
Predicting the Impact Point of a Falling
Body

Problem presented by

Stephen Cull

QinetiQ, Bedford

Problem statement

QinetiQ’s Real Time All Vehicle Simulator (RTAVS) is a multi-platform
simulation environment used for a variety of applications, including the
simulation of a military fast jet. In this application, a Head Up Display
(HUD) provides the pilot with navigation and weapons system information.
The trajectory of any air to ground munition must be calculated many times
a second in order to update the HUD information. Within RTAVS this
calculation is performed along with several thousand others on a personal
computer running the aircraft model and visuals in real-time. Therefore
an efficient algorithm for the calculation of the predicted impact point is
required, which must also be simple to implement, because the RTAVS
software is maintained by several people all with differing mathematical
knowledge.

Study Group contributors

David Burton (University of Lancaster)
Angela Mihai (University of Durham)
John Ockendon (University of Oxford)

Colin Please (University of Southampton)
Eddie Wilson (University of Bristol)
David Wood (University of Warwick)

Report prepared by

David Burton (d.burton@lancs.ac.uk)
Angela Mihai (l.a.mihai@durham.ac.uk)

E-1

1 Introduction

QinetiQ’s Real Time All Vehicle Simulator (RTAVS) is a multi-platform simulation
environment used for a variety of applications. A frequently used application is the
simulation of a military fast jet. In this application a Head Up Display (HUD) provides
the pilot with navigation and weapons system information. The weapons system
information on the HUD gives an indication of the fall line and predicted impact point of
any air to ground munition loaded. To facilitate this, the trajectory of the munition must
be calculated many times a second in order to update the HUD information. On the
real aircraft such a calculation would be performed by a dedicated unit. However, within
RTAVS this calculation is performed along with several thousand others on a personal
computer running the aircraft model and visuals in real-time. Therefore an efficient
algorithm for the calculation of the predicted impact point is required. In addition to
the efficiency issue, the algorithm also has to be simple to implement. This is because
the RTAVS software is maintained by several people all with differing mathematical
knowledge.

2 Physical model used in RTAVS

The physical model presented below was extracted from the source code that QinetiQ
made available to the Study Group.

2.1 Equation of motion

Let r : R → R
3 be a position map where p = r(t) is a point representing the instantaneous

position of the projectile, with the origin defined to be the release point of the projectile.
The equation of motion for the projectile is1

mr̈(t) = −1
2
CD(ṙ(t), r(t)) ρ(r(t)) A|ṙ(t)|ṙ(t) + mg , (1)

where m is the mass of the projectile, g is the acceleration vector due to gravity, A is
the cross-sectional area of the projectile across the surface with normal along ṙ(t), ρ(p)
is the air density at position p and CD(ṙ(t), r(t)) is the instantaneous drag coefficient of
the projectile. As usual, dots indicate differentiation with respect to time.

2.1.1 Air density and temperature

The air density is given as a function of the local air temperature T by

ρ̃(T) = ρ0

(
T

T0

)4.26

, (2)

where ρ0 = 1.21 kg m−3 and T0 = 288.15 K. In turn, T is given in terms of the altitude
h of the projectile by

T (h) = T0 − (6.5 × 10−3)h

1 + (1.6 × 10−8)h
. (3)

1Unless otherwise stated, all physical quantities in this article are in MKS units.

E-2

Figure 1: Typical values of the drag coefficient CD versus the Mach number M for a
projectile. This figure has been reproduced from reference [4].

2.1.2 Drag coefficient

The drag coefficient CD is given as a function of the local Mach number M by

M(v, T) =
v

cs(T)
, (4)

cs(T) =

√
P (T)

ρ̃(T)
, (5)

P (T) = 105

(
T

T0

)5.26

(6)

where cs is the local speed of sound, v is the speed of the projectile and P is the local air
pressure. Figure 1 indicates the behaviour of CD over the subsonic to supersonic regimes.
The important feature to note is the sharp increase in the drag coefficient immediately
before Mach 1 is attained. Thus, there could be implications for the numerical schemes
used to integrate (1) if the local sound barrier is crossed.

2.2 Typical values for the projectile properties

Typical values of constants in the problem are

A = 0.4 m2, (7)

m = 456 kg (8)

with a typical release altitude of 104 m.

