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6.1 Intr oduction

In finance thereis a constaneffort to modelfuture pricesof stocks bonds,andcommoditiestheabil-
ity to predictfuture behaiour providesimportantinformationaboutthe underlyingstructureof these
securitiesWhile it hasbecomecommonto modela singlestockusingthe Black-Scholegormulation,
themodellingof bondpricesrequiresoneto simulatethe changeof interestratesasa functionof their
maturity, which requiresoneto modelthe movementof anentireyield curwve. If onestudiesthe spec-
tral decompositiorof the correlationmatrix correspondingdo the spotratesfrom this curve, thenone
findsthatthe top threecomponentganexplain nearlyall of the data;in addition,this samestructure
is obsenedfor any bondor commodity In his 2000paper llias Lekkos[4] proposeghatsuchresults
areanartifactdueto theimplicit correlationbetweerspotrates,andthattheanalysisshouldinsteadbe
performedusingforwardrates.In this paper we discusghe resultsobtainedfor the spectralstructure
of the correlationmatricesof forward rates,andinvestigatea modelfor this associatedtructure.The
paperis divided into four parts, covering forward ratesbackgroundmaterial, principal components
analysisyield curve modelling,andconclusionsaandresearclextensions.
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6.2 Background: Forward Rates

6.2.1 SpotRates

Let us beagin with a few definitionsand conceptdrom financialmathematicghatwill be referredto

throughoutthe paper To modelbondprices,onemustknow theyields for variousmaturities. These
interestrates,asafunctionof maturity, constitutetheyield curve andarereferredto asspotrates.The
spotrate R(T') givestheratethatmustbe paidwhenmoney is borraved (or loaned)todayfor atime

T years. Sinceeachspotrate changeswith time, we areinterestedn knowing the movementof the
entireyield curve astime proceedsWhenonestudiesa singlestock,andassumingefficient markets,
its movementmay be predictedusingthe Black-Scholegormulation:

5 = pdt + odW
S

with S referringto the stockprice, . its expectedreturn,ando its volatility. W is a Brownianmotion

representinghe randommaovementof the stock. To studythe movementof anentireyield curve, we

may assumehateachpoint movesasa Brownian motion. Sincethe correlationstructuresandhence
primary movementsof spotratesarewell known andwill be briefly mentionedn the next section,
andsincewe areinterestedn studyingthe correlationstructureof forward ratesin this paper let us

now adapttheabove formulationsto focuson forwardrates.

6.2.2 Forward Rates

A forwardrateis therateappliedto borrow (or loan)money betweerntwo dates;/; and75;, determined
todayattime ¢; we denotethisas f (¢, 71, T»). In orderthatno-arbitrageconditionshold, we musthave
thefollowing relationshipbetweerforwardandspotrates:

liTi of (T Tip1)(Tin =15) _ SRivaTivr

Theformulasimply stateghattherateto borrov money startingfrom todayto time 7;, ; mustbethe
sameastherateif oneborrows from todayuntil time 7;, andthenfrom 7; to 7;,,. If this equation
did nothold, onecouldborrov money atonerateandlendatanothemith norisk, therebycreatingan
arbitrageopportunity For completenesdet usalsodefinetheinstantaneoutrwardrate,whichis the
rateappliedto borrow or lendmoney for aninstantattime 77, determinechttime ¢, denotedf (¢, 71 ).

In ourwork, we areinterestedn following theapproachof Heath , Jarrav, andMorton [2] to model
the entireforward rate curve directly. As anexampleof thetype of changeghathave taken placein
forwardrateshistorically, Figure6.1 illustratesthe movementsof variousforward ratesasa function
of time usingdatafrom the US.

