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1.1 Introduction

Unlike mammals which have very reduced tails, the tails of dinosaurs represented a substantial fraction
of their body lengths and masses. The left and right sides of the tail base in all dinosaurs acted as
the anchor points for large, powerful muscles that attached on the rearward side of the hind limbs
(Figure 1.1). These muscles pulled on the legs, causing them to rotate backwards and under the body,
with the result that the animals were propelled forward. As well as pulling on the legs, these muscles
would have exerted a reciprocal pull on the tail. During locomotion the left and right hind limbs would
be alternately pulled, and be 180◦ out of phase with each other. These alternating tugs would have set
up oscillations in the tail. It would seem that some sort of synchrony would have to arise between the
rate at which the legs were swung back and forth and the natural frequencies of oscillations of the tail
to allow efficient, stable walking and running. The extreme sizes of some dinosaurs—up to 30 tonnes
in some cases—and the great range of body sizes—from a few hundred grams to many tonnes—gives
dinosaurs the potential to be insightful models for the study of locomotory dynamics in terrestrial
animals.

There are two possible avenues to investigate the effects of tails on locomotion:

1. Focus on just the ∼ 14m tail of Diplodocus carnegii, a 24m sauropod where the tail represents
approximately 26% of the total body mass detailed in Figure 1.2.
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4 CHAPTER 1. DINOSAUR TAILS

Figure 1.1: Anatomical details of the tail base structure in dinosaurs.

Figure 1.2: Diplodocus carnegii is a 24m sauropod with a 14m long tail.

2. Investigate the variation in tail mechanics that occurred during the evolution of theropod dinosaurs—
the two-legged, carnivores. In small, early theropods such as the 30cm long Compsognathus the
tail represents just over half the total body length, and is very slender and flexible. In larger,
later theropods such as a 12m Tyrannosaurus the tail represents just one third of the total body
length, and is proportionally deeper and much stiffer. Figure 1.3 illustrates this variation in tail
structure.

Section 1.2 begins with a survey of physical data for both bipedal and quadrupedal dinosaurs. In
this section the ratio of the tail to leg length is compared across many diverse species and a scaling law
is developed that relates the tail length, leg length and tail radius. A continuous model for the tail is
developed in Section 1.3 and by nondimensionalising a small parameter related to the thinness of the
tail simplifies the resulting coupled nonlinear equations. It is shown that the resulting set of equations
contain aspects of both beam dynamics and wave propagation. In Section 1.4 a discrete version of the
tail is derived with the assumption that the sections of the tail are coupled with a stiff joint that allows
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1.2. DIMENSIONAL ANALYSIS 5

Figure 1.3: Comparison of the tail structures for Compsognathus and Tyrannosaurus.

rotation but does not allow extension. In this model the stiffness of each joint is characterized by an
effective spring constant ki for the ith joint and results in a discrete version of the Euler-Bernoulli
expression for each of the tail segments. The paper finishes with some preliminary conclusions and
directions for future work.

1.2 Dimensional Analysis

As a first model we suppose that the tail acts like a flexible beam with the periodic driving force of
the rear legs modelled with a pendulum. If the beam has length Ltail and effective radius Rtail then the
deflection of the beam u(x, t) : [0, Ltail] × [0,∞) → R is given by

∂2

∂x2

(

EI(x)
∂2u

∂x2

)

= ρA(x)
∂2u

∂t2

where E is the Young’s modulus, I is the moment of inertia about the neutral axis, ρ is the density,
and A is the cross section of the tail. If we nondimensionise by substituting

x̂ =
x

Ltail
, û =

u

Ltail
, t̂ =

t

Ttail
,

I = R4
tailÎ , A = R2

tailÂ
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6 CHAPTER 1. DINOSAUR TAILS

we find that
ER2

tailT
2
tail

ρL4
tail

∂2

∂x̂2

(

Î
∂2û

∂x̂2

)

= Â
∂2û

∂t̂2
.

This indicates that the characteristic time to propagate a disturbance the complete length of the tail is

Ttail ∼
( ρ

E

)1/2 L2
tail

Rtail
.

