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1 Introduction

Over the last decade or so, researchers have developed techniques for measuring the
expression level of many genes in an organism simultaneously. One such technique is the
cDNA microarray [13, 11]. Such techniques generate a torrent of data that can be used to
then learn more about gene functions, response to stimuli, and interactions.

A cDNA microarray is a glass slide on which many �usually thousands) segments of
DNA �often genes, but not always) are attached in distinct spots. Messenger RNA is then
extracted from two different populations of cells �for example, cancer and normal tissue)
and reverse transcribed to complementary DNA �cDNA). Each of the two sets of cDNA
is tagged with a molecule of fluorescent dye; usually they are red and green, respectively.
The cDNA solutions are then washed over the glass slide and hybridized with the genetic
material spotted onto the slide. When a molecule of cDNA matches the DNA spotted onto
the slide, it reacts and binds to it, bringing along the fluorescent dye molecule. The greater
the number of copies of the appropriate piece of cDNA present in the sample, the greater the
number of dye molecules which will bind to that particular spot, creating a stronger signal.
If red and green dyes are used, the spots will appear to fluoresce with varying intensities of
red, green, and yellow �when cDNA from both samples bind to the spot). These intensities
can be measured by a scanner to determine the relative expression level of each gene in each
of the two cell populations.

Microarray experiments thus typically have thousands of variables explaining each indi-
vidual sample in the experiment and typically only a handful �a few hundred at most, often
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many fewer) distinct samples. Furthermore, the thousands of genes in an organism are not
independent entities, and each reacts to the activation level of other genes in a complicated
and not well-understood way. This raises a mathematical challenge. Each experimental
sample can be viewed as a point in a space of dimension equal to the number of genes being
measured. The question is, can one find a lower-dimensional space in which to work? Or,
stated more precisely, given a set of n points in an p-dimensional linear space, drawn from
some unknown distribution V , find a d-dimensional �possibly nonlinear, d � p) manifold
that approximates the points well?

There are many measures for determining whether or not a lower-dimensional manifold
approximates the points well. The simplest is that the orthogonal distance from each
point to the manifold should be minimised, but this is by no means the only choice, and
other options will be discussed below. It is important to note, however, that any notion
of goodness-of-fit should apply not just to the data that has already been collected, but
also to future data points drawn from the distribution V . To ensure this, a cross-validated
estimate of error must be used, for example, the leave-one-out error described below.

2 Filtering the data

2.1 Motivation for filtering. Typical microarray data have quite high dimensionality
due to the number of genes involved. For example, the simplest biological model, yeast, has
more than 6000 genes. In 2003, estimates from gene-prediction programs suggested there
might be as many as 24,500 protein-coding genes [12]. The Ensemble genome-annotation
system estimates their number at 23,299. Therefore, the dimensionality is very high. On
the other hand, the number of observations that is available is usually very low due to fact
the microarray experiments are too expensive to produce many replications. This is known
as the problem of “large p and small n”.

Although there are many human genes, often medical researchers are only concerned
with a dozen or fewer genes if they are interested in one particular disease. Therefore it is
not necessary to consider all the genes in the analysis of microarray data. Furthermore, the
information or “signal” for the genes of interest could be overwhelmed by the genes that are
not relevant to the current analysis. Dimensionality reduction is necessary given the fact
that there are not many observations that are scattered in very high-dimensional space.

Furthermore, the filtering is crucial for any data mining technique to work. For example,
the clustering procedure is often applied to microarray data to divide the large-dimensional
space into subspaces such that the subspaces are much more manageable than the whole
space. However, most clustering algorithms would rely on a proper choice of distance
function. There are many distance functions proposed in the literature. We will demonstrate
our argument by using the most commonly used distance function, i.e., Euclidean distance.
To make our argument more transparent, we suppose that there are p random variables
that are independent and identically distributed with a standard normal distribution, i.e.

X1� X2� · · · � Xp ∼ N�0� 1).

Let us further assume that only Y1 and Y2 are important or relevant to us. Furthermore,
we assume that

Y1 ∼ N�10� 1) and Y2 ∼ N�20� 1)

for the observations from the treatment group and Y1� Y2 ∼ N�0� 1) for the control group.
However, the vector �Y1� Y2� X1� X2� · · · � Xp) will not be informative if the Euclidean dis-

tance is used. Let Ok = �Yk1� Yk2� Xk1� Xk2� · · · � Xkp) and Oj = �Yj1� Yj2� Xj1� Xj2� · · · � Xjp)
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represent two observations in a microarray data set. Note that Yk1 ∼ N�10� 1) and Yk2 ∼
N�20� 1).