2.3 Non-dimensional equation of motion

Let us non-dimensionalize (1) with respect to the release altitude l and the time scale
τ =

√
l/g. We obtain

¨̂r(t̂) = −κ(ĥ, v̂, l)| ˙̂r(t̂)| ˙̂r(t̂) + k . (9)

E-3

Here k is the downward unit vector and X̂ indicates the dimensionless quantity X/x,
where x = laτ b for some a, b ∈ R. The level of influence of the aerodynamic force on the
projectile is dictated by the dimensionless function

κ(ĥ, v̂, l) =
ρ̃ ◦ T (lĥ)A

2m
CD ◦ M(lv̂/τ, T (lĥ))l (10)

which is positive-definite and turns out to be O(1) for our regime of interest.

3 Methodology

Our proposed solution involves

• estimating a suitable time step based on the initial conditions and the exact free-fall
solution to (9) for the case of constant κ,

• using a look-up table to find κ(ĥ, v̂, l)v̂ and

• using an integration scheme that is a trade-off between run-time efficiency and ease
of implementation.

3.1 A guess for the time step via the free-fall solution

An order of magnitude estimate for the predicted impact time is obtained by considering
the initial conditions r(0) = ṙ(0) = (0 0 0) with κ set to a constant. Then (9) collapses
to the single component equation

Z̈(t̂) = −κŻ(t̂)2 + 1 (11)

for the dimensionless distance Z = r̂ · k of the projectile from its point of release. The
solution corresponding to the initial conditions Z(0) = 0 and Ż(0) = 0 is

Z(t̂) =
1

κ
ln

[
cosh(

√
κt̂)

]
. (12)

The time to impact, τ0, is obtained by setting Z(τ0) = 1 in (12) and rearranging this
expression to give

τ0 =
1√
κ

cosh−1
[
exp(κ)

]
. (13)

One now divides τ0 by a number, depending on the integration scheme, to give a suitable
time step.

3.2 Look-up table

In order to avoid unnecessary computation the look-up table for κ(ĥ, v̂, l)v̂ should be
specified in terms of v2 rather than v̂. For ease of maintainence the computer code should
be implemented using the dimensionful equation of motion, and, wherever possible,
square roots should be avoided because of their slow computation time.

E-4

3.3 Integration scheme

Again, when selecting an integration scheme not only must we bear in mind its run-time
efficiency but also that it should be as easy as possible to implement and maintain by a
variety of programming teams. Possible schemes include Runge-Kutta (with an adaptive
step size [6] to cope with crossing the local sound barrier) or the Galerkin method. An
implementation of the latter is the focus of the rest of this article.

4 Numerical integration of the equation of motion

For notational simplicity let us drop the hats from all dimensionless quantities. Equation
(9), with suitable initial conditions, then reads

r̈(t) = −κ|ṙ(t)| ṙ(t) + k, t ∈ [0, τ0]

r(0) = (0 0 0), ṙ(0) = (V 0 0) , (14)

where V is the initial speed of the projectile. We implemented a second-order Runge-
Kutta method [6] and the results were found to be quite satisfactory when no drastic
sudden changes occurred in the value of κ|ṙ(t)|. The second-order initial value problem
(14) was reduced to two coupled first-order equations of the form

ṙ(t) = R(t),

Ṙ(t) = −κ|R(t)|R(t) + k. (15)

Note that an embedded Runge-Kutta [6] approach can be employed for the adaptive
step-size control near and across the sound barrier. In this report we propose a finite
element method for solving equation (14). This has the advantage that it can be applied
to a more general class of problems with rapidly changing solutions. Furthermore, the
algorithm is straightforward to implement.

Let the estimated time for the object to reach the ground, τ0, be the unit for time.
We also consider the second component, Y , of the vector r(t) = (X(t) Y (t) Z(t)) to be
constant and equal to 0, and therefore reduce (14) to a two-component equation of the
form

r̈(t) = −κ|ṙ(t)| ṙ(t) + k, t ∈ [0, 1]

r(0) = (0 0), ṙ(0) = (V 0), (16)

where r(t) ≡ (X(t) Z(t)) and k ≡ (0 1). For computational speed, the coefficient κ|ṙ(t)|
is tabulated as a function of the height and velocity of the projectile. Problem (16) has
two initial conditions : an homogeneous Dirichlet condition, r(0) = (0 0), given by the
position of the aircraft at the moment when the projectile is released, and a Neumann
condition, ṙ(0) = (V 0), which is given by the velocity of the aircraft at the moment of
release. We also know the vertical component of the trajectory described by the falling
object at the end of the time interval is Z(1) = l. Here l is the altitude of the airplane
at the moment when the object is released.

E-5

4.1 The discretization of the problem

First we consider a partition of the time interval [0, 1] into N (N > 1) disjoint elements.
For the algorithm considered in this report the size of the elements can be quite arbitrary.
However, to simplify the presentation, we restrict our attention to the case where the
mesh-size, h, is uniform and equal to 1

N
.