At the same level of approximation assume that the legs of the dinosaur act like a pendulum of
length Lleg so that the characteristic period for the motion of the legs is on the order of

Tleg ∼
(

Lleg

g

)1/2

where g is the acceleration due to gravity. As a result, if the tail plays a significant role in the locomo-
tion with this model then Tleg ∼ Ttail and

L4
tail

LlegR
2
tail

= const. (1.1)

depending only on the composition of the tail. Notice that this expression predicts that for a fixed leg
length, increasing the length of the tail necessarily increases its effective radius in contrast with the
archaeological evidence.
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Figure 1.4: Ltail as a function of Lleg for a sample of bipedal and quadrupedal dinosaurs.

Figure 1.4 compares approximate values of the leg length to the tail length for a selection of bipedal
and quadrupedal dinosaurs. For bipeds, the tail is typically twice the length of the leg whereas in
quadrupeds the tail is, on average, an additional 40% longer. Figure 1.5 illustrates expression (1.1)
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1.3. INEXTENSIBLE ROD EQUATIONS 7

and contrasts it with an optimal expression that minimizes the variation. Clearly the beam/pendulum
model is not reflected in the sample but the variance is drastically reduced with the expressions

Bipeds:
L0.45

tail R
0.39
tail

Lleg
= const. Quadrupeds:

L0.23
tail R

0.69
tail

Lleg
= const. (1.2)

These results imply that for a fixed leg length, if the length of the tail is doubled then the radius of
the tail in a biped is halved, whereas in a quadruped the radius of the tail is reduced to one-eighth of
its original value. So we see that bipeds tend to have much thicker tails than correspondingly sized
quadrupeds.
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Figure 1.5: Scatter plot of the data assumed to satisfy (1.1) and the corresponding plot of the data
when a and b are chosen to minimize the variance.

The question remains to find a mechanism that predicts the archaeological evidence described
in (1.2). In the case of bipeds a similar expression can be recovered by analysing the simple cantilever
depicted in Figure 1.6. Here the tail, rear legs, and forward torso are replaced with rectangular blocks.
The condition that this effective dinosaur does not tip over is L2

leg(Lleg/2) − 2LtailRtail(Ltail/2) = 0 or

L
2/3
tail R

1/3
tail

Lleg
= const.

the point here is that scaling expressions like (1.2) are a result of balance equilibrium rather than
synchronous locomotion. So it seems more likely that the physical dimensions of the tail are chosen
to balance the dinosaur rather than complementing its locomotion dynamics.

1.3 Inextensible Rod Equations

We turn the discussion to the development of an appropriate model for the tail of the dinosaur and we
begin with a derivation of the equations satisfied by an inextensible rod.
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Ltail

Lleg

Lleg
2Rtail

Figure 1.6: An effective dinosaur with the major anatomical structures replaced with blocks of a
representative size.

To the left of Figure 1.7 is a segment of length ∆s with orientation φ, internal tensions of F , G in
the x, y directions, a bending momentM and an external force of ~P per unit length. In this case we are
viewing the tail from above so that ~P is essentially zero since the weight of the tail acts perpendicular
to this plane. It is simply left in for completeness. In any case, simple geometry gives the relationships

cos φ = ∆x/∆s, sinφ = ∆y/∆s. (1.3)

If the density and cross sectional area of the segment are ρ and A respectively then the mass of the
segment is ρA∆s and by resolving the linear motion in the x and y directions one obtains

(ρA∆s)xtt = ∆F + P1∆s, (ρA∆s)ytt = ∆G+ P2∆s. (1.4)

The angular motion is given by I0φtt = τ where I0 is the moment of inertia of the cross section
and τ is the net torque acting on the segment. From Figure 1.7, taking torques about the point A, one
finds that τ = ∆M − F∆y +G∆x so that

(ρI∆s)φtt = ∆M − (F∆s) sinφ+ (G∆s) cosφ (1.5)

where we have used the moment of inertia of the cross section defined as

I =

∫∫

A

y2 dA.

This quantity is analogous to the ordinary moment of inertia I0 except that the mass element is replaced
by the area element of the cross section. Note that the torque due to the external force is of a higher
order of smallness.

