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4.1 Introduction

Seismic imaging, a technique in which the reflections of a source seismic wave are recorded as it
passes through the earth, is a major tool for geophysical exploration. Seismic imaging can be used to
reconstruct a profile of the material properties of the earth below the surface, and is thus widely used
for locating hydrocarbons.

The problem presented by Husky Energy concerns seismic attenuation: the loss of energy as a seis-
mic wave propagates through the earth. As an exploration tool, attenuation effects have only recently
attracted attention. These effects can prove useful in two ways: as a means of correcting seismic data
to enhance resolution of standard imaging techniques, and as a direct hydrocarbon indicator. Theoreti-
cally, a subsurface reservoir full of hydrocarbons will tend to be acoustically softer than a porous rock
filled only with water; Kumar et al show that attenuation is highest in a partially fluid-saturated rock.

Many physical processes can lead to the attenuation of a seismic trace. In the present work, we
ignore attenuation effects such as spherical divergence or scattering, and concentrate on intrinsic at-
tenuation effects exclusively. The latter are caused by friction, particularly in porous rocks between
fluid and solid particles, see [2, 7].
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54 CHAPTER 4. SEISMIC ATTENUATION PROBLEM

The goal of the workshop was to find a means of computing seismic attenuation from relatively
short windows of seismic imaging data, and particularly be able to identify regions of anomalous
attenuation.

The paper is organised as follows. We begin by a detailed description of the attenuation problem
in Section 4.2, collecting important notation and assumptions for easy reference. The reader may find
the simple numerical example presented in Section 4.2.3 useful to fix ideas.

In Section 4.3, we consider the use of frequency-shift techniques to identify anomalous attenuation;
two different attributes are used on simulated and real data. In Section 4.4, different wavelet-based
denoising techniques are used to identify the attenuation anomaly. In Section 4.5, we present the
mathematical ideas behind an extension of a Wiener technique. We end the paper in Section 4.6
with ideas for future work, including the use of a constrained optimization problem for estimating the
attenuation.

4.2 Problem Statement

The ability of a material to attenuate seismic waves is measured by a dimensionless quantity Q, called
the attenuation factor, by

Q :=
energy of seismic wave

energy dissipated per cycle of wave
=

2πE

4E

where E is the energy of the wave, and 4E is the change in energy per cycle. Typical values of
Q range from 5-20 (dirt) through 100 (rock) to 10,000 (steel). In what follows, we assume that this
attenuation factor is independent of frequency ω in the useful seismic bandwidth. The attenuation of
the wave is directly linked to the different layers that compose the Earth, so that whenever changes in
the composition of layers occur, the attenuation changes too. This is why we would like to be able to
detect changes in attenuation, as it would enable us to identify s change material properties.

Goal: To estimate Q from given seismic data.

In this paper, we restrict our attention to 1-D models, in which all geological layers are horizontal.
In addition, we assume the source and receiver are effectively coincident. We assume that the receiver
is positioned at the surface of the earth (in other words, we do not consider vertical seismic profiles).

For a medium with linear stress-strain relation, it is known that wave amplitude A is proportional
to

√
E. Hence,

1

Q
= −∆A

πA
(4.1)

from which we can obtain the amplitude fluctuations due to attenuation. That is, given initial amplitude
A0, let λ be the wave length given in terms of frequency ω and phase velocity c by λ = 2πc/ω, then
∆A = λ(dA/dz). Hence, equation (4.1) becomes,

dA

dz
= − ω

2cQ
A (4.2)
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4.2. PROBLEM STATEMENT 55

with the exponential decaying solution

A(ω, z) = A0(ω) exp

(

− ωz

2cQ

)

. (4.3)

Now, from observation of exponentially decaying values of A(ω, z), we can compute Q value. That
is, from (4.3), we have

ln

(

A

A0

)

= −ω

(

z

2cQ

)

= −ω

(

t

2Q

)

(4.4)

Here we assume that the phase velocity c does not depend on frequency, ie, that there are no dispersion
effects. This has the added effect of correlating well the time of travel of the reflected wave with the
depth of the layer from which the reflection occurs.

