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1 Introduction

The aim of this project was to investigate and develop models for the shelf life of bottled
wine and, in particular, the effects of elevated temperatures on the aging process. The
MISG group divided the problem into three sub-problems. First, calculations were made to
describe the temperature of wine in a single bottle when subjected to an elevated external
temperature and then this was extended to pallets of cartons of wine. This has application
to determining the temperature of the wine during both the transport and storage of wine.
Second, equations were derived for the gas flow through the cork when a wine bottle is subject
to oscillatory temperature variation such as is common in a domestic storage situation. This
has important implications to the aging processes in the wine as cork breathing can lead to
increased oxidation of the wine. Third, the temperature dependent reaction rates of the wine
aging processes were considered and calculations performed on how elevated temperatures
decrease the shelf life compared to ideal cellaring conditions. Suggestions were made as to
relatively simple experiments that can be performed to test the aging models developed here.

2 Heating of the bottle and wine

The temperature of wine in a bottle is quantified using numerical simulation for two simple
cases: an initially cool bottle standing in a hot environment; an initially cool, large pallet of
bottles standing in a hot environment. These are the two extremes which can occur during
the transportation and storage of wine. Throughout the numerical simulations the physical
parameters used are given in Tables 1 and 2. The numerical simulations are performed using
a finite element package FlexPDE that is space and time adaptive to enable the fine spatial
structure such as the glass and cork to be modelled.
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Feature value

Bottle base radius 3.81 ¢cm
Bottle neck radius 1.48 cm
Bottle base height 20.0 cm
Bottle neck height 10.0 cm
Total bottle height 30.0 cm
Cork height 4.0 cm
Bottle volume 981 ml
Wine volume 750 ml
Cork volume 13 ml

Glass volume 213 ml
Head-space volume 5 ml

Volume occupied by bottle in carton | 1920 ml
Glass thickness 0.47 cm

Table 1: Values of the parameters used in this study.

Material k c p Kk (m?s71) K (cm?hr=1)
Wine 0.52 4180 1000 0.083 x 10~ 4.48
Glass 1.0 550 2500 0.727 x 1076 26
Air 0.016 1000 1.20 13.3 x 1076 480
Cork 0.04 800 250 0.20 x 1076 7.2
Paper 0.18 1400 1000 0.071 x 106 2.6

Table 2: Thermal properties of relevant materials. Thermal conductivity & (Wm~! K1), heat
capacity ¢ (Jkg ' K1), density p (kgm~3), diffusivity x = k/(pc) in m?s~! and cm? hr=! .

2.1 Heat conduction through a single wine bottle
2.1.1 Numerical simulation

Consider the conduction of heat through a single bottle of wine when subjected to an elevated
temperature. Of interest is the time scale involved for the increase in temperature of the wine.
We will consider one typical example where the wine, bottle, air and cork are initially at 10°C.
At time ¢ = 0 the air surrounding the bottle is raised to 40°C and held constant throughout
the simulation. Heat is conducted through the wine, bottle, headspace air and cork. To
simplify the calculations convection is ignored. Mathematically we have

V.(kVT) = pcaa—f with T'(r,z,t =0) =10°C and T(r = exterior, z,t) =40°C . (1)
Here r and z are the radial and axial coordinates respectively, V is the spatial derivative
operator in the appropriate coordinates, ¢ is time, k is the thermal conductivity, p the density
and c the specific heat capacity. The latter 3 parameters vary with r and z, and their values
in the wine, glass, cork and air are given in Table 2. Much of this data is found in [3]. There
is nothing special about the values 10°C and 40°C, the results hold generally and these values
are used for indicative purposes. The paper label on the wine bottle is ignored as its effect
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Figure 1: A section of the 3D wine bottle showing the mesh used for the finite element
simulation.

on the heat transfer in negligible compared to the glass and wine component. A Dirichlet
boundary condition at the air-glass interface is used. This is an extreme case resulting in the
fastest heating of the wine and so any estimates obtained for heating times will be on the
pessimistic side.

Figure 1 shows a section view of the 3D wine bottle and the finite element mesh used in
the simulation. More mesh points are used in areas of large gradients such as through the
glass to ensure accuracy of the solution.

Figure 2 shows the pattern of heat conduction through the system with a snapshot of
temperature at time 10 minutes as a contour plot. At this stage the glass and the wine in
the bottle’s neck is close to 40°C, the exterior of the wine is around 35°C and the central
area around 11°C. Figure 3 records temperature as a function of time at various positions in
the bottle. It is clear from the simulation that the wine in the neck approaches the external
ambient temperatures within approximately 1000 seconds (16 minutes), while the temperature
in the bottle’s middle takes approximately 7000 seconds (2 hours) to almost equilibrate with
the ambient.
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Figure 2: A snapshot of the temperature profile of the wine bottle section after 10 minutes
of heating.

2.1.2 Simplified approach

It is possible, using simplifying assumptions, to get a general guide to the time scales involved.
For heat conduction problems there is the approximate relationship

distance?
S, 2)

where k is the diffusivity (k = k/(pc)). Hence, for a distance of 3.81cm (the radius of the
bottle) and x = 4.48 cm? hr~! (diffusivity of wine), this yields a time scale of approximately
0.8 hours (2900 seconds) which is consistent with the results presented in Figure 3.

