be examined separately. Notice
each such block corresponds to a separate harmonic.
The problem becomes that of estimating the regression coefficients in the multiple regression
model -
C®=Xé+e
A standard assumption is that
Var(€) = 0* I

for some (unknown) value o. It was pointed out that this assumption essentially says the R tires
and ¢ harmonics act independently, and different measurements have equal error; this may be a
gross oversimplification worth further investigation. For instance, there may be some bias in the
way the tires are constructed for the test, or trends reflected in the sequence in which the tires are
built. On the other hand, the harmonics are orthogonal measures in a large dimensional space,
and at least some of us were convinced that the first few harmonics would act independently,
with similar measurement error. In any case, we proceed with this assumption.
The least-square estimator of ¢ is

¢=(X*X)'X*CO

with variance

Var(é) = (X*X) ' X*Var(@ X (X*X)™ = o*(X* X)L
Thus the problem of finding an optimal design boils down to finding a matrix X such that X*X
is “good.” For more general forms of Var(€), the optimal condition is more complicated.

Some possible optimality conditions (“goodness” of X) include minimizing the determinant
of the matrix (X*X)~! (D-optimality), minimizing the spectral norm of (X*X) ™!, or minimizing
the maximum eigenvalue of (X*X)~!. It turns out these three conditions are equivalent, since
the matrix (X*X) has trace independent of the choice of angles (equal to mgR) and thus
the minimum occurs when all eigenvalues are equal, and X*X is R times the identity matrix.
Generally speaking, the closer X* X is to diagonal, the better.

Another optimality condition is to fix some vector w and minimize the variance Var(w'é),
which is a weighted sum of the entries of ¢. This would be of interest to the manufacturer when
some harmonics, or some layers, are deemed to be more important than others.
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2.8 Numerical Experiments

Random sampling of the m-dimensional hypercube [0, 27]™ with a given sample size R (number
of tires) produces random vectors of angles ©' ... O which are exponentiated to produce
random matrices X. The block diagonal structure of X*X allows us to focus on one harmonic
at a time. Moreover, with the components of ©" chosen uniformly in [0, 27|, then the mod 27
part of multiples nO" are also uniformly distributed. Thus the Monte Carlo designs work for all
harmonics.

Software code was produced in MATLAB to generate these random matrices and search for
a best solution, typically from a sample of 10,000 to 100,000 random matrices. Sample code
is provided in the appendix. Plots were obtained to show how the performance of MC-best
solution improved with increasing R. A 1/R dependence was easily observed, although even for
large values of R, the MC-best solution was not at the theoretical best solution, where X*X is
a multiple of the identity.

This led to the following theoretical observation. Recall for only one (n-th) harmonic, that

R
(X*X)jk: — Z e?win(eg—@;)'
r=1
Thus on the diagonal, (X*X);; = R, while on the off-diagonal, as R — oo,
1

R
1 y r T
(X*X)jlc _ E : _627rm(¢9k—0j)
R —~ R

1
N / eant dt
0

= 0,
where the random sum is simply an approximation to the integral. Thus
1
lim —(X*X) =1,
A g X) = T

which suggests that for large R one should see (X*X) ™! approximately equal to %Im. Thus the
Monte Carlo designs should be tending to this limit, although the convergence may be quite
slow. In general, for uniform sampling, one expects

® o
Z 2 p2min(8;—07) o €
R
r=1

N

for some constant ¢ > 0.

A number of other numerical experiments were tried, including choosing random vectors of
angles © where all but a few (say 4) of the angles were zero, and choosing angles from a discrete
subset of [0, 27], say of 10 to 30 evenly distributed points. We tried to find interesting patterns
in the resulting MC optimal designs, but did not see anything remarkable. However, these
restricted MC designs have their use in practice, for instance when the operator constructing
tires can only adjust a few layers at a time, or has only a limited precision in choice of angles.
The 1/R behaviour was also noted in these designs. MATLAB code for these experiments is
included in the appendix.
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2.9 The Prime Method

Having explored the Monte Carlo method extensively, some ingenuity was required to find
concrete patterns that would provide optimal methods without the MC search. An initial
observation was that the matrix (X*X) has off-diagonal terms which are sums of complex
exponentials. It thus might be possible to arrange these exponentials to sum to zero. Indeed,
note that

hence if for each pair (j, k), the numbers {#; — 85 }2, are a permutation of the fractions { %}/,

then the matrix X is in its optimal form, with (X*X)™! = %Im exactly. This construction is
then much better than the Monte Carlo method.

