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Abstract

Cold rolled steel in the form of coiled sheets requires heat treatment (annealing) in
order to release stresses and reform the crystalline structure. During this process the whole
coil must be heated to the required temperature and then maintained at this temperature
for a period of time. At New Zealand Steel the process takes place inside a batch annealing
furnace. The MISG group considered the problem of where the cold point lies within the
steel coils, i.e. what is the last part of the coil to reach the required temperature, and
how long does it take to reach this temperature? Challenges include deciding what the
boundary conditions are on a coil, and dealing with the nonlinearity and anisotropy caused
by height-dependent gaps within coils.

1 Introduction

During steel manufacture, the process of cold rolling introduces stresses due to changes in
the crystalline structure of the metal. These stresses are released by further heat treatment
(annealing) which reforms the crystalline structure and reintroduces desirable mechanical
properties. The steel for this stage is in the form of a coil. This coil has been produced by
wrapping a long steel sheet about an armature, which is then removed, leaving a curved inner
surface. The entire steel coil has to be raised to a specified temperature within a Uniflow
Annealing System (UAS) furnace. The steel coil is then maintained at this temperature for a
period of time to achieve annealing.

New Zealand Steel have a number of empirical formulae that they use to decide how
long to keep a set of coils in the furnace, to ensure the thermal centre of each coil reaches the
desired temperature. These formulae were derived from data generated during commissioning
of the furnace, and subsequently lost. The formulae have also been modified over the years,
and the original formulae are no longer available.

The following are the objectives identified by the industry representatives:

1. Determine the cold point in a single cold rolled annealed coil taking into account radial
and axial heat transfer.
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2. Develop new heating formulas based on coil weight, width and thickness if appropriate.
3. Evaluate heating time variation with coil position in the furnace.

During the week some progress was made on addressing both of the first two objectives.
The third (extra) objective was also the subject of discussion. A challenging feature of
modelling this process remains the practical difficulties encountered in taking experimental
measurements within the furnace.

To begin to address the issues, the heat transfer from the furnace through the steel coils
must be modelled. We desire to determine the internal point within each coil that takes the
longest time to reach the required temperature, and to find how much time is necessary for
that to occur. Two parts to the problem can be identified. One is to establish the boundary
conditions at the exterior of the steel coils and the other is to model the internal conduction
within the steel coils. In both these areas information and insight were provided to the MISG
group by the industry representatives and from the literature.

2 Conditions within the UAS furnace

For the New Zealand Steel annealing process, batches of steel coils are placed upon a ventilated
steel platform in a single layer on their circular ends (see Figure 1). The ventilation consists
of vertical holes that pass completely through the platform. Typically there are nine coils in
a square formation on the platform. Each coil weighs between ten and twenty tonnes, is 700
to 1500mm high (this is the width of the steel strip before being coiled), and the steel strips
are from 0.4 to 3mm thick.

The ventilated platform is transported through the front door of the furnace to initiate
the heating process. After annealing is complete the platform exits at the back of the furnace
into another chamber. The furnace is filled with heated gas, an inert mixture of nitrogen
(93% by volume) and hydrogen. This is circulated around the coils. Heating is by radiant
burners in the ceiling and on the sides of the furnace. The burners at the sides are shrouded
so that they do not radiatively heat the coils, but they do heat the gas. The burners in the
ceiling are almost uniformly spread over the set of nine coils.

It is difficult to determine exact boundary conditions for the steel coils. There is limited
experimental data available and the gathering of such data is difficult. One measurement
that has been recorded is the temperature at two points in the furnace: one in contact with
the top surface of one of the steel coils and the other directly above this position and within
the heated gas. An example of this data is shown in Figure 2.

