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5.1 Introduction

This paper is concerned with the recovery of petroleum fluids from an oil reservoir using electrical
energy. By its very nature this problem must deal with both the equations that describe the
fluid flow as well as the heat flow equations. In general, the oil in the wellbore is very viscous
with the consequence that the fluid moves slowly. As a result, the amount of oil collected in a
given time is quite small. To increase the production rate of the well, the oil’s velocity needs to
be increased. One method of accomplishing this is by heating the fluid using an electromagnetic
induction tool (EMIT). The simple principle behind the EMIT is that it heats the fluid thereby
decreasing its viscosity and increasing its velocity. This method of increasing the production
rate of a given wellbore is currently being utilized with the generalization that for wells of several
hundred metres in length, several EMIT regions are placed in the wellbore at intervals of about
one hundred metres. So that they are all supplied sufficient power, these EMIT regions are
connected by a cable surrounded by a steel housing.

We are interested in developing a mathematical model of this problem with the ultimate
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goal of investigating analytically the relationship between the temperature of the EMIT and the
production rate of the oil.

One approach to this problem is to write out the full system of coupled partial differential
equations that relate the temperature and the velocity flux and then to solve them numerically
with an expensive computational fluid dynamics (CFD) program. Indeed, this method has been
used in the past [4] and it will be used to test the accuracy of our simplified model in the
absence of experimental data. The purpose of this paper is to carefully analyse each of the
physical processes in this system and by making some basic assumptions, to derive a simple set
of equations that still captures the main features of the system modelled with the CFD code.

This paper is organised in the following way. Section 5.2 describes the overall geometry of the
problem and establishes the coordinates used to describe the model. At this point the problem
is broken into three subproblems: i) the flow of fluid in the reservoir, ii) the flow of fluid in
the wellbore and iii) the generation of temperature from the heat sources in any EMIT regions.
Parts i) and ii) result in a second order ODE for the oil flux for a fixed viscosity. From part iii)
it is found that the temperature of the fluid is inversely proportional to the velocity. Fluid that
moves slowly past an EMIT region will absorb more heat than the same amount of fluid that
moves quickly past an EMIT. As a result, slowing the fluid velocity increases the temperature
and therefore decreases the viscosity. This viscosity is used in parts i) and ii) thereby closing
the system of equations.

Part i) is described in section 5.3, where a relationship between the axial changes in the fluid
flux and the pressure in the wellbore is derived. The details of part ii) can be found in section
5.4 where a relationship for the velocity and the pressure from the Navier-Stokes equations is
obtained by averaging over the radius of the wellbore. Under the assumptions made, the pressure
is found to be related to the radius of the wellbore by a form of Poiseuille’s law.

Finally, section 5.5 details the derivation of part iii), the temperature equations. This deriva-
tion is complicated by the fact that there are four radial regions of the radial problem to consider;
EMIT, casing, reservoir and wellbore with the first three forming the boundary conditions for
the heat equation in the wellbore region. Furthermore, there are three axial regions: EMIT
region, cable region, and a region where there is neither EMIT nor cable. Section 5.6 pulls the
results of sections 5.3, 5.4 and 5.5 together and section 5.7 illustrates the analytical solution of
the resulting model in the simple situation when no heat is applied to the oil.

In section 5.8, we discuss numerical results of the simplified model with respect to the results
predicted by the CFD code. On comparison, we find considerable qualitative agreement between
the two models which is quite remarkable considering their relative complexities. These aspects
are further discussed in the final section of the paper.

5.2 Geometry

Figure 5.1 depicts the overall geometry of the problem. A horizontal cylindrical well extends
from z = 0 to z = L. Fluid flows radially into the well from the surrounding media and is drawn
out with a pump which is located at z = L where a fixed pressure of Pp is maintained.

At z = 0, where the end cap is situated, the motion of the flow is radially inward (no
horizontal flow at this point). As one increases in z, the action of the pump comes into effect
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Figure 5.1: Overall geometry for the horizontal wellbore problem.

and imparts a horizontal component to the fluid flow.