The discrete form of equation (16) corresponding to the N finite elements is

r̈N(t) + κN |ṙN(t)|ṙN(t) = (0 1), t ∈ [0, 1]

rN(0) = (0 0), ṙN(0) = (V 0). (17)

It is important to appreciate that rN(t) = r(t) only if t ∈ (1/N, 2/N, . . . , 1), and that
rN(t) → r(t) in the limit N → ∞. Let r0 be an initial guess and the following recurrence
formula hold for a sequence of approximations (rn) to the discrete solution rN :

r̈n+1(t) + κn|ṙn(t)| ṙn+1(t) = (0 1), t ∈ [0, 1]

rn+1(0) = (0 0), ṙn+1(0) = (V 0). (18)

This is equivalent to

r̈n+1(t) + bnṙn+1(t) = (0 1), t ∈ [0, 1]

rn+1(0) = (0 0), ṙn+1(0) = (V 0), (19)

where bn = κn|ṙn|.
In our approach, we first change equation (19) into a two-boundary problem, then

adjust the boundaries so that the initial conditions are satisfied. The discrete problem
to solve is now

r̈n+1(t) + bnṙn+1(t) = (0 1), t ∈ [0, 1]

rn+1(0) = (0 0), rn+1(1) = (α l), (20)

where (α l) is a guess for the final position of the projectile when it hits the ground.
Note that we only have to make a guess for the horizontal coordinate α since the vertical
coordinate l is known. Once we find the solution to (20) we then adjust it so that
ṙ(0) = (V 0).

4.2 A Petrov-Galerkin finite element approach

Upon dropping the subscripts in (20), the variational component-problems read: for the
X-component, find X ∈ H1([0, 1]) such that

L(X,w) = 0, ∀w ∈ H1
0 ([0, 1]),

X(0) = 0, X(1) = α, (21)

and, for the Z-component, find Z ∈ H1([0, 1]) such that

L(Z,w) = (1, w), ∀w ∈ H1
0 ([0, 1]),

Z(0) = 0, Z(1) = l, (22)

E-6

where
L(u,w) = −(u̇, ẇ) + b · (u̇, w)

and

(u,w) =

∫ 1

0

u · wdt

for all u, v ∈ H1([0, 1]). Here H1([0, 1]) denotes the usual Sobolev space defined by the
seminorm

|u|2 =

∫ 1

0

u̇u̇dt

and the norm
‖u‖2 = |u|2 + ‖u‖L2([0,1]).

In order to solve equations (21) and (22) we employ the exponential upwinding Petrov-
Galerkin method.

The Petrov-Galerkin method consists of taking two finite-dimensional subspaces
V,W ⊂ H1([0, 1]) (known as the trial space and the the test space, respectively), where
dim(V) = dim(W), and solving the discrete weak form: find u ∈ V such that

L(u,w) = (f, w), ∀w ∈ W.

Let V be the space of continuous piecewise linear functions generated by the basis
functions

ϕi(t) =




h+t−ti
h

if t ∈ [ti−1, ti]
h−t+ti

h
if t ∈ [ti, ti+1]

0 if |t − ti| > h

where ti = i
N

(i = 0, · · · , N) are nodes in an uniform time-mesh and h = 1
N

is the
mesh-size.

A new test space W is introduced in [5], which is defined as W = span{ψi}, where
i = 0, · · · , N , and for each ψi the following properties hold:

(1) ψi is continuous in [0, 1],

(2) ψi = 1 at node ti,

(3) ψi = 0 in all elements for which ti is not a vertex,

(4) ψ̈i − bψ̇i = 0 within each element having node ti as a vertex.

Hence W is the space of continuous functions generated by the piecewise exponential
basis functions

ψi(t) =




1−eb(h+t−ti)

1−ebh if t ∈ [ti−1, ti]
eb(t−ti)−ebh

1−ebh if t ∈ [ti, ti+1]

0 if |t − ti| > h

for all interior nodes, ti, of the uniform mesh with mesh-size h.

E-7

Let xi := X(ti) for all i = 0, · · · , N . We can expand X in terms of the nodal basis
functions ϕi:

X = x0 · ϕ0 +
N−1∑
i=1

xi · ϕi + xN · ϕN .

From the assumed boundary conditions we deduce

X(0) = x0 = 0,

X(N) = xN = α.

We then choose w to be each of the basis functions ψ1, · · · , ψN in turn, which we
substitute into (21).

The variational problem (21) can now be written as a sparse linear system:

Mx = 0, (S1)

where x = (xj)
T
j=0,··· ,N and M is a tridiagonal matrix because the supports of the nodal

basis functions overlap only for the nearby nodes. Explicitly M = (mij), where

mij = −(ϕ̇i, ψ̇j) + b · (ϕ̇i, ψj), i, j = 0, · · · , N .