It turns out this can always be arranged when the number of layers m is a prime number, in
which case the design size R is taken to be R = m. Here is an example of the matrix of angles
for m = 5:

00000 !

or | 01234 ©?
eH="-102413|=|6
03142 o4
04321 e’

Since Z/5 is a field, it is easy to see that multiplication by n just permutes the rows of the
matrix (6%) (when n # 0 mod 5). That is, the matrix (n6¥) also gives an optimal form, so this
first design works equally for all harmonics which are not multiples of 5.
In general, for m equal to any prime, choose the design matrix of angles to be m x m with
entries
. 2m
07 = —{( —1)(r — 1) mod m}.

m

Again, this design gives optimal X for any prime m and any harmonic n which is not a multiple
of m. This is a result of the fact that Z/m is a field when m is prime, as shown in the following:

Theorem 1 For integer m prime, n not a multiple of m,and design angles chosen as

. 2T
07 = i (j —1)(r — 1) mod m},
then the corresponding design matriz
Xjk) — 67L0JT-

18 optimal.

Proof. The covariance matrix X*X has entries (X*X);;, = 3.7, ¢*%=%) 5o along the
diagonal, the exponentials are each equal to one, thus (X*X);; = m. Off the diagonal, for any
J # k, the exponentials have powers of the form 27i(n(k — j)(r — 1) mod m) for r in the range
1,2,...,m. Since n(k — j) is a non-zero element in the field Z/m, multiplication by this element
of the sequence {r — 1} ={0,1,...,m — 1} simply permutes these elements of the field, so the
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sum is over the m roots of unity. Hence each off-diagonal element of the matrix X*X is zero.
Thus X*X is a multiple of the identity, and optimal.

In summary, this choice of design angles gives a powerful method both in that it gives
explicitly an optimal solution, and that it also works for a range of harmonics.

There are some disadvantages to this method. First it is somewhat inflexible in the number
of layers m, as m must be prime. This can be remedied by introducing “fake” layers to reach the
next lowest prime. For instance, for 20 layers, just pretend there are 23 layers, three of which
are virtual. Or group two insignificant layers and call them one — so 20 becomes the prime 19.

Second, it requires using as many angles as there are layers. That is, if one has 19 effective
layers, each of the 19 layers must be set to various angles as the tires are constructed. This can
be an expensive, if not impossible, construction in some tire plants. A partial solution is to use
a method of blocking layers, as discussed in the section below.

Finally, there is the problem of setting angles exactly: the operator may have only limited
accuracy on how precisely layer angles can be set during construction, and may have physical
obstruction in choosing particular angles. This method expects the operator to freely choose
the angles.

2.10 The Blocking Method

To avoid the problem of setting many angles for many layers, it is convenient to block off groups
of layers and treat them as a single unit. Indeed, this block layer can be rotated by zero degrees
— in effect, no rotation — so only the remaining layers need to be rotated.

There is much flexibility in this method, as one can choose how many layers to move, how
to group them, and so forth. Rather than explore all the possible permutations, here is a simple
example with 12 layers, and setting no more than 5 angles at a time. One way to proceed is to
group the first 8 layers as one, and treat the last four independently, giving 5 effective layers.
Next, group the first and last four as one, middle four treated independently. Last, group the
final eight as one.