This figure shows only one EMIT region which extends from z = Ly to 2z = Ly. It is in
these EMIT regions that the oil is heated. Power is supplied to the EMITs through a cable
housing resulting in three different regions. Starting at the pump we have a cable housing
region that extends to the first EMIT. If there are other EMIT regions then they must also be
joined with cable housing and eventually, after the last EMIT region, the wellbore is open with
no impediment to the horizontal flow.

5.3 Axial Velocity: Darcy’s Law

Once the horizontal well is drilled, fluid seeps from the surrounding region into the wellbore.
Once inside the wellbore, the fluid is drawn out with a pump that maintains a fixed pressure
at one end of the well. The rate at which the fluid seeps into the wellbore is a function of the
pressure differential and the viscosity of the fluid. Indeed, the flow rate (volume/time) of the
fluid into a segment of the wellbore of length Az is given by the expression [2]

_ 27k[Py — P(2)]

q(z) = oIn(Ra/R.) Az (5.1)

where k is the permeability of the reservoir, Pg is the reservoir pressure, P(z) is the pressure
inside the wellbore at the axial position z, p, is the viscosity at the ambient temperature 75,
Ry is the drainage radius and R, is the outer radius of the casing.

Since we are assuming that we are at a steady state, we make the assumption that the
radially flowing fluid remains unheated until it reaches the inner radius of the casing at which
point it instantly becomes heated to the temperature of the fluid at that particular z position.
Consequently the viscosity in expression (5.1) will remain as u, even once the temperature of
the wellbore is increased.
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Figure 5.2: An infinitesimal section of the wellbore for the EMIT or cable housing regions.

Using equation (5.1) one can find an expression for the average axial velocity of the fluid,
v(z). Let R, denote the inner radius of the wellbore which could be zero, the radius of the
EMIT tool, R., or the outer radius of the electrical housing, Ry. Using this definition of R,, let
n(z) = m(R%Z — R%)u(z) which is the flux in the wellbore. The advantage of using 7(z) rather
than v(z) is that n(z) is a continuous function whereas the velocity v(z) is not.

Figure 5.2 shows an infinitesimal annular section of the wellbore of length Az. At z = z,
the axial flux is n(z,) while the radial flux is given by expression (5.1). By the conservation of
mass, these two components combine to give the axial flux at z = z, + Az. In other words,

27k[Pgr — P(z)]
to In(Raq/Re)
Rearranging terms and letting Az — 0 gives the expression

dn _ 2mk[Pgr — P(2)]
dz ~  poln(Ry/R.)

n(z.) +

Az = n(z + Az).

n(0) = 0. (5.2)

The boundary condition 7(0) = 0 just expresses our approximation that the axial fluid velocity
is zero at the end of the wellbore. Since P(z) < Pg throughout the wellbore, dn/dz > 0 which
is consistent with having the fluid flux increase as it approaches the pump located at z = L.

5.4 Axial Pressure: Navier-Stokes

A relationship between wellbore pressure and flow velocity is obtained from the Navier-Stokes
equations for an incompressible!! viscous fluid,

07
P ot

1A fluid is said to be incompressible if the velocity satisfies V - @ = 0.

+ p(5- V)7 = —VP + puAi. (5.3)
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Again refer to figure 5.2 where we consider an arbitrary yet constant cross section. Assume a
steady fluid flow inside the wellbore that propagates in the k direction. Assuming that the flow
is radially symmetric, we have ¥ = U(r)lAc and the continuity equation is automatically satisfied.
Resolving (5.3) into the r, § and z directions gives 0P/dr = 0 = dP/06 and

10 ov oP
;505);5' (54)

The first two conditions on the pressure imply that P = P(z). As a consequence, the RHS of
(5.4) is a function of z alone while the LHS is a function of r alone. The only way that this can
be so is if the pressure is constant over the cross-section of the wellbore. This implies that for
our annular domain R, <r < R, and z, < z < z, + Az we must solve

10 ( Ov AP

where AP = P(z,+ Az) — P(z,) < 0 and we have imposed a no slip condition on the boundary.
The general solution for the velocity distribution as a function of radius in this case is found to

be
_1AP[, _, R:-R? r
”W—@EP—&fmmmynm :

For regions in which there is no EMIT tool or tubing (R, = 0), this reduces to the familiar
parabolic flow profile
1 AP

v(r) = @E(TQ —R3).