Hence, by recording the ln(A/A0) versus ω graph, and then estimate the average slope, we can
recover the value of Q. This idea is known as log spectral ratio method.

Another model, which includes the effect of reflections of the signal from various layers, is as
follows. Let sk(t) denote the seismic trace obtained from layer k, received at time tk at the receiver
(assuming the source signal s0 was emitted at time t = 0). Suppose the coefficient of reflection at the
kth layer is rk, and the the source signal is so. In general, rk is unknown, as is so. Indeed, the source
signal is usually generated by a denotation; characterizing this signal is not possible.

In the Fourier domain at frequency ω, we may write

|ŝk(ω)| = rk|ŝo(ω)|e−pωt/Q (4.5)

where p is a constant, and rk is the coefficient of reflectivity of the kth layer.
Suppose we have similar information about a seismic trace reflected from layer j, then the log

spectral ratio method estimates the attenuation Q as:

log

( |ŝk|
|ŝj|

)

= log |rk| − log |rj| +
pω

Q
(tj − tk).

4.2.1 A Convolutional Model of Attenuation

Let s(t) denote an unattenuated seismic trace received at time t at a receiver. If w(t) was the source
waveform and r(t) is the reflectivity as a function of depth (equivalently time), then we may write

s(t) = w ∗ r :=

∫ ∞

−∞

w(τ)r(t − τ) dτ. (4.6)

Two key assumptions are made regarding the source signal and the reflectivity:

• the white reflectivity assumption. The white reflectivity assumption simply means the reflectivity
r satisfies

∫ ∞

−∞

r̃(s)r(t − s) ds = δ(t)

where δ(t) is the Dirac measure.
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56 CHAPTER 4. SEISMIC ATTENUATION PROBLEM

• the minimum phase assumption: this means that the source signal w(t) is causal, invertible, and
possesses minimum phase in the sense that if we write the signal in the frequency domain

ŵ(ω) = A0(ω)eiφ(ω)

we can find the phase φ(ω) by using a Hilbert transform.

With these assumptions, and in the absence of attenuation, we are able to recover the source signal w
from a given trace s using the Wiener process on equation (4.6):

s ∗ s̃ = (w ∗ r) ∗ (w̃ ∗ r̃) = (w ∗ w̃) ∗ δ.

Taking a Fourier transform of the above expression, we get the amplitude A(ω) of the source signal w;
the minimum phase assumption now allows us to recover the phase.

Unfortunately, the Wiener process does not apply in quite such a straight-forward fashion to the
case where the signal is attenuated. The process of attenuation is described by the action of a pseudo
differential operator: the attenuated trace sa is now

sa(t) :=

∫ ∞

−∞

wα(τ, t − τ)r(τ)dτ (4.7)

where

wα(u; v) :=

∫ ∞

−∞

α(u, η)eiηvŵ(η) dη, (4.8)

α(u, η) = exp

(

− ηu

2Q

)

exp

(

iu

2Q

∫ ∞

−∞

e

η − e
de

)

. (4.9)

In Section 4.5 we describe an extension of the Wiener technique to the case of attenuated waves.
We can also describe, in the setting of this convolutional model, the windowed log spectral ratio

technique which is commonly used. Let Ω1 and Ω2 be two intervals of time over which the seismic
trace sa has been sampled. We expect that

ŝa(Ω1) ≈ ŵeff1 · r̂eff1

where weff1 is the effective signal over window Ω1, and reff1 is the effective reflectivity and the hats
denote the Fourier transform.

We also expect that

|ŵeff2 | = |ŵeff1 | exp(−ω∆τ

2Q
)

where ∆τ is the window separation. Therefore, the log spectral ratio is

log

( |ŝa(Ω1)|
|ŝa(Ω2)|

)

=
ω∆τ

2Q
+ log

( |r̂eff1 |
|r̂eff2 |

)

.
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4.2.2 A Discrete Model

In practice, seismic trace data is sampled at discrete time intervals, for a finite duration of time. We
therefore describe a discrete version of the convolutional model above: suppose we know the initial
source signal, as well as the attenuation and reflectivity properties of the medium being sampled. Let
the data be sampled at times t1, t2, . . . tn. From this, we can construct a matrix Wα, and a vector of
reflectivities r = (r1, r2, . . . rn)T , where ri is the reflectivity of the layer at depth cti. Then, the discrete
version of equation (4.7) is

Wαr = (w1|w2| . . . |wn) r = s := (s1, s2, . . . sn)
T .