As previously mentionedwhile Black-Scholess usedto modela single stock,the modelling of
anentirecurve of forwardrateswill requiremorework. The formulationproposedy Heath,Jarrav,
andMorton is ageneralizatiorof Black-Scholesit is givenby theformula:

daf (t,T) = pdt + (i O'i(t,T)dI/Vi> )

i=1



6.3. PRINCIAL COMPONENTSANALYSIS (PCA) 97

1 2F d5 622 829 10365 1243 1630 1857 1864 A 1 208 245 2082 2800 3106 3313 3500 Frar 3594 L1H iS5 4355 4T &2 488 5176

Figure6.1: Historical Forward RateDatafor the US (z-axis: days;y-axis: percentile).

wherethe differentialis takenwith respecto time, sothat

The main questionnow arisesasto whatvalueof v shouldbe usedin the summation.Clearly; if we
selectr = 1, thenwe returnto modellinga single quantity which would incorrectlyimply thatthe
forward ratesare completelycorrelated.If, however, we allow v to be the numberof pointson the
curve, thenwe find thatthis computations too costly, andwe arenot takinginto accounthe factthat
ratesdo indeedhave a non-zerocorrelation. Our goalis to reducethe dimensionalityby recovering
mostof the variancesandcovarianceof the forward rateswith a minimal numberof componentsy,.
This canbeaccomplishedisingprincipalcomponentganalysis.

6.3 Principal ComponentsAnalysis (PCA)

PCA s astatisticalprocedurghataimsat takingadvantageof the possibleredundang in multivariate
data. It achievesthat by transformingp (possibly)correlatedvariablesinto » uncorrelatecnes. If
the original variablesare correlated then the datais redundantand the obsened behaiour canbe
explainedby just v component®f the original variableswith v < p.
ThisprocedurgerformsPCAontheselectedlatasetA principalcomponenanalysids concerned
with explainingthe variance-cwariancestructureof a high dimensionatandomvectorthrougha few
linear combinationsof the original componentvariables. Considera p-dimensionalrandomvector
X = (X1, Xa, ..., X,). v principalcomponent®f X arev (univariate)randomvariablesY;, Ys, ..
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Y,, which aredefinedby
Vi = LX =X+ 0o Xo+ ..+ 1, X,
YQ == lQX - lngl + ZQQXQ +...+ lngp,
Y, = LX=0,1X1+0L2Xo+ ... +1,,X,,
wherethe coeficientvectorsly, [, . . ., [, arechosersuchthatthey satisfythe following conditions:

FirstPrincipalComponent Linearcombination; X thatmaximizesvar(, X) and||/;|| = 1.

SecondPrincipal Component= Linear combination/, X that maximizesVar(,X) and
|l2|| = 1 andCov(l1 X , [, X)= 0.

J™ PrincipalComponent Linearcombination/; X thatmaximizesvar(; X) and||;|| = 1
andCov(l; X, [;X) = Oforalli < j.

This saysthatthe principal componentsarethoselinear combinationf the original variableswhich
maximizethe varianceof the linear combinationand which have zero covariance(and hencezero
correlation)with the previous principalcomponents.

It canbe proved that thereare exactly p suchlinear combinations.However, typically, the first
few of themexplain mostof the variancein the original data. So insteadof working with all the
original variablesX, X, ..., X,, onetypically performsPCA andusesonly the first few principal

componentsn subsequerdnalysis.

6.3.1 SpotRates

We areinterestedn determiningvhich componentslescribinghemovemenif our curve canbeused
to explain mostof the varianceandcovariancedatawhile utilizing asfew componentsaspossible.In
the caseof spotrates,from the previouswork in principle componentinalysisn this field, theresults
arewell known. Let R; denotea vectorof yields for theday 0 < ¢ < N anddefinethe matrix A
sothe columni of A is thevector R; — R;_;. OnecanthenconstructX = cor(A), the correlation
matrix formedfrom A. Notethat[X|; ; givesthe correlationbetweerthe daily changesn rateswith
maturity 7; andmaturity 7;. Calculatingthe eigervaluesandeigervectorsof this new matrix, onewill
find thatthetop threecomponentsrelevel, slope,andcurvature. Thefirst eigervector, referredto as
“level” canbeinterpretedasaparallelshift in thetermstructurethe secondepresentachangen the
steepnesgndthethird is interpretecasa changen the curvatureof theyield curve.