In order to find the average flux of oil at any fixed value of z one needs to compute the
average of this radial velocity. Computing this average results in

2 R 1AP[ R2-R> R:-R!
V= e / v(r)rdr = — [ u = = ;] .
(R2, — R2) /g, 8u Az |In(R,/R,) R2 — R?

If we now let Az — 0, rearrange terms and use the definition of n this becomes

dP 8y In(R,/R,)

dz — w [(Ré — RY)In(Ry/R,) — (R2 — Rg)z} n(2); P(0) = Pp (5.5)

where Pp is the pressure maintained by the pump at z = L. If one allows R, — 07 then equation
(5.5) reduces to

dP 8u

P —@77(2)

which is the popular Hagen-Poiseuille [1] equation. We have now reached the point where we
can consider what happens as the wellbore is heated.
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Data Symbol Value
Wellbore Properties
Outer Casing Radius R, 69.85 mm

Inner Casing Radius R, 63.50 mm
EMIT Radius R, 50.80 mm
Housing Radius Ry 30.1625 mm
Left Edge of EMIT Ly 495 m
Right Edge of EMIT L,y 505 m
Wellbore Length L 1,000 m
Reservoir Properties
Permeability!? k 10,000 mD
Ambient Viscosity'? Lo 15,000 cP
Drainage Radius Ry 100 m
Reservoir Pressure'* Py 5,000 kPa
Producing Pressure Pp 500 kPa

Thermal Properties
Fluid Heat Capacity pCy 2.8 x10° Jm 3K !
Casing Power Q. 795.8 kW m 3
EMIT Power Q. 79.58 kW m 3
Ambient Temperature T, 30°C

Table 5.1: Input Data for the example calculations.

5.5 Including the Temperature

For the purposes of this discussion, we assume that the wellbore has a steady state temperature
distribution that is a function of  and z alone. As well, to simplify the expressions, we will take
the far field temperature to be zero. We also assume that thermal conduction in the z direction is
negligible. The primary sources of heat are the EMIT regions and the casings around them and
it is assumed that the heat production is uniform. Since the reservoir and casings are porous,®
heat is convected radially in them. In the wellbore, oil flows along the axis and therefore heat
is convected axially in the wellbore.

Consider the casing. In this region, the total rate of heat flow is the sum of the flow due to
heat conduction and the flow due to the movement of fluid in the radial direction. The result
of this is that the heat flux in the casing is given by

- ou R
o, = (Aca + pC’fvru> T. (5.6)

We have denoted the temperature as u(r, z), the radial speed of the fluid as v,, the conductivity

121 darcy = 9.86923 x 10713 m?.
131 centipoise = 1 x 1072 kg m~'s~1.
141 pascal = 1 kg m~1s72.

15The casing actually has holes drilled into it for the transport of oil.
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of the casing as A, and pC/ for the fluid heat capacity.

For any closed region the total heat energy produced must equal the total heat energy lost.
Let (). be the amount of heat energy produced in the casing per volume per unit time. By
choosing a cylindrical region of radius r and length Az expression (5.6) implies that

2 Az )\cra—u + pCrro,u | + QWAZ/QC rdr =0 or 12 )\Cr—au +Bu)+Q.=0
or ror or
(5.7)

where 8 = pCrv,. A similar line of reasoning yields expressions for the reservoir, wellbore and
EMIT. These equations are summarized below:

_ 10 ou
Reservoir: e ()\TTE + ﬁu) =0 (5.8)
10 ou pCy 0
11 : - — )| =—— .
Wellbore B (Awr 87‘) . (nu) (5.9)
10 ou
EMIT ;E (Aéf‘%) + Qe = O (510)