The entries wij of matrix Wα have the following properties:

• If ti > tj, wji = 0 (causality assumption)

• If ti < tj, wji = wα(ti, tj − ti), where wα was defined by equations (4.8) and (4.9).

Therefore, Wα is lower triangular, and the amplitude spectra of column vectors wi attenuate by an
exponential factor from left to right.

The forward seismic problem is: given Wα, r, find the seismic trace vector s.
The inverse seismic problem is: given s, find Wα, r. In our specific case, we have to find Wα,

specifically the amount of attenuation between the amplitude spectra of the columns of Wα. As is easy
to see, the inverse problem is quite ill-posed.

4.2.3 A Simple Model

As a first approach to solving the attenuation retrieval problem, we began by creating some simulated
data and solving the forward problem, where the Q-profile is known. The intermediate goal is to see
how the presence of the anomaly changes a known signal.

The data is sampled for t = 2 s, at intervals of time 0.002 s. The seismic trace vector s thus
has 1000 entries. The reflectivity vector r is drawn from a nearly-white probability distribution. The
source signal w has dominant frequency 20 Hz, is generated once, and used repeatedly.

We consider the following simple 1-D models as shown in the picture Figure 4.1(a):

• The normal attenuation case, where the attenuation is a constant Q = 100 for all depths;

• The anomalous attenuation case, where Q changes at depth ct = 1 to Q = 40, and then changes
back to Q = 100 at depth ct = 1.1 (we assume the speed of propagation has been normalized to
c = 1).

We calculate the resultant seismic traces s(t) as it propagates through the two media. In Figure 4.1(b)
we show the computed seismic traces with and without the anomaly. As can be seen, the two traces
appear nearly identical; only when we subtract them can we clearly spot the onset of the anomaly (at
time t = 1).
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58 CHAPTER 4. SEISMIC ATTENUATION PROBLEM

(a) Profile of “normal” and “anomalous” attenua-
tion.

(b) Left–right: normal trace, anomalous trace,
traces superimposed, difference of traces.

Figure 4.1: The seismic trace corresponding to the attenuation anomaly is nearly identical to the normal
attenuation case.

4.3 Anomaly Detection Using Moments of Frequency

With the model (4.5) of seismic attenuation that we are using, it is clear that the amplitudes of higher
frequency components attenuate more over the same depth than do lower frequency components. The
net effect of this phenomenon is that there is a red-shift in the signal as it propagates through the earth.
For example, in Figure 4.3 we show the amplitude spectrum of the source signal in blue, and the post-
attenuation spectrum in red. A clear shift in the mean frequency is seen. The strategy we propose in
this section is to look at the amplitude spectrum of the seismic trace over many overlapping windows in
time, and look at the changes in the mean frequency of these spectra. These changes should correlate
well with changes in attenuation.

With a given seismic data s(t), we can take a windowed Fourier transform (e.g. the Gabor trans-
form) to see the local spectral property of the data:

ŝg(t, ω) =

∫ ∞

−∞

s(τ)g(t − τ)e−iωτ dτ, (4.10)

where g is a Gaussian function used as a window. We can then compute the average with respect to
the frequency to obtain the centroid frequency, fc(t), by the formula:

fc(t) =

∫

ω|ŝg(t, ω)| dω
∫

|ŝg(t, ω)| dω
≈
∑

k ωk|ŝg(t, ωk)|
∑

k |ŝg(t, ωk)|
. (4.11)

In a similar fashion, we could also compute other moments. During the workshop, we computed the
second moment, and expect an amplification of the red-shift phenomenon.

fs(t) =

∫

ω2|ŝg(t, ω)| dω
∫

|ŝg(t, ω)| dω
≈
∑

k ω2
k|ŝg(t, ωk)|

∑

k |ŝg(t, ωk)|
. (4.12)
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4.3. ANOMALY DETECTION USING MOMENTS OF FREQUENCY 59

Figure 4.2: Shift in mean frequency: amplitude spectrum in red is for signal after attenuation.