Using this processand obtainingthe correspondingeigervalues,we cancomputethe cumulatve
percentagef thefirst M eigervalueshamely

Zf\i1 )‘i
Zi:l )‘i

wherev is the total numberof eigervalues,asshown in Table6.1. From the resultof this principle
componentanalysisprocesswe can seethat the cumulatie total of the top threecomponentsare
alreadyover 95% of original data,wherewe useUS dataasanexample.Thesetop threecomponents
representhe key movementof theyield curve for spotrates their form is shaovn in Figure6.2.
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Figure6.2: Top 3 eigervectorsrepresentindsey movementsof spotratesin theUS (z-axis: maturity;
y-axis: eigervaluecomponent).

While theabove graphwasgeneratedisingUS data,in factwe cangetthe sameresultsregardless
of thetime periodor the market used,andregardlessof whetherwe considerbondsor commodities.
In [4], Lekkos arguedthat suchresultsare an artifact which arisesdueto the factthat spotratesare
highly correlatedoy construction He proposeghatwe shouldinsteadoe working with forwardrates,
whichalthoughthey maybecorrelatedarenot correlatedy construction He claimsthattheresulting
principalcomponentnalysiswill yield muchwealer results.

6.3.2 Forward Rates

As statedabove, we areinterestedn investigatingthe resultswhen principle componenganalysisis
appliedonthecorrelationmatrix for forwardratesinsteadof spotrates.

As before,we calculatethe eigervaluesandeigervectorsof the correlationmatrix, but for forward
rates,we do indeedfind that the decayof the eigervaluesis considerablyslower, implying thatit is
not enoughto only considerthe top threecomponentdo adequatelyexplain the movementsof the
curve. Figure6.3is a comparisorof the eigervaluesobtainedfrom the correlationmatricesof spot
andforwardratesusing1982—-2003JS data.

Fromthis graph,we notethatsimilarly to thetop eigervectorfor spotratesthetop componentor
forwardsstandsout considerablyalthoughit is notasdominantexplaininglessthan60% ascompared
to 80% for spots.If we consideithe contrikbution of thetop threecomponentsye find thatwhile these
madeup over 95% for spots,the total is now lessthan80%, owing to the muchslower decayof the
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SpotRateData
Eigervalue Individualvariance(%) Cumulatve variance(%)
A 8.0677 80.68 80.68
Ao 1.1627 11.63 92.31
A3 0.2847 2.85 95.16
Forward RateData
Eigervalue Individualvariance(%) Cumulative variance(%)
A 57776 57.78 57.78
A2 0.9425 9.42 67.20
A3 0.6609 6.61 73.81

Table6.1: PrincipleComponen®nalysisof US Data.

eigervaluesin the caseof forwards.

It is alsoeasyto verify thatthefirst eigervectorin thecaseof forwardratess still alevel movement
andthatthe secondstill correspondso slope. Yet, althoughthefirst two componentganstill explain
a lot of the total variance,the remainingeigervectorsmake up a substantiakcontribution, andtheir
intuitive meaningjncludingthatof thethird eigervector is notsoclear

6.4 Yield Curve Modelling

6.4.1 Model Developmentand Implementation

Thusfar, we have found that using forward ratesinsteadof spotratesdoesnot producethe same
structurefor the correlationmatrix in which threeexceptionallydominantcomponentsrise;in fact,
theorderof thelatercomponentsnay notevenbethe sameasin the caseof spotrates.How mightwe
try to modelthe correlationmatrix of the forwardratesandits resultingspectralktructuredn the case
of spotrates thereis anexisting modelfrom [1] for the spotratescorrelationmatrix:

[X]i; = p" 0]
assuminghatcorrelationsp, arehigh enough.HereT' is maturityin years.