It can be verified that

dist�Oj −Ok)
2 =

�
�Yk1 − Yj1)2 + �Yk2 − Yj2)2 + χ2�p)

where χ2�p) denotes the central χ2 distribution with mean p and variance 2p.
It can be verified that

�Yk1 − Yj1)
2 + �Yk2 − Yj2)

2 + χ2�p)

χ2�p)

P
−→ 1� as p→∞. �2.1)

This implies that the Euclidean distance function will be dominated by those variables
that are pure noise in general. Although another distance function might be a better choice,
they all suffer from the same problem but to a lesser degree.

Therefore, filtering is very important to quickly reduce the genes of interest and avoid the
aforementioned problems introduced by those noisy variables which contain no information
at all.

2.2 Example of preprocessing. Various methods of preprocessing have been pro-
posed in the literature. These methods mainly deal with problems having class labels. For
example, Golub et al. [3] proposed a univariate ranking criterion for each gene in a two-class
situation. The criterion is can be defined as the ratio of the absolute mean difference of
gene expression levels of the two classes with respect to the sum of standard deviations of
the two classes for each gene considered. Higher ratio indicate higher ranking of the gene.
Some other author used the ratio of between-class sum of squares to within-class sum of
squares of each gene for multi-class problems. Later, Tibshirani et al. [14] used the shrunken
centroids method for gene classification. Shrinkage and gene selection are integrated into a
naive Bayes classifier. The univariate gene selection is based on t-statistics for each gene of
each class.

Another method is the random forest procedure [1]. Random forest is an ensemble tree
approach in data mining. It has been used as a popular approach in gene selection. Basically,
random forest build tree classifiers. A tree classifier recursively partition the data to classify.
The tree is built by greedily searching locally optimal split rules recursively. Instead of using
all variables �genes) to build the trees, random forest uses a random sample of variables
�genes) during the tree construction. The randomness causes different trees built even
following the same procedure each time. In this sense, we can get many �usually more than
50) different trees using the same data set. These trees are used as an ensemble classifier
via voting. Random forest can have high accuracy in classification. It also effectively
estimates the performance of these randomly selected variables �genes) and provides an
overall measure of variable �gene) importance. Different ways of evaluating the variables
�genes) can be found in the random forest manual. These importance measures will consider
interactions among the variables �genes) due to the nature of the tree classifiers.

As an example, let us look at the famous Leukemia data. This data set has 38 training
samples and 34 test samples of two types of acute leukemias, acute myeloid leukemia �AML)
and acute lymphoblastic leukemia �ALL) [3]. Each sample is related to 7129 genes.

Due to the large number of genes, we propose a combination of univariate ranking and
random forest. First, univariate ranking is performed to select the best 200 genes. Then
the random forest procedure is performed on these 200 genes to obtain their measures of
importance. Below is a figure showing the importance measure of the 200 pre-selected genes.
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Figure � Variable �Gene) Importance using Random Forest for 200 Pre-selected Genes

We see that the variable importance using random forest is not the same as that using
univariate ranking when interactions are considered. We can select a number of genes based
on the variable importance for our needs.

2.3 Future avenues. As seen in the previous example, univariate ranking methods
implicitly assume weak or no interactions or correlations among genes, which may not be
true in practice of microarray analysis. The ideal situation would be to have a method which
considers all variables together for selection. We now introduce the support vector machine
classifier. The support vector machine basically searches for the optimal hyperplane that
separates the data. Here an optimal hyperplane is the one that maximizes the geometric
margin �the closest distance of the observations to the hyperplane). For a nonlinear pattern,
the original space can be mapped to a high-dimensional space using kernel functions and
the so-called Reproducing Kernel Hilbert Space �RKHS). So support vector machines can
learn very well for a general problem.

In particular, for gene expression data, Guyon et al. [4] proposed a recursive feature
eliminating method for gene selection. First, all the variables �genes) are used in model
fitting. Then a large number of variables �genes) which are not significant in the model
are removed. The model is then rebuilt on the rest of the variables �genes), and we can
recursively repeat the procedure until only a small number of genes is left in the model.
Zhu and Hastie used penalized logisitic regression with similar ideas of gene selection [16].

For example, in the Golub 1999 data set just described in the previous section, Zhu and
Hastie report 26 genes selected with two cross-validated errors on the training set and one
error on the test set. The support vector machine selects 31 genes with similar performances.