As another approximation consider a well mixed bottle of wine so that the average tem-
perature is the quantity of interest. The average temperature in the wine as a function of
time is

time taken to travel distance ~

1

Volume of wine

Tov (1) / T(r,z,t)dV .
wine

Suppose the average temperature obeys Newton’s law of cooling (or heating)
dT,y
dt

for some effective heat transfer coeflicient h that needs to be determined. Solving equation
(3) gives

= h(Ta.ir - Tav) ) (3)

Ty (t) = Thir + (Tinitia,l — Tair)efht . (4)
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Figure 3: Temperature as a function of time at various places in the bottle for 2 hours (7200 s)
of heating. (a) wine in the bottle’s centre near the bottle’s base; (b) wine in the bottle’s centre
near the bottle’s top; (c) top of the wine; (d) air at the base of the cork.

Rearranging gives
—ht = log ((Tav — Tair)/(crinitia.l - Ta.ir)) . (5)

To verify if investigating the average temperature is a reasonable assumption for our numerical
solution we calculate the average temperature of the wine in the bottle from the numerical
simulation results and test equation (5). Figure 4 is a plot of equation (5). A straight line plot
means we have a good approximation. In the figure the data does indeed fit a straight line
after approximately 1000 seconds. The slope of the line is approximately A = 6.4 x 1074s~! =
2.3 hr~!. This has shown that the averaged Newton’s law approach is suitable to the accuracy
required.

In practical applications there exists other effects not considered in the idealised numerical
simulation. These include: (a) convective or mechanical mixing of the wine, (b) cooling of the
surrounding air by the wine, and (c) incomplete knowledge of the surrounding air temperature.
It may be appropriate to use a heat transfer coefficient from the air to the bottle (instead of
keeping the exterior temperature fixed), but in most practical situations it is more useful to
use the simple Newton’s law, detailed above, rather than a full three dimensional numerical
solution.

The key parameter governing wine the temperature is the heat transfer coefficient h.
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Figure 4: Plot of log ((Tay — Tair)/(Tinitial — Tair)) against ¢ (¢ = 0 to 7200s,) where Ty, is the
average wine temperature. The straight line has slope 6.4 x 1045~

Here it has been ‘derived’ from a numerical simulation which represents reality reasonably
accurately. In the event that a true experimentally derived value is required the following
experiment could be performed. A typical bottle of wine could be placed in a heat bath
and the average temperature of the wine plotted in a manner similar to Figure 3. Both the
heat bath and the wine should be agitated in a way that duplicates the mixing that will
be experienced in real life. The equivalent of Figure 4 yields the heat transfer coefficient
h. However, given the results of the next section, it appears unlikely that such accuracy is
needed.

2.2 Heat conduction through an array of bottles
2.2.1 Numerical simulation

Armed with the knowledge that it is sufficient to model bottles as averaged ‘lumps’ obeying
Newton’s cooling law, it is now appropriate to study heat flow through and around an array
of bottles. Numerical simulations are performed for this scenario. The simulation is run using
only one row of bottles, but the boundary conditions are periodic so that the results hold
for an infinite array of bottles which is more typical of a stacked container. The following
assumptions are used.
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1. The wine and glass are lumped together into one component with thermal properties
of the wine.

2. The cardboard in the packing material is ignored: in real life it mostly serves to prevent
convection and has limited thermal effect.

3. The heat transfer is assumed to be purely conductive through the air. Convection is
ignored, but if present it may substantially speed heat flow through the array. In this
respect the simulations are a best case scenario and in reality the heating time will be
shorter due to convection effects.

4. The volume fraction of the wine and glass is 0.5 (corresponding roughly to 981 ml/1920 ml,
see Table 1), and the volume fraction of the air is 0.5.

All components in the model are initially at 10°C. To simulate heating in a container or
truck during transport the left-hand edge is raised to and kept constant at 40°C for times
t > 0. Mathematically this is

T
V.(kVT) = pc%—t with T(z,y,t =0) =10°C and T(x =0,y,t) =40°C . (6)

Once again, there is nothing special about the values of 10°C and 40°C, the main results
below are general. Figure 5 shows a snapshot of temperature at time 300 hours and Figure 6
shows temperature logs at various places in the bottle. After 300 hours the temperature in
the first bottle is almost at the outer ambient temperature, the temperature in the third
bottle is about 22°C and the seventh bottle is not much above the initial temperature.

2.2.2 Simplified approach

The heat transfer through the system can be well modelled by a one dimensional diffusion
equation with constant effective diffusivity keg. That is

*T or

Keff s = 5 With T(z,t =0) = Tiitia and T(z = 0,1) = Thot - (7

or ot
The effective diffusivity kg is an averaged diffusivity and is independent of spatial position
and needs to be found from experiments or numerical simulations. The solution of equation
(7) is well known to be

T
T(0,) = Too + (B ~ Tr)ent (2= ) ®
€

where the error function, erf(y), is

erf(y) = % /Oy e % dz. 9)

It is possible to extract a value for keg from the 2D numerical simulation. Integrals of
error functions are well known and lead to

o0 * z
/0 (T'(w,t) — Tinitia) dz = (Thot — Tiniﬁal)/o (1 —ort (W)) &

dKegt
= 4/ ;ﬂ (Thot — Tinitial) - (10)
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Figure 5: A snapshot of the temperature profile of the bottles and surrounding air after
300 hours of heating. The initial column of bottles (represented by the single bottle on the
left) is close to ambient.