A final relationship can be obtained by assuming that the amount of bending is small and that the
material satisfies a linear constitutive relation σ = Eε relating the stress to the strain. Referring to the

π



1.3. INEXTENSIBLE ROD EQUATIONS 9
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Figure 1.7: To the left a rod segment of length ∆s experiences internal forces of F , G, a bending
moment M and an external force per unit length of ~P . To the right a portion of the rod is bent through
an angle φ. If the normal to the cross section remains normal, the displacement u = yφ.

right of Figure 1.7, a section of rod is bent through an angle φ. If this angle is sufficiently small then the
normal to the cross section will remain normal after the bending distortion and the the displacement
of the rod as a function of the distance from the neutral line is given by u = yφ. Since the bending
moment M for a given cross section is the sum of the moments about the neutral plane y = 0 these
assumptions give the relationship

M =

∫∫

A

yσ dA = E

∫∫

A

yε dA = Eφs

∫∫

A

y2 dA = EIφs. (1.6)

In this expression σ is the stress in the rod, and ε = du/ds is the corresponding strain. Equation (1.6)
is occasionally referred to as the Euler-Bernoulli assumption.

Letting the length of the segment ∆s shrink to zero gives the final set of equations satisfied by an
inextensible rod

xs = cosφ, (1.7a)

ys = sinφ, (1.7b)

ρAxtt = Fs + P1, (1.7c)

ρAytt = Gs + P2, (1.7d)

ρIφtt = Ms − F sinφ+G cosφ, (1.7e)

M = EIφs. (1.7f)

To nondimensionalise we assume that there is a circular cross section so that the radius R =
R0r(s), A = πR2

0r
2, and I = πR4

0r
4/4. Scaling the lengths with the length of the tail L we let

x̂ =
x

L
, ŷ =

y

L
, ŝ =

s

L
, t̂ =

t

T
,

F̂ =
F

K
, Ĝ =

G

K
, M̂ =

M

LK
, P̂i =

Pi

K
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10 CHAPTER 1. DINOSAUR TAILS

and identify three nondimensional quantities C1 = πρR2
0L

2/KT 2, C2 = πρR4
0/4KT

2 and C3 =
4KL2/πER4

0. The characteristic magnitudes of the force and time should reflect the physical proper-
ties of the tail. Consider a rod of length L which is clamped horizontally at one end, free at the other,
and bends under its own weight. If the rod has mass m and g is the gravitational constant then the
shape satisfies

ζ(iv) =
mg/L

EI
, ζ(0) = ζ ′(0) = ζ ′′(L) = ζ ′′′(L) = 0,

with solution

ζ(s) =
mg/L

24EI
s2(s2 − 4Ls + 6L2)

and a maximum displacement at s = L that satisfies

ζ(L)

L
=

1

8

mg

L2/EI
.

In this case the characteristic force for a rod that bends under its own weight is K = EI/L2 and
choosing this value for K sets C3 = 1. This leaves two natural choices for T . Either T = L

√

ρ/E or
T = 2L2

√

ρ/E/R0 in which C2 = 1 or C1 = 1 respectively. We choose the latter consequently

T 2 =
4ρπL4

ER2
0

=
ρπR2

0L
4

EI
,

C1 = 1, and C2 = (R0/2L)2 is a small parameter for a long thin tail and is denoted as ε.
Dropping hats the nondimensional equations are

xs = cosφ, (1.8a)

ys = sinφ, (1.8b)

r2(s)xtt = Fs + P1, (1.8c)

r2(s)ytt = Gs + P2, (1.8d)

εr4(s)φtt = Ms − F sinφ+G cosφ, (1.8e)

M = r4(s)φs (1.8f)

with 0 ≤ s ≤ 1, and r(s) = R(s)/R0 a nondimensional radius of the rod. Since ε is small, equa-
tion (1.8e) implies that if initially τ(s) = Ms − F sin φ + G cosφ 6= 0 then φ will change rapidly
with time until τ = 0. Conversely, equations (1.8c) and (1.8d) indicate that x and y will not appre-
ciably change during this equalization process. On the time scale of T , the ε term can be omitted and
expression (1.8e) can be replaced with

τ(s) = Ms − F sin φ+G cosφ = 0.