In the future, we could try to combine random forest with support vector machine to
perform gene selection.
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3 Nonlinear dimension reduction

While filtering the data requires the methodologies to be able to identify in some sense
redundant information in the already existing data, the ultimate purpose of dimensionality
reduction is to reduce the data to a low-dimensional manifold in such a way that unsuper-
vised learning is possible on new data. In other words, we have to discover the main trend
in the existing data in order to be able to deal with newly acquired data in a similar way.
Along with the �probabilistic) density estimation techniques, dimensionality reduction is a
key methodology in developing algorithms for unsupervised learning [10]. Although these
two methodologies can be applied simultaneously, nonlinear reduction can also be developed
in a non-probabilistic framework.

Historically, first developed techniques for dimensionality reduction were based on linear
versions of principal component analysis �PCA) �described below) and other eigenvalue-
based methods such as variants of centre manifold reduction techniques. Due to difficulties
with the mapping of the higher-dimensional data �even if represented by clusters) into a
single coordinate system of lower dimensionality in applications of such techniques, most
recent developments were centered around nonlinear dimensionality reduction methods.
These techniques, similarly to traditional linear methods, are essentially based on spectral
embeddings, but with a key new feature now of being able to generate nonlinear embeddings.

3.1 Spectral embedding methodologies.
3.1.1 Generic setting for the spectral embedding. Nonlinear procedures of interest can

be cast in the following generic setting:

1. Given the input space, compute neighbourhoods;
2. Construct the cost function to determine the weight matrix as a result of an optimi-

sation procedure �e.g., minimising the generalized error function);
3. Based on the eigenvectors of the above matrix �can be shown with the Rayleigh-Ritz

ansatz), calculate the spectral embedding.

3.1.2 The nearest neighbour parameter as a key to success. The starting point of spectral
embedding methodologies is computing neighbourhoods. In all the algorithms currently
available to the National Research Council �NRC) of Canada, our industrial partner, we
have one of the two situations:

• either the number of nearest neighbours is predefined by a certain value, denoted
further by K �as it is the case, for example, in the Locally Linear Embedding �LLE)),

• or the input information requires the neighbourhood radius, denoted further by � �as
is the case, for example, in Isomap).

This may bring difficulties in some of the practical situations where a nonlinear di-
mensionality reduction algorithm is applied to a set of new data. Indeed, if we choose an
estimate for K in the LLE such that K is very small compared to the real situation, a
neighbourhood can falsely divide the underlying manifold. On the other hand, if we choose
an estimate for K in the LLE such that K is large, the resulting manifold will be excessively
smoothed and important small-scale features will be completely missing. Similar difficulties
arise in the choice of �.

3.1.3 Description of some algorithms. Locally Linear Embedding �LLE): The Lo-
cal Linear Embedding �or LLE) Algorithm is a spectral embedding method for nonlinear
dimension reduction developed by Roweis and Saul [8]. This algorithm takes as input X,
a p × n matrix �whose columns contain the n data points in Rp) and outputs Y , a d × n
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matrix, where d < p is the dimensionality of the embedding of the input. The idea behind
this algorithm is to characterize the local geometry of patches by linear coefficients that
reconstruct each data point from its nearest neighbours when determining the underlying
lower-dimensional manifold.

There are three major steps in the LLE algorithm. The first is to determine the neigh-
bours in X-space. The second step is to solve for reconstruction weights Wij which allow
each point Xi to be reconstructed from its neighbours Xj . The final step is to compute
the embedding coordinates Y using the reconstruction weights W . We now describe these
three steps in more detail.

The first step is to determine the neighbours for each data point. This can be done in
various ways described above. For our purposes, we compute the K-nearest neighbours for
each data point.

The second step is to determine the reconstruction weights. To that end, we let Wij

denote the contribution of the jth data point to the ith reconstruction. Then, the weights
Wij are computed that minimise the following cost function:

E�W ) =
�

i

�Xi −
�

j

WijXj�
2. �3.1)

which is known as the reconstruction error. The minimisation is performed subject to
two constraints. The first constraint is that Xi is reconstructed only from its K nearest
neighbours. Thus, we set Wij to 0 if Xj is not a neighbour of Xi. The second constraint
is that each set of local weights must sum to 1. Determining the optimal weights is a least
squares optimisation problem that is described in further detail in Appendix A of [9].