Hence, if the theory is correct, plotting the integral on the left against v/¢ should yield a
straight line. This is indeed true for this numerical simulation and the straight line has slope

4Keff

=1.27cm?hr™!, which implieskes ~ 1.0cm?hr=! .

T

The next subsection justifies this quantity with further theory. As has been mentioned before,
this parameter dictates the distance travelled by heat through the rule-of-thumb formula
equation (2). Therefore, in 1 hour heat will have diffused approximately 1cm, and in 12
hours approximately 2.5 cm.

2.2.3 The effective diffusivity from theory

In this section the effective conductivity and heat capacity (and hence diffusivity) for the array
of wine bottles packed in cartons is explored theoretically in order to check the apparently
low value of ke quoted in equation (2.2.2). Packings of both spheres and cylinders in a space
are considered.

Let ¢ = volume fraction of wine = 0.5. If the wine and air increase in temperature at the
same rate, as suggested by the simulation, the effective heat capacity of the wine-air mixture
is simply a weighted average

(pC)et = ¢ X (pC)wine + (1 — @) X (p€)air =2 x 106 JK~Tm=3. (11)
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Figure 6: Temperature as a function of time (a) at the left edge; (b) in the first bottle from
the left edge; (c) third bottle; (d) seventh bottle.

The literature reveals many different approximations for the effective thermal conductivity
of different shapes packed in air. We will outline five of these.

Series approximation
Treating the wine and air in series (for example wine, air, wine, air, wine, ...) results in

(sn((efries = QSkWine + (1 - QS)kair . (12)

This provides an upper bound on kes. Inserting parameter values yields sz}fries =0.268Wm~ K1,

Parallel approximation
Treating the wine and air in parallel results in

1 ¢ 1-¢
kparallel = + . (13)
eff

kwine kair

This provides a lower bound on keg. Inserting parameter values yields kggrauel =0.031Wm 'K 1.
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Maxwell approximation

[6] improved upon the lower bound given by the parallel approximation for the situation for
conducting spheres of given volume fraction ¢ periodically dispersed in a insulating medium.
His formula is

gflf - kair _ ¢kwine - kair ) (14)
k'gﬁc + kair kwine + kair

Inserting parameter values gives ko = 0.044 W m K1

Cheng and Torquato approximation
[2] found an approximate expression for the effective conductivity of a dilute mixture of
conducting spheres as

3¢

ct

kot = Kair (1 - ) ,where D¢ = —ﬁl_l +¢+ clﬂ3¢10/3 (15)

14/3 2 417/3 6 7 22/3 . _ wine air
+eofB5d " + e3B5h 7 + cafrd” + c5B3P50" + ceBod™ 7, Bi Fowmne + (i 1)/

£16)

and ¢; = 1.30472, cp = 0.07232, c¢3 = —0.52895, c4 = 0.15256, c5 = —0.30667, cs =
0.01045. Inserting parameter values yields k% = 0.066 W m KL

Perrins, McKenzie and McPhedran approximation

[9] calculated an approximation to the effective conductivity for the situation where conduct-
ing cylinders with volume fraction ¢ are immersed in an insulating medium. To low order,
their expression reads

(17)

2
kgfrfnm = Kair (1 + b9 ) -

1 — B¢ — 0.30582752 ¢*

Inserting parameter values yields kig™ = 0.045 Wm~' K1

The effective diffusivity

The effective diffusivity is given in terms of the effective heat conduction, density and heat
capacity as ke = keff/(pC)efi- Using the above approximations gives the results in Table 3.
The value of 1 cm? hr ! found from the experimental simulation agrees with these theoretical
calculations and hence is reasonable.

Approximation Diffusivity Kes
Parallel (lower bound) | 1.55 x 10~8m?s~! = 0.56 cm? hr—!
Maxwell (lower bound) | 2.22 x 10 ¥ m2s ! = 0.80cm? hr !

Perrins 2.27 x 1078 m?s™! = 0.82cm? hr!
Numerical simulation 277 x 1078 m2s ! = 1.00cm2hr !
Cheng Torquato 3.30 x 1078 m?s7! = 1.19 cm? hr—!

Series (upper bound) 1.34 x 107" m2s7! = 4.82cm? hr!

Table 3: The effective diffusivity in the various approximations and numerical simulation.
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2.2.4 Obtaining k. from experiments

Due to the rapidity of heat flow through a single bottle (Section 2.1) relative to an array of
bottles, it is appropriate to use the diffusion equation with some experimentally measured
effective diffusivity kef. In the event that an experimentally derived value for xeg is required,
the following will be of use. A solution of the 1D diffusion equation with oscillatory heating
(such as diurnal heating) on one side is

[ w , [ w
T(z,t) = Tmean + Aexp (— 2%3:10) sin (wt — QKQH:E) . (18)

This solution has the following properties:

e At z =0, the temperature is sinusoidal with frequency w and amplitude (T'(z = 0,t) =
Tinean + Asinwt). This situation is often encountered with diurnal heating of pallets or
containers by the sun either in transit or storage.

e The temperature of the interior (x > 0) is also sinusoidal with the same frequency w,
but there is a phase lag given by \/w/2kegx. This observation provides one method of
measuring Keg.

e The amplitude of the internal temperature oscillations decays exponentially via the
prefactor exp(—+/w/2kegx). This provides another method of measuring Keg.