With the guessed value xN = α, the system (S1) becomes

m11x1 + m12x2 = 0

m21x1 + m22x2 + m23x3 = 0

· · ·
mN−1,N−2xN−2 + mN−1,N−1xN−1 = −mN−1,Nα, (S ′

1)

which can be solved by, for example, Gaussian elimination.
Now, the initial conditions for the equation of motion must be satisfied. Therefore

we consider

Ẋ(0) = −x0 · 1

h
+ x1 · 1

h
= V.

If x1 = V · h, then the problem (21) is solved. However, if x1
= V · h then the vector
solution to the system (S ′

1), (x1 x2 · · · xN), must be multiplied by V ·h
x1

for the next
iteration.

For the Z-component, if zi := Z(ti) for all i = 0, · · · , N , then Z can be expanded in
terms of the nodal basis functions ϕi as follows:

Z = z0 · ϕ0 + z1 · ϕ1 +
N−1∑
i=2

zi · ϕi + zN · ϕN .

The boundary conditions are

Z(0) = z0 = 0

Z(N) = zN = l.

E-8

We then choose w to be each one of the basis functions ψ2, · · · , ψN in turn, which we
substitute into (22).

The variational problem (22) reduces to a sparse linear system:

Mz = f, (S2)

where z = (zj)
T
j=0,···N , M is the same as in (S1) and

f = (fj)
T
j=0,··· ,N , fj = (1, ψj), j = 0, · · · , N .

The second initial condition gives us

Ż(0) = −z0 · 1

h
+ z1 · 1

h
= 0.

In practice, we can replace z1 = 0 by z1 = O(h2) if we wish.
Since zN = l, the system (S2) becomes

m22z2 + m23z3 = f2

· · ·
mN−1,N−2zN−2 + mN−1,N−1zN−1 = fN−1 − mN−1,N l. (S ′

2)

Proposed Algorithm. Let N be the number of elements in the time-mesh and let
h = 1/N . Given (Xn Zn), an approximation to the solution (XN ZN) of the discrete
equation (17), we define the next iterate (Xn+1 Zn+1) as follows, where zeros(n,m)
(respectively ones(n,m)) indicates an n × m matrix with every entry equal to 0
(respectively 1).

(1) Set (ux
0 uz

0) = (Xn Zn);

(2) Set M = zeros(N + 1, N + 1);
For j = 0 until convergence
For i = 1 : N

m =



− b · ebh

1 − ebh

b · ebh

1 − ebh

b

1 − ebh
− b

1 − ebh




M(i : i + 1, i : i + 1) = M(i : i + 1, i : i + 1) + m;

End i
Set the right-hand side of the equation:

f
x

= zeros(N − 1, 1)

f
z

= ones(N − 2, 1),

The boundary conditions give that

fx(N − 1) = f(N − 1) − α · M(N − 1, N)

fz(N − 2) = f(N − 2) − l · M(N − 1, N).

E-9

Calculate the solutions to the sparse linear systems

vx = M(2 : N, 2 : N)−1 · f
x

vz = M(3 : N, 3 : N)−1 · f
z
;

if vx(1)
= V · h then

vx = vx · V · h
vx(1)

; α = α · V · h
vx(1)

End if.
Set ux

j+1 = (0 vx α); uz
j+1 = (0 0 vz l).

End j.

(3) (Xn+1 Zn+1) = (ux
j+1 uz

j+1). �

References

[1] Brenner, S. C. and Scott, L. R. The Mathematical Theory of Finite Element
Methods. Springer-Verlag, New York, 1994.

[2] Eriksson, K., Estep, D., Hansbo, P. and Johnson, C. Computational Differential
Equations. Cambridge University Press, 1996.

[3] Golub, G. H. and van Loan, C. F. Matrix Computations. Johns Hopkins, Baltimore,
1989.

[4] Hoerner, S. F. Fluid-Dynamic Drag. Published by the Author, 1965.

[5] Perella, A. J. A Class of Petrov-Galerkin Finite Element Methods for The Numerical
Solution of The Stationary Convection-Diffusion Equation. Ph.D. thesis, University
of Durham, UK, 1996.

[6] Press, W. H., Teukolsky, S. A., Vetterling and W. T., Flannery, B. P. Numerical
Recipes in C, 2nd ed. Cambridge University Press, 1995.

[7] Strang, G. and Fix, G. An Analysis of the Finite Element Method. Prentice-Hall,
Englewood Cliffs, NJ, 1973.

E-10