We are not interested in resolving the details of the radial temperature distribution in the
wellbore. Rather, we only care about the axial variations of the mean temperature. This
permits a simplification. First define the mean temperature over the wellbore cross-section at z
to be
2 H
T(z2) = - u(r, z) rdr
)= G /. )

as we did with 7 in the derivation of equation (5.5). Recall that R, is the inner radius and
depends on z. With this definition, the equation for the wellbore (5.9) can be integrated resulting
in the expression

'z

Ry

d ou
2 _ p2y — -
pCr(R; — R) Z(nT) 27T Ay o

The thermal flux in the wellbore is given by

(5.11)

R,

51” = A\py—=—T+

This must be continuous at the interfaces. Hence in the radial direction for the wellbore/casing
and wellbore/EMIT interfaces one has respectively

ou ou ou ou
Aw— =[r\.— d Ao—=—| =71Ae—=—]| .
= Ry <T or +Bu) Ry an = R, " or R,
It remains for us to evaluate these fluxes.
By solving (5.10) we find that
ou 1

Aer—| = —=Q.R% 5.12
rar R, QQ ? ( )
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Furthermore, by solving (5.8) one finds that the temperature has the general form
u(r, z) = ky + kor=P/*

where k; and ky are constants. Because the far field temperature is zero, one must have
T(£o0,2) = k; = 0. As a result,

9
)\rra—;f + Bu = Bk, = 0. (5.13)

So the thermal flux in the reservoir and, in particular, the thermal flux through the cas-
ing/reservoir interface is zero. Using this as a boundary condition one can integrate the ex-
pression for the casing (5.7) to find that

ou
()\CTE + BU)

Collecting equations (5.11)-(5.14) gives the final result that

=@ R (5.14)

pcfdii[n(z) T(2)] =7 [Qu(2) (R — R) + Qe(2)RE] s T(0) =0. (5.15)

The heat sources Q. and (). have been written as functions of z. If one is not in an EMIT region,
these functions are simply zero. As a result, the RHS of (5.15) piecewise constant; nonzero only
where an EMIT is located. Integrating (5.15) gives the result that

([ 0; 0<z< Ly
Q z—1L 2 _ p2 2 _
_ —_— Ly < L _ W[QC(RC Rw) + QeRe](Ll LO)
T(2)={ 3@ Ii—L, °=7<™ Q= oC; . (5.16)
Q
N\ Ll S z S L,
L 1(2)

From the values in table 5.1 we find that Q ~ 3.10 x 1072 m®s~'K. Notice that if 7(z) were
constant then the temperature would increase monotonically as one moved from z = 0 to z = L.
However, since 7(z) actually increases as one moves toward the pump, the temperature of the
fluid must decrease once it passes an EMIT region.

The temperature affects the velocity and the pressure through the viscosity. This viscosity
is given empirically in units of thousands of centipoise through

453.09 35644
> | (5.17)

1 T) = —3.002 + 222
o810 1(T) * (303.5+T

Hence, one can see that an increase of 100°C can result in a decrease in viscosity of about three
orders of magnitude. One final point is that the far field temperature should correspond to the
ambient viscosity pg. Since pg = 15000 cP we associate the far field temperature of zero with
the ambient temperature of 7, = 30°C.
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5.6 Velocity, Pressure, Temperature Summary

In the axial direction, the rate of change of n(z) = m(R% — R?)v(z) is governed by Darcy’s Law
and in our approximation it is assumed that the fluid is not heated until it reaches the wellbore.
For the axial pressure, the Navier-Stokes equations are solved for an annular region by assuming
that the fluid is incompressible. When we apply heat to wellbore, it is this fluid in the wellbore
that is heated and not the fluid in the surrounding region. Therefore by combining the equations
(5.2) and (5.5) we can summarize the problem for n(z) as

Py I6KT() W(T() o dn| _ 2nk(Pa—Pp)
a2 WmRgR) p "% O=0 o = S mRIRY
Iz = In(Ry/R,)

9 = (RS —RHI(Ru/R.) — (B3 — R2)?

where the temperature as a function of z is given with the expression (5.16) and the viscosity
i is given explicitly by (5.17). Recall that p, = p(0). So we see that under the assumptions,
this problem reduces to finding the solution of a second order nonlinear ordinary differential
equation for 7(z).