Thus, the groupings of layers looks like the following:

actual: 1 2 3 4 5 6 7 8 9 10 11 12
groupa: 1 1 1 1 11112 3 4 5
groupb: 1 1 11 2 3 451 1 1 1
groupe: 2 3 4 5111111 1 1

The corresponding design of vectors of angles is given by choosing the 5 x 5 blocks of the last
section, using the prime method. For clarity, we can show this array in block form, with blanks
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indicating the blocked zeros, giving this 15 X 12 array:

[ 0000
12 3 4
2 41 3
31 4 2
43 21
0000
or 123 4
O ="~ 2 41 3
314 2
4321
0000
12 3 4
2 413
31 4 2
\ 4321 )

In fact the zero rows are not particularly useful, since there are plenty of zeroes elsewhere in the
matrix. Eliminating the zero rows gives the following 12 x 12 matrix:

=W N
LW o N
N =~ = W
N W o

W = BN
N W

ot
=W N
DN =~ = W

= o N =
W RN
DN s =W
— N W

Exponentiating with X, = ™%, one finds the following covariance matrix with an elegant
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block form:

(12 7T 7T 2 2 2 2 2 2 2 2 \

T 12 7 7 2 2 2 2 2 2 2 2

T o7 127 2 2 2 2 2 2 2 2

T o7 7T 12 2 2 2 2 2 2 2 2

2 2 2 2 12 v 7 7 2 2 2 2

N 2 2 2 2 v 12 7 7 2 2 2 2

(X°X) = 2 2 2 2 v v 12 7 2 2 2 2

2 2 2 2 7 7 7 12 2 2 2 2

2 2 2 2 2 2 2 2 12 7 7 7

2 2 2 2 2 2 2 2 7T 12 7 7

2 2 2 2 2 2 2 2 7T 7 12 7
K 2 2 2 2 2 2 2 2 7 7 7 12 }

This is not an optimal matrix, but it is a reasonably good one whose performance is better than
the MC designs found above. In general this method can be extended, using small primes to
form p X p sub-design matrices which are used to tile the larger R x m full design matrix.

2.11 The GLP Method

The Good Lattice Point (GLP) method of Fang and Wang (Ref. [1]) uses a careful choice of
lattice points in an m-dimensional hypercube to accelerate integration over a multidimensional
Riemann sum. The basic insight is to look for angle combinations which will lead to sequences

{0; — 07 R | which will allow for fast convergence of the sum

1
Z leni(% —07) N e2miInT ..
R 0
r=1

With the Monte Carlo method, random sampling of the hypercube produces random sequences
on [0, 1], but with a slow convergence of order R~3. The GLP method will exhibit convergence
at the faster rate of R™*log™(R). We tested the GLP method to see if we would obtain a good
sequence of angles, and came up with a surprising conjecture.

First, let us recap the definition of a lattice point set and a GLP set, as discussed in refer-
ence [1]. Let (R, hq, ha, ..., hy) be a vector of integers satisfying

e m< R
[ ] 1Sh]<R
® hj # hy, forall j #k

e (hj, R) are coprime, for all j.
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The lattice point set of the generating vector (R;hy,hs,...,hy,) is the set of vectors
{(z1, -, Tpm), 7 = 1,---, R}, with values

2rh; — 1
x,; = frac <M;T> ,

where “frac” denotes the fractional part of the given real number. If this set has the smallest
discrepancy (defined in Fang and Wang), it is called a GLP set.

The principle behind GLP sets is that generating vectors can always be constructed so that
a GLP set is created, whose points are uniformly distributed about the hypercube. Fang and
Wang tabulate many different choices for a range of R and m, corresponding in our case to
numbers of tires R in the experimental design, and number of layers m per tire.

In our tire example, the vector of angles are obtained from the lattice point sets by scaling
by a factor of 27, so 67 = 2mx,;. We tested a number of the GLPs from the book to see how
close they are to optimal, and found in every instance, they were exactly optimal. We have the
following:

Conjecture 1 Fvery GLP set produces an optimal design: that is,
* -1 1
(X*X)™" = EIm exactly.

Moreover,
e m can be chosen arbitrarily (not necessarily prime)
e R can be chosen arbitrarily (although prime a popular choice)

e the same design is optimal for all harmonics co-prime with R.