The final step is to compute the embedding coordinates Y using the weights W . This
is done by choosing the Yi that minimise:

Φ�Y ) =
�

i

�Yi −
�

j

WijYj�
2. �3.2)

This specifies a quadratic form in Y which can be minimised by solving a sparse N × N
eigenvector problem. See Appendix B in [9] for more details.

Isomap: The Isomap algorithm consists of three primary steps:

1. Construct the neighbourhood graph G.
As with the LLE method, the first step of the Isomap method is to determine which
points are neighbours based on Euclidean distances between points in the input data
in Rp. The neighbours are obtained using one of the two basic approaches for finding
nearest neighbours outlined above. The information about the neighbourhoods is
collected into a weighted neighbourhood graph G that has a node for each data
point in the original input. The nodes of G are connected iff they are neighbours
and the weights on the edges connecting nodes are the corresponding Euclidean
distances between neighbouring data points in Rp. The graph G is particularly easy
to construct when the number of data points n is smaller than the dimension p of
the space in which the data is embedded.

2. Construct the matrix D containing the shortest paths between all pairs of points in
the graph G.
Isomap estimates the geodesic distances between all pairs of points on the manifold.
This is achieved by computing the shortest path distances between vertices in the
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weighted graph G constructed in the first step. Dijkstra’s algorithm is known to be
a good algorithm to find a shortest path in a weighted graph.

3. Apply Multi-Dimensional Scaling to the matrix D to determine the d-dimensional
embedding.
The final step of Isomap applies classical Multi-Dimensional Scaling �MDS) to the
matrix of D of graph distances as computed in the second step. The MDS algo-
rithm constructs an embedding of the data in a d-dimensional Euclidean space that
best preserves the intrinsic geometry of the manifold as determined by the relative
distances of the points. The particular embedding found results from minimising a
particular measure of error; the solution of this optimisation problem reduces to an
eigenvalue problem.

Some more comments are in order concerning the final step of the Isomap algorithm.
Given a set of n input vectors {X1� . . . �Xn} ⊂ R

p, the Isomap algorithm returns a set of n
vectors {Y1� . . . �Yn} ⊂ R

d where d < p is prescribed. Let

X = [X1� . . . �Xn] ∈ R
p�n and Y = [Y1� . . . �Yn] ∈ R

d�n

be rectangular matrices with the input and output column vectors stacked in sequence. The
pre-images Y of the input data X are found as the minimisers of a cost function

E�Y ) = �τ�D)− τ�DY )�F � �3.3)

where �A�F =
��

i�j |Ai�j |
2
�1/2

is the usual Frobenius matrix norm. Further, in the defini-

tion of the cost function in �3.3), DY denotes the matrix of Euclidean distances between all
the columns of Y taken pairwise, i.e.,

�DY )i�j = �Yi −Yj� �i� j = 1� . . . � n).

The operator τ in �3.3) is defined as

τ�A) := −
1

2
H�A ∙A)H �3.4a)

where A ∙ A is the Hadamard �entrywise) product of A with itself and H is a centering
matrix; explicitly,

�A ∙A)i�j := A2
i�j � �3.4b)

Hi�j := δi�j −
1

n
�3.4c)

where n is the number of data points and deltai�j is the usual Kronecker delta. The operator
τ expresses the �Frobenius) distance between matrices using matrix products and thus makes
the minimisation of E�Y ) easier.

3.1.4 Optimal number of nearest neighbours. In what follows, we focus on the problem
of optimal choice of nearest neighbour numbers.

As proposed by Kouropteva et al. �with modifications recently suggested by Samko et
al.) [6], we choose a set of values of K from [Kmin�Kmax]. The simplest choice of Kmin in
our case is 1.

Next, for each K ∈ [Kmin�Kmax], we calculate the cost function:

E = �τ�D̄)− τ�DY )�� �3.5)
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where

DY = {dy�i� j) = �Yi −Yj� =

�
�
�
�

d�

k=1

�Yk
i −Y

k
j )

2} �3.6)

is the matrix of Euclidean distances in the output space, while D̄ is different for different
spectral embedding algorithms. We focus on a generalization of LLE where we have

D̄ ≡ DX = {dx�i� j) = �Xi −Xj� =

�
�
�
�

p�

k=1

�Xk
i −X

k
j )

2} �3.7)

As usual, the operator τ converts distances to inner products �to simplify the optimisation
procedure).

Then all K values where minima of E�K) are achieved will form the set SK of initial
candidates for the optimum value of K.