Once we have solved for 7(z), relation (5.16) determines the temperature profile and conse-
quently the viscosity as a function of z. The pressure as a function of z is given by expression

(5.2) with the result that
Ho Rd d77
P(z) = P — In{ — | —. 1
() =Fr—5p n(R) dz (5.18)

Notice that since 7 increases monotonically as one approaches the pump, the slope of 7 is positive
definite. Consequently, the pressure decreases monotonically as one approaches the pump. One
can also extract the average velocity and the production rate at the pump from 7. The velocity
is given by 9(2) = n(2)/(7(R% — R?)) and the volume flux at the pump is n(L).

5.7 An Illustrative Example

The overall characteristics of our model can be extracted by studying the case when there are
no EMIT regions. In this case one has Q.(z) = 0 and Q.(z) = 0 and from equations (5.16) and
(5.17), w(T(2)) = u(0) = po. In addition, R, = 0 so that I'(z) = 1/RZ and the equation for
n(z) reduces to

& 16k dy|  2nk(Pg— Pp)
2 4 -1 = 0; n(0) =0, = :
dz? RiIn(Ry/R.) dzlL  poIn(Ry/R,)

The explicit form of the solution is easily verified to be

() mR: Pr — Pp sinhyz 9 R} | Ry 1
z) = ; = - In{ — | = —
7 81ty Loy coshAL’ ait = 765 "\ R, ) ~ 2
From expression (5.18) the corresponding pressure is

cosh vz

P(Z) :PR_ (PR_PP)COSh’yL.
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Figure 5.3: The production rate at the pump as a function of the length of the wellbore.

The total production rate at the pump is given by the revealing expression

7TR;4U PR — Pp
7TR4 PR . PP ) T; L> Lcrit
nl) =g “—p —— tanhyl~ B Py L
Mo crit w' R P L < Legit

8o  Lerit  Lerit

which is depicted in figure 5.3 for the data given in table 5.1 where L. = 865 m and the
maximum production rate is 191.32 m3day—!. What is immediately apparent is that, without
heating, drilling a horizontal well beyond the critical length will not yield any significant increase
in production.

5.8 Results

As we stated in the introduction, the agreement between the qualitative results of the simplified
model and those predicted by the CFD code are quite remarkable. This is especially true in light
of their respective computational costs. Figure 5.4 illustrates the results for the data described
in table 5.1.

Only the pressure, temperature and final production rate are easily available from the CFD
code. Because of this, only the pressure and temperature curves in figure 5.4 have a dashed
line. To solve the nonlinear ODE described in section 5.6 two different method were employed;
a shooting method and a method of successive over relaxation (SOR). Whenever they are dis-
cernible, the solution from the shooting method is a solid line while the SOR solution is a dashed
dot line. We begin our discussion with the pressure curve.

Because of the boundary condition P(L) = Pp, all of the pressure curves intersect at z = L.
At z = 0 the CFD code predicts that Pugq(0) = 4.07 x 10* kPa while the solution of the
simplified model gives Pyyn(0) = 3.44 x 10° kPa. Despite the fact that our model tends to



5.8. RESULTS 101

underestimate the results from the CFD code, the amount of pressure drop across the EMIT
region is predicted correctly. Psm(z) can be made to match P.gq(z) by artificially decreasing
the outer casing radius R, however this would in turn decrease the predicted production rate.
These observations indicate that the differences in the pressure predicted with the simplified
model and the CFD code are greatest where the fluids tend to form a boundary layer on the
outer casing wall. The last curve in this plot is solely for comparison purposes. It is the pressure
curve for the example described in section 5.7 where there is no EMIT region.

Comparing the temperature curves, there is a distinct difference in the shape of the two
curves. However, the temperature from the CFD code is just the temperature at a fixed radius
rather than an average over the radius of the wellbore for a given value of z. The peak temper-
ature in the EMIT region is faithfully reproduced, but the rate at which the fluids lose heat is
larger in the CFD model. Consequently, the surface temperature of simplified model is larger,
Tsm(L) = 37.4°C, than that of the CFD model, T,¢q(L) = 33.1°C. Curves for the viscosity and
the velocity could not be compared with the CFD model as these quantities were not directly
accessible.