In the workshop, there was not enough time to explore how GLP sets were constructed in the
literature, so it was not clear to us how optimal designs were resulting from these choices. A
quick review of work in the area indicates some number-theoretical results are being used to
construct the charts of Fang and Wang. However, a simple examination shows the differences
Tpj — Ty = frac(F(hj — hi)), so as in the prime method, the sum in the covariance matrix will
cycle around a subset of the R roots of unity. For a good choice of the h;, this subset will always
sum to zero. Thus, while this is short of a proof verifying the GLP method works, there is the
basis for a useful technique, explored in next section.

2.12 The Simplified Lattice Method

The GLP method is in fact too sophisticated for the problem at hand, as all that is needed are
roots of unity that sum to zero. However, it suggests the following technique, which we call the
Simplified Lattice Method.

Theorem 2 Fiz an integer m > 0 and fir N a subset of {1,2,...}. Suppose (R;hy,ho, ..., ~hy)
is a vector of integers satisfying
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e m<R
e R is not a divisor of n(h; — hy) for alln € N, j # k.

Then the vectors of angles (scaled lattice points) defined by

2T
9;- = E(’rhj mod R)

gives an optimal design for all harmonics n € N. That is,

1
X*X) = =1
(XX =

Proof. For harmonic n in the set N and j # k, the integer n(h; — hy) is not divisible
by R and hence the map r — n(h; — hy)r mod R defines a endomorphism on the ring Z/R
which has more than one element in its range, a subring of Z/R. Thus when scaled by 27i and
exponentiated, one obtains some R’ roots of unity, for some divisor R’ > 1 of R. Thus the terms

in the sum
R

Z eQﬂ'nr(hk—hj)/R
r=1
simply cycle around these R' roots of unity, and so sum to zero. Hence the off-diagonal terms
of the covariance matrix X*X are zero, the diagonal terms are R, and the optimal design is
achieved.
These criteria are easy to fulfill in any situation of tires, as shown in the following.

Example. With m the number of layers in the tire, and NN a finite set of harmonics, let R
be any prime number strictly bigger than m and all integers n € N. Then the integer vector
(R;0,1,2,...,m — 1) generates lattice points yielding an optimal design.

This example gives a method much like the original prime method described above. However,
the number of layers m need not be prime, and one can select any finite set of harmonics, yet
still obtain an optimal design. The number of tires R need not be prime: one could choose a
composite number with some prime factor bigger than m and all n.

There remains the disadvantage that almost every layer on almost every tire must be set to
a non-zero angle, and the angles must be set to accuracies on the order of 27/R. Blocking may
be used as a partial solution to this problem.

2.13 Robustness

We considered two ways in which a study may be corrupted:
e a tire is lost;

e there is some errors in the angle set.
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A lost tire amounts to deleting a row from the matrix X. We considered a numerical example
with R = 23, by removing a row at random, and measuring the eigenvalues of the resulting
suboptimal matrix. The result was still close to optimal (i.e. eigenvalues nearly constant), even
with two or three rows removed. Indeed, these suboptimal designs were still much better than
our Monte Carlo searches. This was enough to convince the team that the optimal design was
fairly robust; however we did not have time to investigate this more fully.

Errors in the angle setting can be investigated by a Monte Carlo study where normal random
variates are added to the angles. Again, the design appears to be quite robust to such departures,
although we note higher harmonics are proportionally more sensitive.

MATLAB code for both these investigations is included in the appendix.

2.14 Tire Types vs Replicates

Introducing tire replicates of the same type (that is, tires with the same vector of angles ©")
can help reduce the variance of the estimators and may be more cost-effective. This would be
the case if it is cheaper to manufacture a run of several tires of the same type in a given study.
The linear model becomes 3
C°=(X®1,)¢+F¢

where ® denotes the Kronecker matrix product, and n is the number of replicates of each type
of test tire. If one assumes the variance remains as Var(e) = 02I,g, then

X®1,)"X®1,) " (X ®1,)Izr® L) (X ®1,) (X ®1,) (X ®1,))”"
X' X®1:1,)) "

Var(¢) = (
(
=

(
(

0.2

= —I5.
nRkR "
Thus for good designs, the variance is inversely proportional to nR and it thus may be more
effective to increase n and not R.
One must be careful to recognize that in the case of tire replicates, there are two different

classes of error sources:

e errors specific to a particular type of tire (perhaps caused by inaccurate machine settings
for the mold building one particular tire), and

e errors specific to individual tires or measurements.