Finally, the nonlinear reduction algorithm should be run for each K ∈ SK . And Kopt

is determined by the following formula based on minimising the residual variance:

Kopt = argmin
K

�1− ρ2
D�DY

)� �3.8)

where ρ is the linear correlation coefficient taken over all entries of the matrices DX and
DY which contain Euclidean distances between pairs of points in the input �dimension p)
and output �dimension d) spaces, respectively.

3.1.5 Choice of the cost function and how to avoid ill-posedness. The above choice of
the cost function in the form of �3.5) is not the only possible one. In the generalized LLE
we worked on, the cost function is taken as a measure of the reconstruction error:

E�W ) =
�

i

�Xi −
�

j

WijXj�
2. �3.9)

To avoid ill-posedness it is essential to add constraints to this optimisation problem.
The most natural are related to the weights, and probably the simplest one is

�

j

Wij = 1. �3.10)

Further, as we observed in our experiments �described below), it might be essential to
precondition the Gram matrix by a regularization procedure.

3.1.6 Further improvements. The search for the neighbours can be improved further if
it is carried out with respect to the geodesic distance, rather than the Euclidean distance
as it is commonly done. Only a slight modification of the LLE algorithm is required in this
case [15]. In order to eliminate the necessity to estimate geodesic distances between faraway
inputs on the manifold, and hence to improve the efficiency, we can apply a semidefinite
embedding as recently proposed by Weinberger et al.

Finally, further modifications of the spectral embedding algorithms, described here, can
be introduced with the stochastic neighbour embedding which could be useful for relatively
noisy data.

Potential gaps in existing literature: There is a lot of work and experience to draw
upon from the machine learning community to help with the problem of dimensionality
reduction for microarray data. However, there are some features of algorithms for nonlinear
dimensionality reduction described in the existing literature that complicate the present
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study rather than making matters more clear. We describe some of these issues with the
hope that they can be resolved in later studies.

A number of nonlinear dimensionality reduction algorithms are based on the assumption
that there exists a nonlinear manifold embedded in Rp that underlies the given set of data.
The input of the algorithms usually consists of a set of n data points in Rp and possibly
the dimension d of the manifold sought. The output of the algorithms typically consists of
a set of n vectors in Rd with d < p that would be the pre-images of the input data vectors
in a presumably lower-dimensional space. However, manifolds consist of uncountably many
coordinate charts �smooth mappings from Rd into Rp whose ranges are contained in the
points on the manifold) in an atlas that cover the whole manifold. It is not typical for a
single coordinate chart to cover the whole manifold. Moreover, when the output from a
dimensionality reduction algorithm consists of the pre-images of the data under a particular
coordinate chart, it is not obvious which coordinate chart is being used. Some charts have
greater utility than others in different regions of the manifold.

To clarify the preceding discussion, assume that the manifold from which the input
data is sampled is the unit sphere in R3 �i.e., p = 3 and d = 2). Consider the mappings
ψ1 : �0� π)× �π� π)→ R3 and ψ2 : {�x� y) ∈ R2 : x2 + y2 < 1} → R3 that are defined by

ψ1�φ� θ) := �cos θ sinφ� sin θ sinφ� cosφ) �φ� θ) ∈ �0� π)× �π� π)

ψ2�x� y) := �x� y�
�
1− x2 − y2) �x� y) ∈ {�x� y) ∈ R2 : x2 + y2 < 1}.

Both of these charts cover portions of the unit sphere in R3. However, while ψ1 covers
the region near the point �0� 0� 1) relatively poorly due to a coordinate singularity in ψ1

near φ = 0, the chart ψ2 can be used near that region without difficulty. Similarly, the
mapping ψ2 encounters difficulty near the boundary of the unit disk in R2 for exactly the
same reason whereas ψ1 has quite well-behaved derivatives near the region where φ = π/2.
As such, the output of algorithms such as LLE or Isomap consist of vectors in Rd , but it is
in no way obvious which chart has been selected and whether it is one that is appropriate
in the region of the manifold being sampled.

Another problem shared by many algorithms is the number of heuristic parameters
inherent even in deterministic algorithms. For instance, in LLE, the dimension d of the
lower-dimensional manifold on which the sampled data lies is an input parameter of the
algorithm. �Admittedly, the Isomap algorithm does not share this particular shortcoming
in that it starts from d = 1 and increments d until a suitable value of d is determined.)
Other heuristic choices in the development of the algorithms include the number of nearest
neighbours to choose, the method by which nearest neighbours are measured, and the choice
of metric in the objective function to minimise in finding the reconstruction weights.