Considering an individual steel coil, heat transfer is achieved by a mixture of direct ra-
diation from the heaters in the ceiling of the furnace, conduction from the ventilated steel
platform below the coils, and convection by the inert gas (nitrogen/hydrogen mixture) which
is blown over heaters and around the coils inside the furnace. The measurements in Fig-
ure 2 indicate that the temperature on the circular top of the coil is very close to that of
the neighbouring gas. This is likely due to rapid direct radiative heating of the top of the
coil by the heaters in the ceiling. As a consequence, the upper boundary is here assumed
to have a temperature that matches the furnace gas temperature. The circular base of the
coil is assigned this temperature too, as the ventilated steel platform with its relatively large
surface area is anticipated to heat very rapidly to the gas temperature, and then conduct heat
directly into the lower end of each coil. Heating on the curved inner and outer surfaces of a
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Figure 1: Photographs of steel coils being prepared for and entering the UAS furnace. (Pho-
tographs courtesy of NZ Steel.)
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Figure 2: Temperature measurements (°C) taken inside a UAS furnace during just under
two heating cycles. The uppermost curve (T1) is the gas temperature above a set of coils,
and the curve just below (T3) is the temperature of the upper outer edge of a coil. The
target temperature of 680°C is also shown. The lowest line (T2) is the gas temperature in
the chamber that the coils are cooled down in following annealing. (Figure courtesy of NZ
Steel.)
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coil is by convection from the surrounding gas and so the boundary condition here is that of
Newton’s Law of Cooling.

3 Heat transport within the coils

Superficially, each steel coil can be considered to be a hollow cylinder, annular in cross-section.
However, as the coils are rolls of sheets of steel, there are gaps in the radial direction between
the neighbouring parts of the steel sheet. As the gas in these gaps has a lower conductivity
than steel, the effective conductivity of the coil in the radial direction is lower than that in
the vertical direction (within the steel sheet). As a first approximation, the gap between the
sheets is assumed to be constant. However, in practice, due to the non-uniformity of the
rolling process, the steel sheet has a crown; that is it is thicker in the middle of the sheet than
at the edges. This means that the radial gap varies in width vertically along the coil, being
larger at the top and bottom ends of the coil, and smaller halfway up, where it is primarily
due to surface roughness that there is a gap present. In principle, the thermal conductivity in
the radial direction also varies with coil tension and differential heat expansion of the coils due
to temperature gradients, and so is dependent on radial position as well as vertical position.
When there is contact between the radial steel layers, heat transport could occur through
steel-steel contact [6], by diffusion through the gas in the gap, and by radiation across the
gap. However, to a reasonable extent, a rough contact surface can still be treated as if it were
effectively a small uniform width gap [10, 9].

Therefore, since the number of windings in each one is large, we model a coil as a uniform
hollow cylinder with radial conductivity dependent on position:

AewT) 10 (, 0TV, 0 (o
o ror k’"rar +8z kzaz ’ (1)

where T' [K] is the temperature, ¢, [J/kg/K] is the heat capacity which is a function of
temperature, p [kg/m?] is the density of the steel, k.(z) [J/m/s/K] is the radial conductivity,
and k, [J/m/s/K] is the vertical conductivity which is assumed to be the constant conductivity
of steel, k;. The relevant dimensions and properties are listed in Table 1.

3.1 Radial conductivity — Modelling the gaps

In some of the literature [7, 8], the coils are modelled as a concentric series of separate
annular cylinders of metal with hot gas between, as illustrated in Figure 3. Then variations
in the radial gaps due to crowning (varying strip thickness) and due to temperature gradients
inducing differential expansions are calculated [7, 8].

Using the data provided by New Zealand Steel, the geometry is sketched in Figure 4,
where lengths, a, b, and d are indicated. Here we use z’ to represent the vertical distance
from the centre of the coil or equivalently the distance from the centre of the steel sheet
towards its edges. The sheets are of a fairly constant thickness at their centre but taper
towards the edges. Near the edges, that is the top or base of the coil, the effective radial
thermal conductivity is given by

kot ~ :7”17 , 419.74 < 2/ <550 (2)
ks kg
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steel density p 7854 kg/m3 (at 300k)

steel thermal conductivity ks 60.5 W/m/K at 300K
56.7 W/m/K at 400K
48 W/m/K at 600K
39.2 W/m/K at 800K
30 W/m/K at 1000K

steel thermal capacity cp 434 J/kg/K at 300K
487 J/kg/K at 400K
559 J/kg/K at 600K
685 J/kg/K at 800K
1169 J/kg/K at 1000K

gas thermal conductivity — k, 0.06 W/m/K

furnace circulation 800 m? /minute

steel strip thickness 0.4-3 mm

steel strip width 700-1500 mm

coil mass 1020 tonnes

coil inner diameter 508 mm

coil outer diameter 1.5 m

platform mass 37 tonnes

furnace dimensions 6.5 x 6.5 x 4 m3

Table 1: Table of steel and coil properties.