A comparisorof the eigervaluedecayobtainedusingdataandthe abose modelis shown in Fig-
ure 6.3h The circlesrepresenthe eigervaluesof the correlationmatrix using spotrate data,while
the squaresstandfor the eigervaluesof the modelledspotcorrelationmatrix. We notethat the two
curvesnearlycoincidewith eachother; both of themexhibit a very fastdecayandfor eachof them,
thefirst threeeigemvaluesarevery significantandexplain over 95% of thebehaiour of thecorrelation
matrix; the othereigervaluesareinsignificantandsothecorrespondingigervectorsexplain verylittle
aboutthe movementof spotrates. Thus,this modelproducesa good approximatiorto the spotrate
correlationmatrix. To proposea modelin the caseof forward rates,we canconsiderthe relationship
betweerthe covariancematrix for spotandforwardrates,namely:

Q, =wao,wt. (6.1)
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Figure6.3: Variancestructureof the eigervalues. a) Spotratesversusforward ratesfor US data;b)
Decaystructurefor US spotrates(dataversusmodel); c) Decaystructurefor US forward rates(data
versusmodel);d) Decaystructurefor Europearforwardrates(dataversusmodel).

Here, (2, standsfor the covariancematrix for the spotrates,(); standsfor the covariancematrix for
the forward rates,and W is a matrix of the weightsof the forwardsto the correspondingpotrates.
However, we needto work with the correlationmatrix. That meanswe needto find someway to
corvertthis formulainto arelationshipbetweercorrelationmatrices.

Giventhatthe historicalvarianceof the spotsis pretty stableacrossenorswe have assumeaon-
stantvariancewhenusingformula(6.1) to transformthe correlationmatricesof the spotsinto correla-
tion matricesof forwards.

Rearrangingheresultingequationwe obtaina modelfor the forwardratecorrelationmatrix. We
may now comparethe forwardseigervalue decayfrom this modelledcorrelationmatrix with that of
the correlationmatrix obtainedfrom the data. Figures6.3c and 6.3d both shov sucha comparison

betweenmodel and data; Figure 6.3c illustratesresultsfor 1982-2003US datawhile Figure 6.3d
presentd998-200Z uropeardata.
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The circles representhe eigervaluesof the correlationmatrix for the real dataof the forward
rates,while the squaresstandfor the eigervaluesof the modelledforward ratescorrelationmatrix.
From thesetwo figures, we obsene that for both markets, the modelfits the datafairly well, but
considerablyworsethanthefit thatwasobtainedfor the spotsmodelearlier To be specific,it seems
thatthreecomponentgarenolongerenougho adequatelyxplainthecorrelationmatrix; we mayneed
to usemorethanfive componentsindeed,it is alsopossiblethatthe spotsmodel,while it seemedo
producea goodfit for spotsdata,is notanadequatéoundationfor our forwardsmodel,whichmaybe
moresensitie to the exactnatureof the spotscorrelationmatrix; perhapsa morerobustmodelfor the
spotratesis necessarywhenusingit asa basisfor forwardsmodelling.

6.4.2 Model Comparison Using Simulations

Sinceour ultimategoalis to predictforwardrateswhich canthenbe usedto predictbondprices,it is
importantto performsimulationsto determinaf usingforward ratesaswe have implementedabove,
or spotrates(andsubsequentlgomputingforwardrates)is indeedthe bestapproachWhile we know
in the caseof spotratesthatit is sufficient to include the threetop componentsit still remainsto
determinenow mary eigervectorsarenecessaryhenusingforwardrates.While we have performed
somepreliminarywork for making sucha comparisonsimulationsremainto be doneto determine
which methodbestpredictsthe varianceof forward rates,andhenceis a bettermodelfor predicting
futurevaluesof forwardrates.

6.5 Conclusion

Asit is well known, thecorrelationmatricescorrespondingo spotratescontainalot of structure.The
factthatthis structureis found acrossmarketssuggestshe possibility thatit is dueto anartifactand
notto any market-specificcharacteristicsin hiswork, I. Lekkos aguedthatforward ratesshouldbe
thestatevariablesn any suchanalysissincespotratesarecorrelatedvariablesby constructionUsing
interestrate datafrom the US, Germaly, United Kingdom and Japanhe showved that the structure
presentn thecorrelationmatricesvhenwe useforwardrates(asopposedo spotrates)is alot wealer.
In this work, we have analysedthesetype of matricesand found that the forward rate versionsof
parametrianodelsthathave beenproposedor spotratecorrelationslo afairly goodjob in describing
thedata.A lot of work remaingo be doneasfar asunderstandinghesematricestheircommonalities
acrosgmarketsand,of coursetheirmodelling.
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