2.3 Slowing temperature increases

In practical applications convective or mechanical mixing of the air sourrounding packaged
bottles would increase the speed of the heat transfer substantially. The value given in equa-
tion (2.2.2) should be considered as a ‘best practice’ value to be aimed for by wine distributors
or storers. Values inferred from the literature, although never measured particularly carefully,
are around 10 cm? hr=! or more [4]. This is clearly an area of research that needs further ex-
perimental work. The determination of the effective diffusivity is a relatively straightforward
experiment to perform using thermocouples and data loggers.

By reducing air flow around the bottles substantial slowing of the heat transfer can be
obtained. Because ke can theoretically be made small (an order of magnitude smaller than
some experiments suggest) a study into the most effective use of thermal blankets, or even
simple bubble-wrapping during transport is recommended. Theoretically, over the course of
a couple of days in transit, only the bottles closest to the heat source are being overly heated.
This suggests that using a thermal blanket or equivalent to reflect heat, reduce convection
and to act as a sacrificial heat sink may ameliorate many potential overheating problems for
short haul transport (2 days or less). For long haul transport (4 days or more) the entire
container will reach close to the ambient temperature. In this scenario temperature controlled
transport and storage is recommended.

2.4 Conclusion

Wine temperature was quantified using numerical simulation for two simple cases: an initially
cool bottle standing in a hot environment; an initially cool, large pallet of bottles standing in
a hot environment. These are the two extremes which can occur during the transportation
and storage of wine. The results imply the following general conclusions.
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1. A single bottle of wine exposed to raised ambient temperatures will achieve that ambient
temperature in approximately one to two hours. This time is decreased if there is mixing
of the wine such as induced by convection or mechanical agitation during transportation.

2. In contrast, if convection of air around wine bottles, cartons and pallets can be min-
imised, the interior bottles in a standard 12-bottle carton takes approximately four days
to achieve ambient temperature. This is because the air, which is conducting the heat,
has such a low thermal mass compared to the wine. This scenario can be thought of as
‘best practice’.

3. To achieve close to best practice, convection can be minimised with simple procedures
such as shrink/bubble-wrapping pallets, or by using a thick thermal blanket to act as a
sacrificial thermal buffer to protect the outer bottles (which achieve ambient tempera-
tures within about a day).

4. The mathematical results also allow other scenarios to be investigated and quantified
easily.

3 Gas transport through the cork

When the temperature in the bottle increases the pressure of the air between the wine and the
cork increases, forcing air through the cork. As the bottle cools the reverse occurs, drawing
fresh air into the bottle. This phenomena is known as cork breathing. We consider here the
temperature induced pressure increase in the air gap, the volumetric expansion of the wine,
and the permeability of the cork, deriving exact and approximate equations for the air flow
through the cork.

3.1 Flow calculations

The increase in volume of the wine is proportional to temperature increase of the wine and
is effected little by the pressure of the air

V() = Vi (0) (1 + 0 (To (t) — T (0))) (19)

where V,,(t) [m3] is the volume of the wine, T, (t) [K] is the wine temperature at time ¢ [s],
and a, [m3 K~!] is the volumetric expansion coefficient of wine. The volume of the bottle, Vj,
remains effectively constant hence the air volume, V,(t) [m3], is related to the wine volume
by

Va(t) + Vio(t) = V. (20)

The flow of air through the cork is relatively slow and pressure driven, hence is well
modelled by Darcy’s law
P(t)— P

L ?
where w(t) [ms~!] is the air velocity through the cork, k(t) is the permeability of the cork
[m?s~! Pa~!] (including the viscosity), P(t) [Pa] is the pressure, Py is atmospheric pressure,
and L [m] is the length of the cork. This flux of air through the cork is related to the loss of
air mass through the cork by

dmy(t)
dt

w(t) =k (21)

= —pa(Hw(t)A = —kAp“(t)(Pg) i) , (22)
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where m,(t) [kg] is the mass of air in the gap between cork and wine, p,(t) [kgm™3] is the
density of the air, and A [m?] is the cross-sectional area of the cork.

The permeability, k, is in reality a function of time, although this time dependence only
affects the low minimally. When moist air is flowing out of the bottle, the viscosity will be
higher and hence the permeability lower. When dry air flows into the bottle through the cork
the permeability is higher. The level of moisture in the air is also temperature dependent.
This may be a minor effect but one that can be easily considered by having k as a function
of time in the governing equations.

The pressure in the air is modelled by the perfect gas law

P()Va(t) _ P(0)Va(0)
mq(t)Tu(t) a ma(0)T4(0)

=5, (23)

where T,(t) is the temperature of the air and j is a constant.
Combining (22) and (23) gives

dma(t) _ KA [Brd)Ta(t)  Poma(t) o
dt L V2(1) Vo®) |

with the volume correction, equations (19) and (20), giving V,(¢).

Equation (24) is a logistic equation, common in population modelling, with slowly varying
parameters; that is m’ = —c; m?+co m with c1(t) and cy(t) slowly changing. The equilibrium
for (24) occurs when

me = ma(O) ) = g(t) ’ (25)
hence as the temperature changes, driving volume and pressure changes, the differential equa-
tion (24) works to bring m,(t) into this balance. However, as g(t) varies slowly with time,
the mass of air is always chasing this equilibrium, m, — g, being closer to it if the cork
permeability is large. Numerical solutions to (24) can easily be found and approximate and
analytic solutions can also be found. These are explored in Section 3.3.