Figure 3: A sketch of the cross section of a coil, with the close up showing how variation in
strip thickness causes a variation with height in the gas gap within the coil.
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This expression for effective conductivity is only exact for the steady state and the limit of
infinite layers [5]. In this 2’ range,

a+b=d, b=s(z —418.42) (3)

where measurements indicate that the slope s is 0.038/50. In the central contact region
between the two sheets a 1um gap (an effective gap due to roughness) gives

d

ke & "< 419.74 . 4
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Figure 4: A sketch showing the geometry of the hot gas gap between two sheets of steel in a
coil. The sketch shows the upper half of a cross-section through two 1.1m wide sheets.

Using these equations, the effective radial thermal conductivity is in the range 14-25
W/m/K when d is in the range 0.4-3 mm. These thermal conductivities are plotted in
Figure 5. Note that these radial thermal conductivities are smaller than the vertical thermal
conductivity, ks = 30 W/m/K at 1000K.

If we consider just radial conduction, then the results in Figure 5 indicate that crowning
effectively causes an overall reduction in k, because of the very low radial conduction at the
top and bottom of the coils. However, in practice, these ends are heated rapidly by vertical
conduction.

3.2 Estimates of heating times

The timescale for heating is
2pc
t=—L2 5
: %)

where £ is the lengthscale, and k is the appropriate (effective) thermal conductivity. This
formula assumes that the surface of the steel is immediately raised to the target temperature.
So an approximate estimate of the time to heat a coil of steel, if there is only axial (vertical)
heating, is

t = 10-50 hours (6)

for £ = 350-750mm (half the height of a coil) and using £ = ks. A solution of the heat
equation in the vertical direction with upper and lower surfaces fixed at T, obtained using
Maple, is shown in Figure 6.
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Figure 5: Effective radial thermal conductivities (W/m/K) resulting from the geometry
sketched in Figure 4, plotted against vertical distance from the middle of a coil 2’ (mm),
for gauges d = 0.4, 1, and 3 mm, and for a temperature of 1000K.

If we consider heating purely in the radial direction, near the centre of the coil, so that
£ = 250mm, then the corresponding timescales are

t = 12 hours, when d = 0.4 mm
t = 8 hours, when d = 1 mm
t = 6 hours, when d = 3 mm . (7)

However, this does not take into account the restrictive effect of Newton heating on the curved
surfaces, discussed in detail in the next section.

3.2.1 Radial boundary condition

Radial heating is driven by conduction from the hot gas rather than by direct radiant heating
from the furnace burners. This means that the heating times above need to be reconsidered
in light of the heat transfer coefficient H. When they are at temperature 7', the heat flux
into the (inner and outer) curved surfaces of the coils is

Nuk
Qc = H(Tgas —T), where H = ;g, (8)

and Nu is the Nusselt number (the ratio between actual — convective — heat transfer and
that which would be achieved with only conductive processes at work in the hot gas), and
D is the hydraulic diameter of the region the hot gas is flowing through. A number of semi-
empirical formulae exist for Nu in the case of forced convection, in terms of the Reynolds
number Re (= 2.7 x 10* for the UAS furnace) and the Prandtl number Pr ~ 0.7, including
the laminar flow case:

Nu = 0.648VRe (Pr)? , (9)
and, in the turbulent flow case, the Dittus-Boelter formula

Nu = 0.023Re’¥Pr03 | (10)
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Figure 6: Solutions calculated by Maple to the axial (vertical) heating problem, using ks = 30
W/m/K, ¢, = 1169 J/kg/K, T = 720°C top and bottom, and initial temperature 30°C. The
different curves show temperatures (°C) at 0, 2, 4, 8 and 16 hours plotted against vertical
distance z (m) from the bottom of the steel coil: the lowest curve is the temperature in the
coil at time zero; the uppermost curve is the temperature in the coil after 16 hours of heating
when this temperature is everywhere close to 720°C.

and the Gnielinski formula

1 0.037Re"®
1+ 2.443Re 01 (Pr?/3 — 1)

(11)

All of these formulae give values for H in the range 3-5.