The most perplexing difficulty arises when trying to compare the performance of dis-
tinct algorithms. If the output of algorithm A is a set of pre-images of the data under
one coordinate chart and the output of algorithm B is a similar set of pre-images, does it
follow that the outputs can be compared? This is a vexing issue for assessing the numerical
accuracy and the asymptotic complexity of dimensionality reduction algorithms. Conver-
gence properties of, say, numerical approximation schemes for partial differential equations,
can be estimated by numerical experiments where the exact solution is known even when
convergence proofs are unattainable. Such numerical experiments are invaluable when new
schemes are suggested for comparison to existing frameworks. It does not seem that the lit-
erature on nonlinear dimension reduction algorithms has analogous criteria for comparison
of algorithms.
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3.2 Kernel Principle Component Analysis �KPCA).
3.2.1 Description of the PCA method. Principal component analysis �PCA) is one of

the statistical methods to extract the patterns in the data and to represent the original data
in another way based on their similarity and dissimilarity. PCA is not only widely-used for
pattern extraction but also for dimensionality reduction and data visualization. Once the
patterns hidden in the data are identified, we can project the data into lower dimension by
selecting several most important patterns and without losing too much information. As one
might expect, it is nontrivial to identify these patterns in the high-dimensional data.

PCA is essentially a basis transformation. Suppose the data points are given by
{X1�X2� · · · �Xn}, where Xi ∈ Rp and are centered, i.e., such that

�n
i=1Xi = 0. The

covariance matrix is then defined by

C =
1

n

n�

i=1

XiX
T
i .

Since the orthonormal eigenvectors of the covariance matrix form a basis in space, we can
express the data in terms of the eigenvector basis, instead of Cartesian coordinates. Actually,
the eigenvectors show the directions of variance in the data. In addition, the corresponding
eigenvalues indicate the proportions of the variances. The eigenvector corresponding to the
largest eigenvalue is called the principal component.

It will be easier to analyse the data if their dimension is much smaller. Therefore, we
can project the data onto a lower-dimensional space. Then the data are approximated by
the linear combination of the selected d eigenvectors �d < p) and truncating the tails of the
vectors creating vectors of length d. The value of d may be decided by the specific need,
such as a value of two or three for visualization, or by minimising the difference between
the original data and its approximation.

3.2.2 Description of the Kernel PCA method. The principle component analysis has a
very long history and is known to to very powerful for the linear case. However, the sample
space that many research problems are facing, especially the sample space of mircoarray
data, are considered nonlinear in nature. One reason might be that the interaction of the
genes are not completely understood. Many biological pathways are still beyond human
comprehension. It is then quite naive to assume that the genes should be connected in a
linear fashion.

To handle nonlinear spaces, a natural idea is to make a suitable transformation that
tries to make the transformed space linear. Although this idea has been mentioned in the
literature many times, the breakthrough did not come until the last 20 years during which
time the computational issue has been resolved.

In order to capture nonlinear patterns, it is often useful to consider a nonlinear trans-
formation of the original variables. For example, given two random variables, we might
consider only the linear combination, i.e.� a1x1 + a2x2. To capture any nonlinear relation-
ship, we might want to consider the ensemble of

� = {X1� X2� X
2
1 � X

2
2 � X1X2� X

3
1 � X

3
2 � X1X

2
2 � X

2
1 � X2� · · · }.

Although this can be done, the computational burden associated with the expansion
into a higher-dimensional space is very costly. Given the fact the microarray data already
has a very high dimensionality to begin with, this does not appear to be feasible.

To be more specific, we consider a mapping:

K : X −→ F �3.11)
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where X and F are the sample and output spaces, respectively, andK is the kernel function.
However, the Kernel PCA method does exactly this seemingly impossible task. The key

element of the Kernel PCA is that the original space is transformed into an output space
through kernel functions. Kernel functions are designed to capture the nonlinear nature of
the original space by expanding the basis functions into a much higher-dimensional space.
However, any computation after the transformation can be done using the kernel function
and the inner product of the original space. In other words, no actual transformation is
necessary, and the results are be obtained without significant computational cost.

Given f ∈ F and g ∈ F , we then have

< f� g >=

n�

i=1

n�

j=1

αiαjK�xi� xj). �3.12)

Detailed discussions of the Kernel PCA can be found in [12].
3.2.3 Choice of kernel functions and future research. There are many kernel functions

that have been proposed in the literature. Gaussian functions are commonly used. However,
this is no guarantee that a Gaussian function would be applicable all the time. One possible
approach is to use the idea of model averaging. To be more specific, one could use an array
of kernel functions and evaluate each kernel function for its effectiveness using some loss
function, for example, the mean squared error �MSE).