Since we can expect a sudden decay of overall frequency amplitudes when sharp anomalies occur,
we may observe lower values of fc(t) at the abnormality. We test this hypothesis by examining both
the synthetic data from Section 4.2, as well as real data provided by Prof. Margrave. On both sets of
data, we look at the trends in fc and the second moment fs.

4.3.1 Simulation with Synthetic Data

We tested the attributes fc, fs as predictors of the onset of attenuation anomalies on the synthetic data
described in Section 4.2.3. In Figure 4.3 the centroidal frequency fc of the anomalously attenuated
signal is decreasing faster after t = 1 than that of the normal signal, acting as a good indicator of the
abnormality.

In Figure 4.4 we show the variation in the second moment fs for the seismic traces in the normal
(blue) and anomalous (red) case. We also check the robustness of this attribute to noise; for very low
levels of noise, the second moment is still a good predictor of the onset of the instability. As the noise
increases, the amplitude spectra become too polluted in the high frequency regime to yield accurate
predictions.

In real situations one does not have reference data to compare with. Thus, if we use these attributes,
there should be intrinsic changes in the values of these attributes which allows us to identify anomalous
behaviour.

Through many experiments we initially suggested that the graph of the centroid frequency fc as a
function of depth becomes concave near the onset of an anomaly. Unfortunately we found that while
this concavity necessarily happens near abnormality, it also happens even in normal regions, which
makes the criteria rather useless. Nevertheless we will see that the centroid frequency still acts as a
good indicator for abnormality in the next section.

4.3.2 Simulation with Real Data

To test the ability of the centroidal frequency techniques to find attenuation anomalies in real data, we
used two data sets provided by Prof. Margrave. These were seismic profiles taken at two geographical
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Figure 4.3: Above: Synthetic signals. Below: Centroid frequencies fc for both traces over many
windows. Note fc values for “normal trace” are greater than the “anomalous trace”.
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Figure 4.4: Synthetic signals and the second moment of frequency. Adding noise renders the detection
of the anomaly less robust.
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4.3. ANOMALY DETECTION USING MOMENTS OF FREQUENCY 61

locations: Pike Peak and Blackfoot, respectively. In Figure 4.5 we see the seismic cross sections
associated with the two data sets: in each, many source-receiver pairs were located along a horizontal
line, and data was collected over a period of time. In these figures, the surface of the earth is on top;
the y axis indicates depth (equivalently time of travel of the signal).

(a) Pikes Peak: anomaly at depth 350, location
x=400.

(b) Blackfoot reservoir: anomaly at depth t=600,
location x=40-50.

Figure 4.5: Actual seismic traces: Pikes Peak and Blackfoot.

(a) Pikes Peak: actual trace. (b) Centroidal frequencies fc. (c) Second moments fs.

Figure 4.6: The Pike Peaks data set: the actual section, and the attribute-derived sections. Both fc and
fs predict the anomaly at depth 350 well.

In Figures 4.6(b) and 4.7(b), the red indicate that the centroidal frequency fc over a given window
is high, and blue indicates a low fc. In Figure 4.6(b), one sees a region of sudden decay of fc at depth
approximately 350, and location 400. In Figure 4.7(b), one can clearly see a region in yellow (lower
fc at depth 600, location 45 − 50, identifying the presence of an attenuation anomaly. This region
corresponds well with a known gas reservoir.
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(a) Blackfoot: actual trace.
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(b) Centroidal frequencies fc. (c) Second moments fs.

Figure 4.7: The Blackfoot data set: the actual section, and the attribute-derived sections. fc captures
anomaly at t = 600, fs less sharply resolved.

In Figures 4.6(c) and 4.7(c), regions of large deviation from the mean fs are highlighted in blue.
Again, in Figure 4.6(c) one sees an anomaly at depth 350. The width of this region appears larger
than in 4.6(b); it would be interesting to cross-check this with any known geological features there.
Likewise, Figure 4.7(c) picks out a wide band of anomalous attenuation at depth 300, an a narrower,
more localized band at depth 600.