The question addressed here is whether the rate of heat transfer from the hot gas is the
main limitation, or the rate at which heat is conducted radially into the steel coil from its
surface. The Biot number helps answer this, since it is the ratio of the heat transfer rate at
the surface to the heat transfer rate inside the coil:

Bi
i i

0.1. (12)
This value being much less than 1 indicates that the rate-limiting factor for radial heat
transfer, is heat transfer from the hot gas to the surface of the coil, rather than within the
coil. This calculation is supported by numerical solutions to the radial heat equation using
Maple, illustrated in Figure 7. In this figure, the internal temperatures stabilise much faster
than the overall temperature rises.

The exact details of how the radial thermal conductivity varies with height and with
temperature gradients are of less importance than the details of the heat transfer process,
across a thermal boundary layer in the hot gas, into the curved vertical surfaces of a coil. Heat
transfer in the vertical direction is much more rapid, despite the longer distances involved,
because radiation from above and the ventilated platform from below are far more effective
at heating the horizontal surfaces.

Furthermore, discussion with the industry representatives suggested that the tensions and
roughness of the actual coils would tend to reduce the variations with temperature gradient.
Hence we now consider a model in which the horizontal cross-section of the coil is effectively
concentric annuli of metal and gas that remain constant in size.
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Radial Heating profile at t=0,2,4,8,16 hrs, 1 micron gap

90

80 1

70 4

60

50 9

40

30 -

0.3 0.4 0.5 0.6 0.7

Figure 7: Solutions calculated by Maple to the radial heating problem, using H = 5 in the
flux boundary condition, ks = 20 W/m/K, ¢, = 1169 J/kg/K, Tyas = 720°C, and initial
temperature 30°C. Temperature (°C) is plotted against radial distance (m) from the centre of
the annulus that is the cross-section of the steel coil. Time zero is the lowest curve; 16 hours
of heating is the uppermost curve. Note the relatively slow rise in boundary temperatures.
Also note that the coldest point is nearer the inner face of the coil, due to its smaller surface
area (hence smaller heat flux).

4 Linear heat transfer — analytic solutions

In this section we find analytic solutions for linear heat transport within a cylindrical shell.
This allows us to consider both radial and axial heat flow simultaneously.

We assume that the coil is a homogeneous region, although with anisotropic heat con-
ductance, so that k, and k, are constant. The coordinate system is shown in Figure 8. The
solution takes the form of a series whose leading order behaviour is governed by a dominant
eigenfunction.

In the linear model, (1) is written in the simpler form

oT 10 oT o (0T

Our boundary and initial conditions are

T T

kT%—:H(T—Tg), at r = a, kr%—:—H(T—Tg), at r = b, (14)
T T

T(r,z=0,t) =T(r,z = L,t) =T, T(r,z,t=0)="1"T, (15)

where D, = k,/(pcp), D, = k,/(pcp) are assumed constants, T, is the external gas temper-
ature, and T the initial temperature of the coil. These equations are scaled using typical
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Figure 8: The coordinate system of a coil of height z = L and radius r € [a,b]. (Photograph
courtesy of NZ Steel.)

values, t = 19,7 = b,z = L, T =T,:

T-T
= = (16)
To — T,

t=tot", r=br", z=1Lz", u

where r*, 2*,t*, u are the non-dimensional variables. There is a choice of two obvious time
scales tg, using either D, or D,. For the problem of interest it is not clear which is dominant
and they are of similar magnitude. Hence, without loss of generality we take

ty = —.
0 Dz

The linearised, non-dimensional system is thus

ou 10 ou %u

a = Prar (a_> = (17)
ou ou

— = = = — = ]_

o hu, at r=a, 5 hu, at r ,

u(r,z =0,t) =u(r,z =1,t) =0, u(r,z,t=0)=1,

where the * notation has been dropped for convenience, D = D,L?/D,b? represents the

relative diffusivity, a € [0, 1] (strictly a*) is the ratio of original lengths a/b, and h = Hb/k,.
This equation now represents non-dimensional cooling of a unit cylinder from initial unit
temperature to surrounding temperature zero.
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The solution is found by separation and Sturm-Liouville theory. A similar solution for the
purely radial case can be found, without derivation, in [3] (page 530). Setting

u(r,z,t) = R(r)Z(2)T(t) (18)
gives
7" = uZ, Z(0)=Z(1) =0 (19)
RH+%R' — WR, R'(a)=hR(a), R'(1)=—hR(1) (20)
T = (Dw+ )T, (21)

where w and p are members of infinite sets of eigenvalues. The respective eigenfunction
solutions are

Z = sinnmz, p=—(nr)? n=12,... (22)
R = Co(Ar) = Jo(Mr)+ BYy(\r), w=—-\% (23)
T = exp(—(DX\ + (nm)?)1), (24)

where B is a constant, and Jy, Yy are zeroth order Bessel functions. The boundary conditions
at r =a and r =1 give

—AJi(Aa) — BAY;(Aa) — hJo(Aa) — hBYy(Aa) = 0, (25)
—AJ1(N) = BAY; () + hJo(A) + hBYy(A) = 0. (26)

These have a consistent solution for B when

‘ A1 (Aa) + hJo(Aa) AYi(Aa) + hYp(ha)

AR + D) —AYI(N) + hYo() | T (27)

This characteristic equation can be solved numerically to find A, as illustrated in Figure 9 for
the case a = 1/3 and h = 1.
Using (18) the full solution is

u(r, z,t) = Z Z Ay € Pt gin ey Co(Amr), (28)

n=1 m=1

where from (26
ere from (26) B hJo(A) — AJ1(N) 99
S RY() - () (28)

and A, are constants found by Sturm Liouville orthogonality as

B fol sin(nmz)dz fal rCo(Amr) dr

Amn = fol sin?(nnz) dz fal rC3(Amr) dr’ (30)
These integrals can be evaluated to give
1
P [0 )], 1 (31)
" [5 (CBOw) + C20mn)]
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Figure 9: First five eigenvalues shown as zeros of equation (27) for h = 1 and a = 1/3.

where C and C are given by (23). Use has been made of results from [1](chapters 9 and 11)
summarised here using C,, and D, to represent either J, or Y,:

Colz) = —Ci(w) (32)

/a 1 rCo(Ar)dr = [§C1(Ar)] (33)

%Q(CO(AT) Do(Ar) + C1(Ar) D1(Ar)). (34)

/ 7 Co(Ar)Do(Ar) dr

The solution given by (28) can be evaluated to any degree of accuracy at any point
using simple numerical summation. However, the dominant behaviour is given by the leading
eigenvalues A1 and 7. In Figure 9 the eigenvalues are shown as zeros of the characteristic
equation (27) with a = 1/3 and h = 1. Numerically they can be shown to asymptote to being
3m/2 apart.

Figure 10 shows the full solution u(r,z = 0.5,t = 0.04) and the leading eigenfunction,
equation (23) with A = A1, using scaled values h = 1, D = 1, and a = 1/3. This illustrates
that the leading eigenfunction dominates the solution and that the position of the cold point,
7 = ¢, can be given by finding the maximum of this eigenfunction. The time dependence is
then governed by the time decay of the exponential term exp(—(DA? + 72)t).

Figure 11 shows the dependence of the cold point position and leading eigenvalue as
a function of the scaled surface transfer coefficient h with a = 1/3, which is comparable
to the practical application. Note that the cold point does not vary considerably with h.
As h becomes small, the leading eigenvalue becomes small compared with 7, the dominant
eigenvalue in the z direction; for small h the sides are effectively insulating and diffusion is
dominated by the z dependence.