4 Numerical experiments and results

4.1 Available datasets. We now describe the two types of datasets of interest to us:
a microarray dataset from the NRC and some synthetic datasets which we have designed.

4.1.1 Microarray dataset. The NRC provided us with an AML microarray dataset of
genetic data which sampled 7129 genes in 72 patients; this corresponds to 72 vectors of data
in R7129. The patterns in the microarray data are nonlinear and are thus quite complicated.
In addition, the data are noisy due to the nature of the microarray experiment.

4.1.2 Synthetic datasets. The papers of Roweis and Tannenbaum make extensive use of
test data sets for their algorithms. These include an S-shaped ribbon �a two-dimensional
manifold embedded in R3, the standard unit sphere S2 ⊂ R3, and a number of variants
involving translations of a fixed image. These examples support the strength of these
algorithms in the event that the number n of samples available is larger than the dimension
p of the space from which the data are sampled. Unfortunately, this is not the case with
cell microarray data.

We advocate generating synthetic test data known to lie on a manifold with known
structure of arbitrary dimensions as a means of testing prospective algorithms. The proce-
dure mentioned here was developed using random sampling on the unit sphere Sd ⊂ Rd�1.
This does in fact require some care; randomly sampling points on the unit hypersphere
needs to be done in a way to ensure that samples are not clustered near poles. Fortunately,
a very simple framework for doing so is provided by Knuth.

1. Generate random vectors Y1� . . . �Yn ∈ R
d�1, each component being observations of

a random variable with Gaussian distribution with mean at 0.
2. Yk �→ Yk/�Yk�2 �k = 1� . . . � n) generates set of n random vectors uniformly-

distributed on the unit sphere in Rd�1.
3. Embed vectors Yk into column vectors Xk ∈ R

p by padding with zeros.
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The vectors generated thusly lie on the unit sphere Sd ⊂ Rp. This procedure can be
adapted to make data points from the manifolds Sd1 × Sd2 embedded in Rp or any similar
Cartesian product manifold. To obscure the obvious manifold structure of a set of vectors
in Rp with zeros in most of the components, a number of strategies can be used.

1. Make the substitutions Xk �→ PXk where P is a random p× p permutation matrix.
2. Make the substitutions Xk �→ QXk where Q = I − 2uuT is a random orthogonal

Householder reflection ��u�2 = 1).
3. Make the substitutions Xk �→ Xk + a where a ∈ Rp is a random translation.
4. Add Gaussian noise to all of the components of each vector.

4.2 Numerical experiments. For our numerical experiments, we tested the LLE
algorithm on the NRC microarray dataset described above. In particular, we performed a
leave-one-out cross-validation experiment and measured the reconstruction error for several
combinations of d and K.

Leave-one-out is a cross-validation technique in which the data is divided into n subsets
each corresponding to one data point. Training on the data is performed h times, each
time using only the omitted subset to compute the error criterion of interest. The following
pseudo-code demonstrates the use of the leave-one-out technique for the LLE algorithm:

for i = 1:n

1. Remove X_i from X� i.e.� set Xhat_i = X\{X_i}.

2. Compute the manifold on Xhat_i.

3. Project X_i onto Xhat_i.

4. Compute the reconstruction error for X_i.

end

Then, the reconstruction error is the sum of the reconstruction errors for each of the n
data points.

We repeated this experiment on the filtered dataset �using the result from the Random
Forest algorithm described above). Before discussing our numerical results, we describe
three main metrics for analyzing the error in the nonlinear dimension reduction process.

4.3 Measures for error analysis. There are three main measures for the error in
the nonlinear dimension reduction algorithms: the distortion of the distances, the residual
variance, and the reconstruction error.

To measure the distortion of the distances, we compute E�W ) =
�

i<j Wij�Dij −Δij)
2,

where Dij is the distance between the points in Rp, and Δij is the corresponding distance

in Rd. Although an interesting error metric, we have not studied this metric in favor of
pursuing others.

The measures for characterizing the quality of the nonlinear dimension reduction pro-
cedure described here are based on the following two choices:

• Minimisation of the generalized reconstruction error:

Ey =
1

n

�

i

�Xi − PXi�
2� �4.1)

where P is the projection operator, P 2 = P such that Yi = PXi. Note that we go
from a space of dimensionality p to a space of dimensionality d where for the linear
pieces we have
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var�Y) = Tr�PCP T )� P =
d�

α=1

eαeα
T � �4.2)

C =
1

n

�

i

XiX
T
i =

p�

α=1

λαeαeα
T � �4.3)

λ1 ≥ λ2 ≥ ... ≥ λp. �4.4)

• Minimisation of the residual variance:

1− ρ2
D�DY

�4.5)

is as discussed above �see �3.8)).