4.4 Wavelet-Based Techniques

In this section, we started with the assumption that the Fourier transform of the seismic trace s is
proportional to the Fourier transform of the reflectivity r, where the proportionality factor is positive
and contains information on the source signal and the attenuation factor. In other words, we can say

ŝ(ω) ∝ r̂(ω)e−A(ω,t).

Here A can be parametrized by Q, and has the form A(ω, t) =
∫ t

0
a(ω, u) du. By taking the Fourier

transform, we turn the convolution in the time domain into a multiplication in the Fourier domain.

The basic idea is to remove the reflectivity r in order to be left only with the information on
the attenuation and the source function. The deconvolution being a hard problem, we would like to
rewrite the problem in a much easier way so that we could separate the reflectivity from the other
information. So after taking the Fourier transform, we take logarithms to transform the multiplication
into a summation:

log(|ŝ|) = −A(ω, t) + log(|r̂|).

Then we can consider the data d as a sum of a model m = −A(ω, t) (including attenuation and the
source signature) and coloured noise n = log(|r̂|) (reflectivity). We have now a denoising problem in
the log-Fourier domain.
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4.4.1 Denoising Using Wavelets

In order to denoise the data, we use wavelet thresholding (we used only hard thresholding). Practically,
we took a Windowed Fourier transform of the seismic traces, the result of which depends on both time
and frequency. Then we took the logarithm of its absolute value.

The smoothness properties are different in the time and the frequency direction, so we exploited
that by taking a different wavelet transform along each direction. Along the time direction, the traces
should be piecewise constant as it should be constant where the Q is constant and only change when
Q changes. On the other hand, the traces should be relatively smooth along the frequency direction. It
is important to choose the right wavelet to represent our signal.

So the denoising method is as follows:

1. We take a 2D wavelet transform

2. We threshold the coefficients according the noise level (prior information on the statistics of the
reflectivity)

3. We take a 2D inverse wavelet transform. The result is the denoised data which should scale like
the amplitude −A(ω, t).

(a) Normal (blue) and anomalous (green) traces in
the log-Fourier domain before denoising.

(b) With thresholding.

Figure 4.8: Normal (blue) and anomalous (green) traces in the log-Fourier domain, before and after
denoising.

We apply this technique to the synthetic data as generated in Section 4.2.3. We can see from the two
figures in Figure 4.8 that the difference between the normal and anomalous traces is enhanced by the
thresholding because we took most of the reflectivity contribution out which is mostly the oscillatory
part.
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4.4.2 Denoising Using a Minimization Technique

Recall that we are seeking to locate −A(ω, t) from noisy data d, where

d = log(|ŝ|) = −A(ω, t) + log(r̂) = m + n.

We have already discussed a wavelet-based denoising strategy above. Another possible means of
removing the noise from the data is to solve a minimization problem

min
m

1

2
‖C−1/2

n (d − m)‖2
2

where Cn is the covariance matrix of the noise Cn = E[nnT ]. We can use a wavelet transform W to
convert the minimization problem into

min
m̃

1

2
‖Γ−1(d̃ − m̃)‖2

2 + λ‖m̃‖p, where d̃ := Wd, m̃ = Wm, ñ = Wn, E[ññT ] = Γ2.

The noise thresholding used is called hard or soft, depending on whether p = 1 or 2 respectively. Solv-
ing the minimization problem and subsequently inverting allows us to reconstruct an approximation to
m.