Figure 12 shows a contour plot of the leading eigenvalue as a function of the two parameters
governing this variable, h and a. For this application it is unlikely that ¢ will be varied, but
this result is included for completeness.
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Figure 10: Comparison of full solution u(r,z = 0.5,t = 0.04) and leading eigenfunction (23)
for h =1 and a = 1/3 with the cold point shown. Hence this eigenfunction is a good predictor
of cold point position.
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Figure 12: Contour plot showing the dependence of the leading eigenvalue as a function of
scaled surface transfer coefficient h and scaled inner width a.

4.1 Implications for heating times

The key feature of the dominant leading term in the solution (28) is the decay in time factor,
which in dimensional terms is

D D
exp (— (A%b—; + WQL—S) t) . (35)

The first part of the exponent is due to radial heating, the second part is due to axial heating.
As noted previously, since the ratio

N D, L?
w2 D, b2

is approximately 0.1 (using \; = 1), radial heating is much slower than axial heating. How-
ever, the effects as evidenced by the exponential decay term above, are multiplicative. For
example, increasing the convective transfer term H by a factor of 5 increases the eigenvalue
A1 by a factor of 2, and this changes the heating time from a scaled value of 0.98 to 0.89, a
10% improvement.

For the cold point to reach the desired soak temperature of 680°C when gas temperature
is 710°C and initial temperature is 30°C, the scaled solution u needs to change from the initial
value of 1, to the value 30/680. If we ignore radial heating, this happens at the time

(36)

2 L2 e2
(3/68)| ~ 032~ ~ 1.8 . (37)

z z

t=——|1
WQDZ‘D

This formula reduces by 10% if radial heating is included, to give

£2
t~1.15—. 38
- (38)
This is almost the same formula as that used in Section 3.2, and gives similar heating times.
These results (37) and (38) were checked numerically by setting u = u, in (28) with r = r,

and z = 1/2, where 7, is the cold point established from the leading eigenfunction (20).
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5 Numerical solutions

In this section we explore numerical solutions to (1). For the steel coil application we assume
that k. = k.(2) so that the radial conductivity across the coil is height dependent. We
further consider k, to be constant, p to be constant and ¢, to be temperature dependent.
Using essentially the same non-dimensionalisation system as with the linear solution, with
the timescale tg = L?/(k,/pcy(1)), we can write the governing equation as

ou 10 ( Ou 0%u Olnc
P p (2 D —— — T, P
ot "y or (r 8r> g T (39)
with boundary and initial conditions the same as in (17) and
* Cp(l) kT(z) L2 * Cp(l) Tg
Dr(z’u) cp(u) k, B2’ Dz(“) cp(u)’ 1 T, _Tg ( O)

The cumbersome nature of this equation is due to the height dependence k, = k,.(z) and
temperature dependence ¢, = ¢p(u). If this is relaxed so that k, and ¢, are constant then
equation (17) is recovered exactly.

Using second order, central finite differences, the fully nonlinear version of (39) was solved
numerically with MATLAB. These experimental results were compared with the analytic
solution of Section 4 and found to be accurate for a range of parameter values. Tests for
stability and invariance under differing space and time steps were successful.
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Figure 13: Finite differencing at a central point (7,j) and at a boundary point where a
fictitious point is used.

The discretisation used can be illustrated by considering the numerical strategy specifically
applied to (17), where ¢, is assumed constant. If u(idr,jdz,kdt) = uf} ; Tepresents the
temperature at discretized position and time then

?u  10u 9%u
k+1 _ _ k
@ — uﬁj+1 — 2u£€:j + uf,jfl (42)
072 dz? ’
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2 k _ k k k _ 2k
Fu _ Uiy — 25 H U Ou Uiy U

or?2 dr? ’ Or 2dr

(43)

The discretisation is shown in Figure 5. The boundaries z = 0 and z = 1 are easily defined
by setting v = 0. On the boundaries r = a¢ and r = 1 we use a fictitious point outside of the
region which is then eliminated by combining the discretisation above with the discretized
boundary condition. Hence at r = a we use the governing equation and boundary condition
in (17) and rearrange to find u’f,j:

k k
Ugj — U0, k
2dr o hul’j’ (44)
%u  10u u
ulfj;l = u’f’j + dt |:D (W + ;E) + W] s (45)

with the 2% and 4% terms involving uf ;, u§ ; and the fictitious point uf ;. Using (44) to