1.3.1 Boundary Conditions and Initial Conditions

Since the tip of the tail (s = 1) is free, the internal forces and bending moments vanish so that
F = G = M = 0. At the base (s = 0) it is not clear if one should consider a clamped, hinged, or
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1.4. DISCRETE BLOCK MODEL 11

simply supported condition. For a clamped base both the position and direction are specified fixing
x(t, 0), y(t, 0), xs(t, 0), and ys(t, 0) for all t. If the base is hinged then the position is fixed but the
bending moment M is zero. Finally, if the base is supported then it is free to slide and both the point
of contact and the direction are unknown. In this final case M = 0 and the direction of vector 〈F,G〉
must be perpendicular to the rod.

By initially assuming that the tail is in equilibrium and that there is no external forces acting on
the tail in the xy-plane (P1 = P2 = 0) we find that Fs = Gs = 0 so that both F (0, s) = F0 and
G(0, s) = G0 are constant. Since F and G are constant, the condition τ = 0 can be integrated to give
M(0, s) = x(s)G0 − y(s)F0 to avoid any fast dynamics.

1.3.2 Small Deflection Approximation

Suppose that the lateral deflection is small so that φ ' 0, P1 = P2 = 0 and (1.8a)-(1.8f) become with
ε = 0

xs = 1, ys = φ,

r2(s)xtt = Fs, r2(s)ytt = Gs,

Ms = Fφ−G, M = r4(s)φs.

This implies that the x co-ordinate of the rod coincides with the arc length, x = s, and the bending
moment M = r4(s)yss. Therefore

Gs = Fsφ+ Fφs −Mss = r2(s)xttys + Fyss − (r4(s)yss)ss = r2(s)ytt

or by setting x(t, s) = s,
Fyxx − (r4(x)yxx)xx = r2(x)ytt. (1.9)

If the tension in the x direction F = 0, as we expect near the tip of the tail, then the deflection y
satisfies

(r4(x)yxx)xx + r2(x)ytt = 0

which is the beam equation. Alternatively if the bending moment M and tension F are constant then

Fyxx = r2(x)ytt

which is the wave equation satisfied by a string under tension. In this small deflection limit, aspects of
both the wave and beam equations are contained in this inextensible rod model.

1.4 Discrete Block Model

Rather than a continuous tail, we can simplify the model by supposing that the tail consists of a finite
sequence of N discrete blocks that are connected by a stiff joint that allows rotation but no normal
displacement. The geometry and the applied forces are indicated in Figure 1.8.
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xi,yi

xi+1,yi+1
∆φ

φi

φi+1

Mi+1
Fi

Gi+1

Fi+1
Gi

Mi

Li

Figure 1.8: Each block is characterized by a mass of ρAiLi where Ai and Li are the cross sectional
area and the length of the ith block. Forces and moments Fi, Gi,Mi act to the left of the ith black and
the segments are connected to one another by a stiff joint that allows rotation but no extension. The
grey area can be thought of as a uniform distribution of collagen springs with a spring constant ki.

The co-ordinates of the centre of mass of block i+ 1 is given by

xi+1 = xi +
Li

2
cosφi +

Li+1

2
cosφi+1, i = 1, 2, . . . , N − 1

yi+1 = yi +
Li

2
sin φi +

Li+1

2
sinφi+1, i = 1, 2, . . . , N − 1

and the origin is taken so that x1 = y1 = 0. In a similar fashion the net force and bending moment
acting on block i give for i = 1, 2, . . . , N − 1

ρAiLiẍi = Fi+1 − Fi,

ρAiLiÿi = Gi+1 −Gi,

ρIiLiφ̈i = Mi+1 −Mi −
Li

2
(Fi+1 + Fi) sinφi +

Li+1

2
(Gi+1 +Gi) cosφi,

where the dots denote differentiation with time. For i = N + 1, Li+1 = 0 and we choose FN+1 =
GN+1 = MN+1 = 0 since the last block has a free end. These are simply a discretised version of
the original extension free equations (1.7a)-(1.7f). What remains is a discrete version of the Euler-
Bernoulli expression relating the bending moment to the curvature of the tail.