3.2 Limit of very permeable cork

If the cork closure is assumed very permeable (such as in the case of a defective cork), then
the pressure responds rapidly to reach it’s equilibrium state, shown in equation (25). The
volumetric expansion of wine with an expansion coefficient of o, = 2 x 107 K1, gives an
approximate increase in wine volume of 4.5 ml over 30 degrees. This is comparable to the
head space volume of 5-15 ml. Anecdotally, this is thought to be cause of corks being expelled
from the bottle during long term transport when the head space is too small. Thus volumetric
wine expansion can cause air loss through the cork of the order of 30 % to 100%.

The mass of air in the head space will also change due to the air expansion and loss
through the cork. If dTp, = T,(t) — T5(0) then the relative change in mass, assuming no wine
expansion, is

m—mg _ Va(O)Ta(O) _ 1
e VaOTu®) T 11 dTa0) (26)
dT, 4T,
- (1 - Ta(0)> B A0) (27)



This gives an approximate measure of the air mass change due to air pressure changes. For
a temperature rise of 30 degrees, an initial temperature of T,(0) = 283 K (10° C) this gives
magnitudes of approximately 11% mass flow. This is an upper bound on the air flow into
the bottle of approximately 11% mass loss/gain in the course of a 30 degree temperature rise
during one day. Hence approximately ten days of diurnal temperature changes will change
virtually all the air in the bottle in the limit of a very permeable cork due to air expansion
changes only.

3.3 Approximate solutions

This section explores some approximate solutions to equation (24) with the cork no longer
very permeable so that its permeability is now important. Each of the solutions assume
that the driving temperature, 7'(¢), changes slowly or remains close to the initial equilibrium
state. It is not immediately apparent which approximation is the most valid until numerical
simulations can compare the results with the full numerical solution. In our simulations we
consider no volumetric wine expansion, equivalent to the situation of a large head space. Later
work will consider the effect of air loss due to both wine expansion and air temperature.

It is informative here to non-dimensionalise the system with respect to typical scales:

ma(t) = mga(0)m(t*), Vu(t) =Vo(0)V(t"), (28)
P,(t) = P,(0)P(t"), t=tot", (29)
k() = k(0)k*(t"), (30)
where * denotes non-dimensional variables, and the typical time scale ¢y can be shown to be
. __ LVa(0)
"7 kKO)AR(0)
Using these scalings (24) reduces to
dm(t
% = —c1(t) m(t)” + () (), (31)
where we have dropped the * notation herein, and
k(t) T'(t) k(t)
t = — t = — . 32
o) = "Jag @B =5 (32)

Changes in the temperature 7'(t) forces equation (31) from the equilibrium state, m =
ca(t)/ei(t) = V(t)/T(t) = v(t), with k(t) and V(¢) changing slightly. We note that ¢ (¢)
contains the main time dependent term 7'(¢), which drives the process. However, co(t) only
varies slightly with time, as both k£ and V only change slightly with temperature and time.

First Approximate Solution

The first approximate solution assumes c; (¢) and cy(t) are approximately constant in equation
(31), leading to

ym(0)

m(0) + (v — m(0))e=*’
where v = 7(¢) and c2 = c2(t). This solution will be exact if y and ¢y are constant. As ¢ — oo
this gives the equilibrium solution m — <. This solution is most valid when the temperature
change is a rapid jump, giving new values of ¢; and ¢ which do not then change with time.

m(t) ~ (33)
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Second Approximate Solution

A second approximate solution uses a technique described in [10]. The method uses two
different time scales, tg) =t and t; = et, with € small and ¢; = ¢,(¢1) and v = 7y(¢1). That is,
c1 and cg vary on the slower time scale, while m(t) chases the equilibrium on a faster time
scale. The mass is written as m = m(to, t1,€) with equation (31) becoming

g—: + eg—z = —co(t1)(m —(t1)). (34)

Expanding in a perturbation series m = mg(to,t1) +em1(to,t1) +- - - and equating coefficients
gives

8777'0 8m1 8’]7’1,0
Bty ca(t1)(m —(t1))  an B ca(t1)ma e (35)
These two equations have solutions, using the initial condition m = m4(0) + €0+ - - -,
mg = (m(0) —y)e " 41, (36)
— ! 1 _ 142 _ ll cat l, —cato
mi = [vt+ Z(m(0) —y)eyt e + e , (37)
2 C2 C2

where v and ¢y are functions of ¢; and hence 7' = dy/dt;. This solution satisfies the initial
condition m = m(0) and has the long term behaviour

(et 59

m(t) = y(et) — 602(675) .

That is, the mass attempts to reach the equilibrium point v but since this equilibrium keeps
changing slowly with time, it lags by a small amount.

Third Approximate Solution

Our third approximate solution is to assume c;(t) is a slowly varying function of time and
that co(t) = co remains constant, since only ¢; contains the driving term 7'(¢) and c2 contains
terms which only vary slightly with time. With this assumption the solutions obtained in [10]
can be followed exactly to give

m(0) + (v(et) - 1((6(;5))771(0)) e ¢t
Y

2(et)e 2t

c27%(0) (1 + [% - ﬁ] ’)’(et)e—c2t)2 .