For the production rate refer to figure 5.5. As can be seen, the simplified model underesti-
mates the production rate at the pump. In fact, n.¢q(L) = 187.6 m3day~' while nsm(L) = 115.2
m3day~!. This can also be explained with the formation of a boundary layer. In the full model
the boundary layer for the cool fluids to the left of the EMIT region would extend further into
the wellbore than in the region to the right of the EMIT where the fluid is heated. This rela-
tive difference in the effective outside radius of the casing due to a boundary layer of varying
thickness would tend to boost the overall production rate.

In general, the simplified model seems to reproduce the overall characteristics of the full
model described by the CFD code. Moreover, it does this with a comparatively low computa-
tional cost. One of the primary benefits of this reduction in the computational cost is that it
allows one to run a number of numerical experiments cheaply and on site in the vicinity of the
wellbore itself. As an example, for a given set of wellbore characteristics, we can quickly iterate
the simplified model to search for the position of the EMIT which maximizes the production rate
at the pump. Because of the inherent nonlinearity, it is not at all clear that this position should
simply be the midpoint z = L/2. While there will be a unique location that yields a global
maximum for the production rate, it is not at all clear that there can not be other local maxima
or minima. From figure 5.5 we know that for the geometry in table 5.1 that ngm(L) = 115.2
m®day~' when the EMIT is located at L/2. The complete curve where the EMIT is allowed
to move from one end of the wellbore to the other is shown in figure 5.6. One finds that the
greater the distance between the EMIT and the pump, the greater the production. However at
about z = 0.40L the rate of increase in production begins to flatten out. Moving the EMIT
tool 100 m for an increase of only 1% in production rate at the pump hardly seems worth the
effort. Placing the centre of the EMIT at 400 m yields a production rate of at the pump of
Nsm(L) = 116.6 m3day~'. From our observations of the two models, the production rate pre-
dicted by the CFD code will of course be greater than this, but more importantly, it should be
greater than n.gq(L) = 187.6 m3day~! obtained when the EMIT region is located at L/2.
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5.9 Conclusions and Recommendations

We present a mathematical model for the flow of fluids in a horizontal well in which the well has
one or more regions that are electrically heated from an external source. By making some basic
assumptions, we develop a nonlinear second order ordinary differential equation for the volume
flux eta(z) as a function of distance along the wellbore. From the volume flux, both the average
radial temperature and the pressure can be extracted. This model succeeds in capturing many of
the features observed in the solutions presented with an expensive computational fluid dynamics
(CFD) program. Our model tends to underestimate both the pressure and the production rate
however, it retains the overall structure of these quantities. The large reduction in computational
cost when using the simplified model allows one to quickly run a series of numerical experiments
to see the effects of changing various parameters. One such experiment is considered and it is
found if the wellbore extends from z = 0 to z = L with the pump at z = L then the EMIT
should be placed at about z = 0.40L to maximize the production. While the production rate
could be increased further by moving the EMIT closer to z = 0, this would only increase the
production rate a mere 1-2%.
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Figure 5.4: The four figures are the pressure, temperature, velocity and viscosity as a function of
distance along the wellbore. Only the pressure and temperature for the CFD code was available.
These are the dashed lines in the respective plots. More than one method was used to solve the
simplified model. Where they are distinguishable, the shooting method solution is a solid line
where the SOR method is indicated with a dashed dot. A longitudinal section of the wellbore
in indicated in the plot of the velocity.
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Figure 5.5: The production rate nsm(z) as a function of distance along the wellbore for the
simplified model. Only the production at the pump 7.¢q(L) was available from the CFD code.
The dotted curve is the production rate for the case of no EMIT described in section 5.7.
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Figure 5.6: The production rate at the pump 7sm(L) as a function of the location of the centre
of the EMIT.
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