4.5 Extension of the Wiener Technique

The relation between the measurement s(t) and the initial wave w(t) can be written in form of a
modified convolution, i.e.

s(t) = w(t) ∗ a � r(t) :=

∫

wα(τ, t − τ)r(τ)dτ. (4.13)

The kernel wα contains the attenuation function Q(t), which we eventually would like to determine:

wα(u, v) =

∫

ŵ(η)α(u, η)eiηvdη, (4.14)

α(u, η) = exp

(

−u sgn(η)η

2Q(u)
+ i

u sgn(η)H(η)

2Q(u)

)

. (4.15)

Here, ŵ denotes the Fourier transform of w and H the Hilbert transform. In the case without attenua-
tion, this expression reduces to s = w∗r. Therefore, we can write for small attenuation, corresponding
to large Q, a Taylor expansion of the kernel α and use the first nontrivial terms in this expansion in
order to derive higher order corrections to the relation s = w ∗ r. For α(u, η) we find

α(u, η) =

∞
∑

k=0

1

k!

(

u

2Q(u)

)k

κ(η)k (4.16)

with the abbreviation
κ(η) = −sgn(η)η + isgn(η)H(η). (4.17)

π



4.5. EXTENSION OF THE WIENER TECHNIQUE 65

In the above expression, the arguments u and η are decoupled in the sense that we can perform the
integration with respect to η in the expression (4.14) for wα. Thus we obtain for wα the expansion

wα(u, v) = w(v) +
u

2Q(u)
J1(v) +

1

2

(

u

2Q(u)

)2

J2(v) + . . . (4.18)

where the Jn(v) depend on the initial wave w by

Jn(v) =

∫

ŵ(η)κn(η)eiηvdη. (4.19)

Now we are ready to write the higher order correction terms to the relation between the initial wave w
and our measurement s:

s = w ∗ r +

(

tr(t)

2Q(t)

)

∗ J1 +
1

2

[

(

t

2Q(t)

)2

r(t)

]

∗ J2 + . . . . (4.20)

The basic problem of determining Q lies in the fact that we don’t have complete knowledge of either r
or w. We have, however, information about the statistical properties of r. A very realistic assumption
is that the autocorrelation function of r is a delta function. Writing f̃(t) = f(−t) this means that

r ∗ r̃ = δ(t). (4.21)

Therefore, looking at the autocorrelation of s, we can try to eliminate first the terms involving r in
order to reduce our problem significantly. Let us assume for sake of simplicity first that Q is a constant.
Then, our expansion reduces to

s ∗ s̃ = w ∗ r ∗ w̃ ∗ r̃ +
1

2Q
(tr) ∗ J1 ∗ w̃ ∗ r̃ − 1

2Q
(tr̃) ∗ J̃1 ∗ w ∗ r + . . . . (4.22)

Assuming now that all convolutions of r can be approximated by delta functions

(tnr) ∗ r̃ = βnδ(t) (4.23)

we see that, in the above expression, all dependency of r vanishes and we obtain an equation that only
depends on w and Q but not on r

s ∗ s̃ = w ∗ w̃ +
β1

2Q
J1 ∗ w̃ − β1

2Q
w ∗ J̃1 + . . . . (4.24)

This result reduces for Q → ∞ to the classical Wiener technique, meaning that then the initial wave
w can be found by the power spectrum of s and causality assumptions. Equations (4.24) incorporates
the influence of Q in form of higher order correction terms.
There are two major directions for future research on the basis of this result:

1. Approximation of w by a Gabor transform using the first part of the measured signal s and
finding Q through the above formula with the estimated w.

2. Use the above result in order to reduce the space for possible candidate functions for w and Q in
combination with the other developed techniques.
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4.6 Conclusions and Future Work

During the course of the workshop, our team did not conclusively solve the severely ill-posed problem
of computing seismic attenuation from given surface seismic trace data. However, we learnt about
several techniques currently being used, and began studying some other possibilities. Our efforts can
be summarized by:

1. an investigation of the utility and robustness of frequency-related attributes as predictors of
anomalous attenuation. These efforts are closely related to those of [6]. Under this heading,
we investigated two attributes: the centroidal frequency of a windowed seismic trace, and the
second moment of frequency;

2. using wavelet-based techniques to remove reflectivity information from the trace (denoising)
and subsequently extract attenuation information

3. an extension of the Wiener technique to the case with attenuation.

In addition to pursuing these further (particularly through numerical implementation of the two
latter strategies), we would also like to investigate the use of statistical and linear-algebra techniques
to retrieve information about attenuation anomalies.
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