(39)

This has the required behaviour that at ¢ = 0 then m(0) = 0. As ¢ — oo then m — v — eZ—;
indicating the same time lag behaviour as shown earlier. Usually the temperature change is
gradual, moving the system from an initial equilibrium state when m(0) = y(0) = 1 towards
a new equilibrium state as y(t) and cy(t) change with temperature. If this were the case
the solution is greatly simplified to be (38). However, if there is an initially rapid rise in
temperature then the initial state can be considered not to be in equilibrium, so m(0) = 1
but v(0) # 1, and (39) is necessary. Note that the first term in (39) is similar, but not exactly

the same as (33).
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Figure 7: The temperature change being considered, a gradual linear increase.

3.4 Results

This section considers the numerical and approximate solutions for two different temperature
change cases. The first case is a gradual rise in temperature (see Figure 7) and the second
case a sinusoidally variable temperature for different amplitude and period.

Figure 8 shows the mass of air changing as a function of time when the temperature
changes linearly as T' = 1 + €, € = 0.1 (as shown in Figure 7) with V(¢) = k(¢) = 1, and
m(0) = 1. Equation (39) represents the full numerical solution slightly better than (37).
The asymptotic solution given by (38) is also shown. As discussed earlier, the mass of air
approaches this asymptotic solution for large time, mirroring the lower equilibrium solution
v(t) but with a lag e~'(et)/ca(et). Approximations one (33) and approximation two (zeroth
order, (36)) both asymptote to the wrong solution 7(¢), although they well represent the exact
solution for small time. All solutions remain sandwiched between the lower limit, m = ~y(t),
and the upper limit, equation (38).

Of main interest for the wine transport and storage is regular diurnal temperature changes
and a calculation of the mean air flow in and out of the cork. That is, for a temperature
profile

T =1+ asin(et) . (40)

Figure 9 shows the air mass change for a sinusoidal temperature change 7' = 14-0.1 sin(et) with
€ = 0.3. The same notation is used as for Figure 8. Many of the curves are indistinguishable
except at small times. Approximations (39) and (37) almost perfectly match the asymptotic
solution given by equation (38). The inaccurate approximation (36) matches the highly
permeable cork case m = 7y(t). For this large value of € the numerical solution does not match
the various asymptotic solutions. For € < 0.1 the numerical result matches the asymptotic
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Figure 8: Air mass versus time for a linear temperature rise. Blue solid line is numerical
solution to (24). Black dot-dash line is m = 7(¢). The green dashed line is approximation
one (33). The red dotted line the second approximation (36). The full second approximation,
(36) and (37), is the blue dashed line ‘approx 2b’. The third approximation, (39), is the green
dot-dash line. The asymptotic solution (38) is the upper black dotted line.

solution.

We require the difference between the maximum and minimum values of air mass, m =
2(max(m) — min(m)), since this is how much air has flowed in and out of the bottle. Figure
10 illustrates m for varying e and a, showing an expected linear behaviour of mass flux
with increasing magnitude, at least for small a. This illustrates the limitation of the various
approximations as € increases. When ¢ — 0 the temperature changes are so slow that in
effect the cork is completely permeable. As € increases, the oscillations in temperature are
fast enough that the air does not have time to flow out of the cork before the temperature
has reversed direction. Hence one expects that m — 0 as € increases. This behaviour is not
reflected in any asymptotic solutions as it is a highly nonlinear effect. Large € corresponds to
a long period of temperature oscillations such as seasonal variation under cellar conditions.

3.5 Future work

There are several aspects of this work that could be explored. First, the permeability of
wine cork is not well known and this is the crucial parameter in determining mass of air flow
through the cork. Some data exists on dry cork board (k ~ 2.4 — 5.7 x 10~'m? [7]) however
this is not indicative of permeability of a wet compressed cork. Second, the numerical results
on air flow through cork included here took V(t) = k(t) = 1 which is a simplification to
allow each effect to be studied separately. Future work will include temperature dependent
expansion of the wine, the viscosity of moist and dry air, and the temperature dependent
moisture content in the air. An additional effect is the time delay between thermal diffusion
into the air and wine within the bottle, the wine exhibiting a longer time lag. This may have
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Figure 9: Air mass change for sinusoidal temperature variation with the same notation and
parameters as Figure 8

a small effect on the air flow through the cork.

4 Oxidation of wine

Wine changes in the bottle through a sequence of oxidative reactions, mediated through the
supply of oxygen to the wine. During storage at uniform temperature, oxygen is supplied to
the wine by diffusion through the cork, and this occurs at a very slow rate. During transport,
or if the external temperature fluctuates in storage, thermal expansion and contraction of the
wine can cause forced flow of oxygen through the cork, and this is described by Darcy’s law,
as described in Section 3.

4.1 Wine chemistry

The primary oxidative reaction of importance is the oxidation of a class of phenols. Amongst
these are the tannins, and the oxidative effect on some of these is to cause browning of
the wine, for example discolouration [5]. A secondary effect of the oxidation of phenols is
the production of hydrogen peroxide, HoO4, and the peroxide is a strong oxidiser, which
reacts with the alcohol (ethanol, CoHgO) to produce acetaldehyde, CoH4O, which causes
deterioration in aroma and taste of the wine.