Determining the error of the reduction with �4.5) was proposed for the original LLE algo-
rithm [8]. Note, however, that since all the available algorithms require computing spectral
characteristics of the underlying data in one form or another, the computational dichotomy
of spectra may represent a non-trivial problem in practice [7]. Nevertheless, recent applica-
tions of spectral embedding non-linear reduction techniques, such as LLE and Isomap, to
high-density microarray data sets have demonstrated their robustness [5, 2]. Finally, note
that in the linear case, the approach based on �4.5) is the standard maximisation of variance
subspace:

var�Y) =
1

n

�

i

�PXi�
2� �4.6)

and is equivalent to the procedure �4.1) based on the minimum reconstruction error.

4.4 Numerical results. Now that we have described three possible error metrics, we
return to a description of the results from obtained from the LLE algorithm by running
the leave-one-out cross-validation experiment on the NRC microarray dataset. We will also
describe the results from running leave-one-out on the corresponding filtered dataset.

The following two figures show the results from the leave-one-out cross-validation ex-
periment using LLE on the microarray and filtered microarray datasets. We see from both
figures that the best results are obtained for roughly K = 12 nearest neighbours. This
result is independent of the choice of d. When a greater number of nearest neighbours is
used, the LLE algorithm is more expensive, and there is little to no additional benefit, i.e.,
the reconstruction error decreases little. The figures also demonstrate that the reconstruc-
tion error is minimised for low-dimensional manifolds of smaller dimension. This result is
also independent of whether or not filtering was applied. As was expected, the amount of
reconstruction error decreased when filtering was applied to the microarray dataset before
the leave-one-out cross validation experiment was performed; this demonstrates the success
of the filtering process.

5 Discussion and recommendations

As discussed above, support vector machines may be useful for gene selection when
combined with the random forest algorithm. There are other issues to explore within the
filtering context such as filtering time trends.
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Figure 2 Leave-one-out cross validation results for the LLE algorithm on the NRC mi-
croarray �left) and filtered microarray �right) datasets. These figures demonstrate that
12 is a good choice for the number of nearest neighbours in this algorithm. In addition,
the reconstruction error is smaller for lower-dimensional manifolds and for the filtered
microarray dataset.

Within Kernel PCA, the choice of kernel function should be investigated to find the
most useful type of kernel for the microarray and synthetic datasets.

There are several avenues to pursue within the spectral embedding framework for nonlin-
ear dimensionality reduction. First, we would like to experiment with the Isomap algorithm
and compare the results of that algorithm with the LLE experiments. Comparisons should
also be made with the other spectral embedding algorithms. Thus far, our results indi-
cate that the Random Forest and LLE algorithms were useful for filtering the genes and
nonlinear dimensional reduction as tested on the NRC microarray dataset.

A second avenue to explore is the choice of the nearest neighbours in LLE and other
spectral-embedding algorithms. There are many options for choosing the neighbours within
LLE such as the using the K-nearest neighbours, the points within a ball of a specified
radius, or using an adaptive local distance metric to choose the neighbours flexibly within
various regions. It is expected that an adaptive choice for the neighbours will produce
improved results. Above it was discussed how to pursue an optimal number of neighbours.

A third avenue that needs to be investigated is the choice of cost function. Our exper-
iments measured the reconstruction error because this metric was of interest to the NRC,
our industrial partner. It is not clear which error metric would be the most useful for the
general case, as we have not run any experiments using the distortion of the distances or
the residual variance as our error metric. We have not run any experiments on the synthetic
datasets which we have designed; tests will need to be run on this dataset for us to be able
to understand how these algorithms perform on additional datasets.

The final issue we have identified for investigation is the choice of cross-validation tech-
nique. Our experiments used the leave-one-out cross-validation technique. This can be
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generalized to the leave-v-out technique, which is a more complicated version of leave-one-
out in which all possible subsets of v data points are left out of the training set. As the
choice of cost function changes, the most successful cross-validation technique may change
as well.

Numerous experiments need to be performed on the microarray and synthetic datasets
in order for us to better understand the performance of the algorithms described in this
report on filtering of genes and the nonlinear dimensionality reduction problem.
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