Suppose that there is a uniform distribution of collagen springs in the gap between blocks i and
i+1. Let ki denote the spring constant measured so that a uniform displacement of length li, the springs
equilibrium length, generates a restoring force of −ki. In this case the units of ki is force/area rather
than the standard force/length. If we instead suppose there is an angular displacement of φi+1 − φi =
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∆φ 6= 0 then the springs on one side of the pivot are compressed and the springs on the other side
are stretched from their equilibrium length. Each of the springs contributes a force F = −kix∆φ/li
where x is the distance of a given spring from the pivot point and the total force is

Ftot = −
∫∫

A

ki∆φ

li
x dA = 0

so that the internal forces are not modified by the rotation of ∆φ.
The bending moment does changes since

Mi =

∫∫

A

xF dA =

∫∫

A

ki∆φ

li
x2 dA =

kiIi∆φ

li
(1.10)

where Ii is the moment of inertia of the cross section of block i. If we compare this with a discrete
version of the Euler-Bernoulli expression we have

Mi = EiIi
∆φ

∆s
= EiIi

∆φ

(Li/2 + Li+1/2
) =

kiIi∆φ

li
.

So we see that equation (1.10) is a discrete version of the Euler-Bernoulli expression with an elastic
modulus of

Ei =
ki

2li
(Li + Li+1)

consistent with a stress of magnitude ki generating a strain of li/(Li/2 + Li+1/2).
In summary the discrete block solution must satisfy for i = 1, 2, . . . , N − 1

xi+1 = xi +
Li

2
cos φi +

Li+1

2
cosφi+1, (1.11a)

yi+1 = yi +
Li

2
sin φi +

Li+1

2
sin φi+1, (1.11b)

ρAiLiẍi = Fi+1 − Fi, (1.11c)

ρAiLiÿi = Gi+1 −Gi, (1.11d)

ρIiLiφ̈i = Mi+1 −Mi −
Li

2
(Fi+1 + Fi) sinφi +

Li+1

2
(Gi+1 +Gi) cosφi, (1.11e)

Mi =
kiIi
li

(φi+1 − φi) (1.11f)

where the ẍi and ÿi in the third and fourth expressions must be consistent with the first two expressions.
Furthermore, the internal tension and moments of the first block F1, G1, M1 should be chosen to
emulate the time dependent forces that the hip exerts on the tail and FN = GN = MN = 0 at the free
end of the tail.

1.5 Conclusion

Having considered a cross section of both bipedal and quadrupedal dinosaurs we found that the scaling
laws give a first indication that the proportions are typically chosen to balance the dinosaur as opposed
to acting as an aid to locomotion.

π



14 CHAPTER 1. DINOSAUR TAILS

Two models for the motion of the tail were explored. The first of these was a continuous model
and for small deflections it was shown to include aspects of the dynamics of a thin beam as well as
the dynamics of wave motion. This is very encouraging since both of these behaviours are seen in the
tails of modern day animals. Unfortunately the resulting equations are a set of strongly coupled partial
differential equations and more time is required to fully develop a solution consistent with the mass
distribution of a given dinosaur.

To simplify the situation a discrete version of the continuous model was developed where the tail
is broken into N blocks joined together with a stiff connection that allows rotation but no extension.
Once again the result is a set of strongly coupled equations, but there is improvement. First, we are
left with ordinary differential equations and second, the Euler-Bernoulli equation in the continuous
model is recovered in the discrete model as a result of the behaviour of the springs in each joint. In
some sense this result is not really unexpected since the discrete model is simply the continuous model
written as a numerical implementation of the method of lines.

The next step is to simulate the motion of a tail predicted with the discrete block model for a
living animal to estimate the model predictability. Choosing many segments for the tail of varying
stiffness (Ebone ' 20GPa, Ecollagen ' 1GPa) should produced reasonable dynamics. Once this has
been accomplished, one can assess the degree to which a tail would have aided in the locomotion of
pedal and quadrupedal dinosaurs.
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