In order to prevent such reactions, it is common practice to add sulphur dioxide, SOo,
which reacts directly in its molecular form with the peroxide to form sulphuric acid, HoSOy.
When dissolved in water, SO2 dissociates to form the bisulphite ion HSOj, and this bisulphite
takes acetaldehyde out of solution by forming a bound complex. This dissociation of SO» is
highly pH dependent.
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Figure 10: Total diurnal mass change versus parameters a and € in equation (40). The
curve shows mass flow versus € with ¢ = 0.1 (lower curves) and a = 0.2 (upper curves).
The behaviour is shown using numerical solution (solid blue lines), the limiting solution
m(t) = y(t) (black dashed lines), and asymptotic solution (equation (38), red dot-dash lines).

Sometimes ascorbic acid (vitamin C, CgHgOg) is added to prevent discolouration; it does
this by effectively reversing the phenol oxidation. However, ascorbic acid has other undesirable
effects: it reacts with peroxide to form an aldehyde, another chemical which causes taste
deterioration, and it oxidises to form more peroxide.

4.2 Differential equations

A set of reactions to describe these processes is the following:

H,0 + SOy = HSO; +HT, SO2 + Hy02 — HySOy4, (41)
Ph + Oy — Hy02 + Ph*, Ac+ HSO; — Ac:HSOg3,

As+ Oy — Hy0,, Et+ Hy05 — Ac,

As + HyO9 — Al, As+Ph* — Ph.

In these reactions, we denote ascorbic acid as As, ethanol as Et, acetaldehyde as Ac, aldehyde
as Al, phenol as Ph or Ph*; Ph* represents the more oxidised, discoloured form. The bound
acetaldehyde-bisulphite complex is denoted Ac:HSOj .

We rewrite these equations using the abbreviations D for dioxide, B for bisulphite, P for
peroxide, H and H* for the phenol and oxidised phenol, X for oxygen, C for acetaldehyde, S
for ascorbic acid, A for the Ac:HSOj3 complex, and L for the aldehyde. Adding rate constants,
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they are

k k kf
D =B, , D+P - HySOs, H+X 3 P+H*, C+B = A, (42)
kT ki
ks ke k7 kg
S+X - P, Et+P - C, S+P - L, S+H* — H. (43)

We apply the law of mass action to these reactions, and this leads to the following set of
ordinary differential equations, in which we use the same symbols to denote the concentrations
of the chemicals. We suppose the wine is well-mixed, which will be a valid assumption
during transport, although not necessarily during storage, and we also suppose that ethanol
is essentially unchanged, being present in large quantity (e. g., 12% by volume). The equations
are

D=k B—-k'D—kyDP, (44)
B=—k;B+kD-kfBC +k, A,

P =FksHX + ksSX — kP — k7SP — ko PD,

H=—ksHX + ks SH*,

H* = ksHX — kgSH* [-R)],

X = —k3sHX — ksSX [+V],

C = —kfBC +k; A+ kP,

S = —ksSX — k7 PS — kg SH*,

L =k;PS

A=kfBC -k A

where the overdot represents the time derivative.

The posited terms V and R warrant some discussion. As wine matures, the phenols are
oxidised to form larger molecules, and these eventually precipitate and fall out of solution.
If necessary, this could be described by a suitable loss term R. Consulting equation (44), we
see that oxygen is depleted by its reaction, principally with the phenols, and this depletion
takes about a week under normal circumstances [1]. Once the oxygen is removed, there is no
source for peroxide, total SOs (B + D+ A) is conserved, the reactants reach steady state, and
the reactions cease. Thus the continuing maturation and aging of wine requires the supply of
oxygen, and this is indicated by the source term V.

4.3 Determining a usable model

In order to analyse these equations, we would need estimates of the rate constants and, im-
portantly, their variation with temperature. However, this information is not readily available
and is unlikely to be available in the future. Instead, we are motivated by the experimental
results of [8], who interpreted SO2 loss and browning in terms of a first order rate equation.
Implicitly, he supposes that SO, satisfies a first order rate equation of the form

D = —kegD, (45)
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where the effective rate coefficient keg is a strong function of temperature of the Arrhenius
form

RT

where F is the activation energy, R is the gas constant, and T is absolute temperature. One
object of analysing the system of equations (44) is to see in what circumstances an effective
equation of the form (45) can be obtained. In the present paper, we limit ourselves to this
goal.

F
ket = ko exp [——] , (46)

1
We suppose that the dissociation reactions are fast. If kff > TS’ where T'S is the time

1
scale of interest (of SOy decay), then k; A = kj BC determines A. If also kif > TS’ then
ki B ~ ki D and thus the dioxide satisfies the rate equation

D~ —koPD. (47)

This provides a single rate equation for D, providing the peroxide concentration is constant.
It remains to consider whether this is true.

We will suppose that the peroxide reactions are fast, since peroxide is a strong oxidant,
so that we take the equation for S in (44) to be at equilibrium. Then

_ ksHX + ksSX

P~ —— ———
ke + k7 + koD

(48)
We suppose also that (with a source term V') the oxygen equation in (44) is fast (since oxygen
concentrations are very low), so that X equilibrates as

|4

X~ —r—. 4
ksH + ksS (49)

Then (47) becomes
ko VD
ke + k7S + koD '
The rate law (50) forms the essential conclusion of this analysis. Further forms are possible,
depending on the behaviour of the ascorbic acid S. If the removal of S is fast, then S =~ 0, or
if the reaction is slow, then S & constant. In any event, (50) takes the well known Michaelis—
Menten form

D=— (50)