The error structure is then of the form

LS PR
+o
Var(€) = ,Y ! ! 7 ®... R times,
2 SRR 72 + o2

nxXn
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or more concisely, Var(€) = o?I,g + 7?Ir ® (1,1}), where ¢? is a measure of the error in

measurement, 2 the error in type. When both errors occur, repeating the calculation above
shows the variance for the replicant test has the form

Var(¢) = (%2 + ) (X*X) L

Thus while increasing n, the number of tires in each replicant set, will reduce the effect of the
o? errors, beyond a certain point it becomes necessary to reduce (X*X)™! to affect the other
€rror sources.

2.15 Summary

Over the course of the workshop, our team has developed some concrete solutions to the analysis
problem in building tires with maximal uniformity. We have developed Monte Carlo methods
to approximate optimal designs, found a number of general, explicit constructions for optimal
designs, and demonstrated a blocking technique that addresses some of the complexity issues in
the optimal designs that are relevant to the industrial practitioner. We have also investigated
the robustness of the optimal designs, and examined the effects of replicating tests to improve
performance of the analysis. MATLAB codes for all these investigation have been included in
the appendix of the report.

In addition, the techniques described would be useful in a variety of vibrational problems
requiring the determination of the contributions to the harmonic components of a periodic signal.

2.16 Appendix

Over the course of the workshop, a number of short MATLAB scripts were produced to test
some ideas, establish conjectures, run Monte Carlo methods, and generally explore ideas on the
computer. Some of the more complete scripts are included here. Briefly, they are

e stats.m (Figure 2.1) Monte Carlo method for finding near optimal designs. A measure is
provided of how the performance improves for increasing number of tires. Three optimality
criteria are used.

e statl.m (Figure 2.2) Another Monte Carlo method, with graphical output to demonstrate
how the performance improves.

e stat2.m (Figure 2.3) Monte Carlo search for optimal designs, with only a limited number
of layers adjusted at random — in this cases, only four layers may be moved for any one
tire. Graphical output of performance.

e minangle.m (Figure 2.4) Chooses a near-optimal design using a Monte Carlo method, with
limited precision on the angles. A display of the resulting angles is provided, to see if there
are any useful patterns appearing in these random designs.
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% file stats.m
% Monte Carlo method to find good designs, three different criteria
% See how performance improves as number of tires increase
zmean = [];
zstd = [];
for k = 20:5:80

z = [1;

for j = 1:100,

c = ones(20,1)/20;

exp (2*pi*i*rand(k,20));
inv(x’*x);

z = [z; real(max(eig(y))), real(max(diag(y))), real(c’*y*c)];
end

X
y

zmean = [zmean;mean(z)];
zstd = [zstd;std(z)];
end
zZmean
zstd

Figure 2.1: Script stats.m

e cyclicl.m (Figure 2.5) Builds an optimal design using the prime method, and verifies
that it is optimal.

e Lattice.m (Figure 2.6) Builds an optimal design using the GLP method, then randomly
perturbs the design angles to simulate a technician with limited angle control. A test of
robustness of the GLP optimal design.

e removerow.m (Figure 2.7) Beginning with an optimal design, randomly removes a row
from the design matrix to see what happens to the performance of the design. Another
test of robustness.
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% File statl.m
% Monte Carlo method to find good designs
% Some graphics output to help us see
zmean = [];
zstd = [];
zmin = [];
c = ones(20,1)/sqrt(20);
for k = 20:5:100
z = [1;
for j = 1:100,

x = exp(2xpixix*rand(k,20));
y = inv(x’*x);
z = [z; real(max(eig(y))), real(max(diag(y))), real(c’*y*c)];
end

zmean = [zmean;mean(z)];

zstd = [zstd;std(z)];
zmin = [zmin;min(z)];
end
Zmean
zstd
zmin

semilogy((20:5:100)’ , zmean)
title(’zmean’)

pause

semilogy((20:5:100)’ , zstd)
title(’zstd’)

pause

semilogy((20:5:100)’ , zmin)
title(’zmin’)