’8, ; in (45) gives the new updated value for ulfjrl This is similarly applied at r = 1.

replace u p

The numerical solution was found to be sufficiently accurate with a spatial discretisation of
21 points in both r and z directions — although a finer grid size of 41 points was necessary for
small values of h. The time step was chosen to minimise computational time while remaining

within the stability condition

dz?
dt < 5D (46)
for all the typical length and diffusion scales in the problem. This numerical solution was
also used to find estimates for how many terms are required in the numerical evaluation of
the series in (28). As expected, for early times more terms are needed, although 10 terms is
usually sufficient for accuracy. At later times, as the exponential term decays more rapidly,
less terms are needed.

Figure 14 shows a contour plot of temperature in a cross section of the cylinder, with
scaled h = 0.3, t = 0.04, a = 1/3, scaled diffusivity D = 1/2 and ¢, a constant. These
parameter values were chosen to represent realistic values for the coiled steel problem.

Figure 15 shows a cross section of the temperature at 7 = 2/3 with the same parameters
as Figure 14. Radial diffusivity is likely to vary with height because of crowning: the uneven
thickness across the original cold rolled steel sheets. To investigate this effect, two different
solutions are compared, one with the radial diffusivity constant and the other when it varies
quadratically as shown on Figure 16. There is very little difference between the solutions.
This is because the radial heat transport is so restricted by the surface heat transfer coefficient
that heat is predominantly diffused vertically. This is also clear from Figure 14.

6 Variable Diffusivity

The diffusivities that have been used in previous sections to estimate heating times have been
based on the properties of steel at 1000K. However, steel diffusivity varies with temperature,
and is larger at smaller temperatures, so that we have overestimated heating times. The
concept of mean action time [4] allows us to calculate by what factor we have overestimated
heating time, by considering that the appropriate average diffusivity to take is
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Figure 14: Contour plot of temperature in a cross section of the cylinder, with scaled h = 0.3,
t =0.04, a = 1/3 and scaled diffusivity D = 1/2.
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Figure 15: Scaled temperature at 7 = 2/3 versus height with the same parameters as Figure
14. This shows that for Newton cooling on the radial surfaces, varying radial diffusivity has
little impact.
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Graphing tabled values of D(T') and fitting a quadratic (using Maple) as illustrated in
Figure 17 gives (for T in Kelvin)

Dr~2x10°—-25x10%T +4 x 107 21? m?/s (48)

and Degective = 1 x 107° m?2/s, which is a factor of three larger than the value of D used at
1000K. Hence our estimates of heating time are anticipated to be a factor of three too high.
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Figure 17: The dependence of diffusivity of steel (m?/s) on temperature (K), data shown as
boxes and a linear and a quadratic fit as curves.
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7 Discussion and Conclusions

The analytical and numerical investigations of Sections 4 and 5 suggest that, with the bound-
ary conditions chosen here, the main constriction on the heating of the steel coils is the slow
transport of heat through the curved sides of the coils. Further analytical and numerical
investigations with radiative heating of all the outer surfaces show a considerable reduction
in the heating times [2].

It is difficult without further experimental data to assess the validity of our assumed
boundary conditions. We have ignored the effect of the location of the coil in the furnace but
industrial experience suggests that failure of the annealing process is associated with particular
grid positions within the furnace. There will be further radiation within the furnace such as
between the sides of the steel coils. The ceiling plan of the furnace also indicates that some
parts of the circular top ends of the coils could be partially shielded from the radiation from
above, which would break the cylindrical symmetry which we have assumed. Our modelling
underscores the importance of radiative heat transport compared with convective transport.

In any case, our results indicate that the primary variable of concern is the vertical length-
scale of the coils, and that considerations such as gauge are secondary, because the radial
geometry is in practice independent of gauge, and because radial heat transport is much
slower that vertical heat transport. This is because of the boundary conditions rather than
the differences in thermal conductivity. Hence, grouping coils by strip width is key to having
groups of coils that require the same annealing time in the same batch.
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