D= _KL—?D’ where K = W.
In this form there are good prospects to be able to fit this model to experimental results and
obtain a useful model of the aging process. There are only 3 parameters (k2, kg and k7) to fit
experimental data to. The limited experimental data available on the aging process supports
the Michaelis-Menton form for the model and in some cases suggests an even simpler first
order form with a single rate constant that is temperature dependent through an Arrhenius
relationship. It is a relatively straightforward experiment to perform to test whether the
single Arrhenius rate constant is applicable. Details of this experiment can be found in [8].
If D < K, then we regain the first order rate equation (45). If, for example, S = 0 or k7 is
small, then, with an obvious notation,
koV KV

keff:k—ﬁ—k—gexp [—

(51)

(B — EG)] ’ (52)

RT
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Figure 11: Percentage decline in SO; for 3 different temperatures from solving (45) using the
data from [8].

and the effective activation energy of the reaction is £ = Fo — F.

As a first point in determining an appropriate model for the aging process experimental
data should be fitted to (45). If this provides a good fit then a more complicated model is
not required. If the fit is not good then the the Michaelis-Menten form (50) should be used.

4.4 Applying a model

Using the limited data available in the literature for one red wine type (see [8]), calculations
were performed for the first order Arrhenius case (45) to quantify the effect of elevated
temperature on the SOy reduction and the browning. From [8, 1] the activation energy
for the red wine the used in their experiments was E = 35,700 kJmole™! for SOy and
E = 66,400 kJmole ! for browning. Figure 11 shows the results of solving (45) for the SOs.
The percentage decline in SO9 is shown for 3 different temperatures (10, 20 and 40° C) versus
time. Clearly the elevated temperatures have a dramatic effect on the SOy decline with the
higher temperatures leading to more rapid SO reduction.

Results of solving (45) were compared to ideal cellaring conditions at 10°C and expressed
as a percentage of time to reach the same state (% of SO present or % of browning occurring)
relative to ideal conditions. Figure 12 shows the effect of elevated temperature on the shelf
life. At 20°C the time to reach the critical SO2 level was 59% of ideal conditions and 38%
for browning. That is the shelf life measured by SO level is almost half and measured by
browning is approximately one third compared to ideal cellar conditions. This dropped dra-
matically for 40°C to 23% and 8% respectively. Depending on which is the critical parameter
(SO2 level or browning) this means that at 40°C the shelf life is between 8% and 23% of the

123



100

802 decline
= = = Browning

90+

gor----% .

70+ [S —

60~ > . 4

50 - ~ : . .

40 ~ .

% of 10°C cellar life
V4

30+ 5~ 4
20+ ~o ]

...
- -~ -
10 Seeal L

10 15 20 25 30 35 40
Temperature (C)

Figure 12: The temperature dependence of shelf life of the red wine considered in [8] as a
percentage of the shelf life at ideal cellaring conditions

ideal cellaring shelf life. So, for example, a wine with a shelf life of approximately 10 years
under ideal conditions would have its shelf life reduced to between about 10 months and 2.3
years depending on which measure of shelf life (browning or SO; level) was considered.

With better data derived from experimental work this method could be used to give
reasonable estimates for the reduction in shelf life of wine when subjected to elevated temper-
atures. Both Michaelis-Menton type reactions and first order reactions can be considered in a
straightforward manner in these types of models. Different wines will no doubt have different
activation energies and these will need to be determined experimentally for each wine type to
use these models. It is a relatively straightforward experiment to determine these activation
energies and this is certainly the first step that should be considered to determine useful data
for the models.

5 Conclusion

In summary three separate models have been developed for various aspects related to the shelf
life of wine. These are heating of wine during transport, oxygen ingress through the cork and
oxidative chemistry models. Estimates for the time wine takes to almost reach ambient
external temperature for both single bottles (order of two hours) and in a container (order
of 4 days) have been obtained. Long haul transport was found to be the area most affected
by heating issues. Air flow through the cork was determined under oscillatory temperature
regimes (either a domestic diurnal scenario or a longer cellaring seasonal one). A critical
parameter is the cork permeability which is currently unavailable for wet compressed cork
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as found in the bottle. It is recommended that straightforward experiments be conducted to
determine this parameter. The model developed for the oxidation of wine was shown to reduce
down to the well known Michaelis-Menton form or the even simpler first order Arrhenius form
under certain assumptions. If these relationships are appropriate then relatively simple models
of the shelf life of components (for example sulphur dioxide or browning) are easily developed.
Experiments to test the model assumptions have been recommended.

Followup from the industry partner (Provisor) and wine producing companies at an in-
dustry forum shows that there is considerable interest in this project. The heating of wine in
containers during long haul transport is of particular concern to the major exporting wineries
as they sometime suffer substantial losses as overheating occurs in shipping to the North-
ern hemisphere due to transitting through the tropics. Many companies have thermocouple
traces (all unpublished data) of temperature within the containers that they have difficulty
interpreting. The current study will be of assistance to them and this is an area of future
research. Oxygen ingress through the cork is considered less of an issue as increasingly wine
is being bottled with other closures (mostly screw cap) although it is important in some mar-
kets (notably the USA and France) where cork is still the preferred closure. The models for
the oxidation of wine presented is an area of ongoing research in conjunction with Provisor.
Future work will be to construct similar models for reductive chemistry which is more appli-
cable to wine bottled under screw cap. Other components of the wine, such as tannins and
flavours, will also be included in the models.
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