Figure 2.2: Script statl.m
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% File stat2.m

% Monte Carlo method to find good designs, three different criteria
% Only four angles may be changed at a time

zmean = [];

zstd = [];

zmin = [];

c = ones(20,1)/sqrt(20);

for k = 25:5:100

z = [1;
for j = 1:100
x =[];
for kk=1:k
x = [x;exp(2*pi*i*rand(1,20).*(5>randperm(20)))];
end

y = inv(x’*x);
z = [z; real(max(eig(y))), real(max(diag(y))), real(c’*y*c)];
end
zmean = [zmean;mean(z)];
zstd = [zstd;std(z)];
zmin = [zmin;min(z)];
end
zmean
zstd
semilogy((25:5:100)’ ,zmean)
title(’zmean, 4 angles’)
pause
semilogy((25:5:100)’ ,zstd)
title(’zstd, 4 angles’)
pause
semilogy((25:5:100)’ ,zmin)
title(’zmin, 4 angles’)

Figure 2.3: Script stat2.m
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% File minangles.m
% This finds some good matrix, and the display what angles were chosen

CC = 5 ; 7% the number of components (columns of X)
KK = 5 ; % the number of tires (rows of X)
zmin = .1; % the minimum value so far

zangles = [];% the angles at the minimum, so far
for j = 1:100000
a = rand(KK,CC);
x = exp(2xpixixa);
y = inv(x’*x);
z = real(max(eig(y)));
if (z>zmin)
J
zmin = z
zangles = a;
end
end
’done - look at the plot!’
plot(zangles,’.’)
title(’angles by tire - max eigs’)
pause
plot(zangles’,’.’)
title(’angles by component - max eigs’)

Figure 2.4: Script minangles.m

% File cyclicl.m the cyclic (prime) method of choosing angles

% p = a prime = number of components (including fakes) eg p = 19

% h = which harmonic 1 <= h <= p-1

p = 19;

h=1;

t = mod(h*(0:(p-1))’*(0:(p-1)) , p)/p; % cyclic choice of angles, scaled 0 to 1
X = exp(2*pixix*t);

y = X7*x;

z = max(max(abs(y - p*xeye(p))))

% typically, z (the error) is size 10°{-15}
% so we conclude x’*x = pI (multiple of the identity matrix)
% 1its inverse has eigenvalues 1/p

Figure 2.5: Script cyclicl.m
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% File Lattice.m
% Computes a design via the GLP method, then introduces error in the angles
zmean = [];
zstd = [];
zmin = [];
ones(5,1) /sqrt(20);
[1,2,10,13,16];
1:21;
(2%1°%h - 1)/(2x21);
a - floor(a);
= exp(2*pi*xix*t)
%y = x7*x
heig(y)
for k = 0:0.01:0.1
z = [1;
for j = 1:100
x = exp(2*pi*xix(t + k*randn(21,5)));
y = inv(x’*x);
[z; real(max(eig(y))), real(max(diag(y))), real(c’*yx*c)]

c
h
1
a
t
%x

z
end
zmean = [zmean;mean(z)];
zstd = [zstd;std(z)];
zmin = [zmin;min(z)];

end

zZmean

zstd

zmin

plot((0:0.01:0.1) , zmean)

title(’zmean’)

pause

plot((0:0.01:0.1) , zstd)

title(’zstd’)

pause

plot((0:0.01:0.1) , zmin)

title(’zmin’)

Figure 2.6: Script Lattice.m
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% File removerow.m
% This takes one of the nice matrices, removes a row at random
% and sees what happens to the eigenvalues

s = 5; J, number of components
n = 21; % number of tires
h =1[1,2,10,13,16]; % from the book
k = 1:n;
t = rem((2xk’*h-1)/(2*n),1); % the angles, between 0 and 1
x = exp(2xpixi*xt); % matrix
Xp = x’;
xq = xp(:,[1,2,4,5,6,7,10,11,12,13,15,16,17,18,19,20,21]);
y = xq*(xq’);
min(real(eig(y)))

Figure 2.7: Script removerow.m
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