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Problem statement

Airbus UK are concerned with designing efficient wings for aircraft. In the
design process the aerodynamic load on the wing is calculated for various
configurations including different Mach numbers and angles of attack. The
aerodynamic load is calculated from the pressure profile around the wing.
Airbus use a number of different methods to calculate the pressure, primarily
CFD calculations and wind tunnel experiments. However, experiments and
calculations cannot be performed for all configurations. Airbus asked the
Study Group to investigate interpolation methods which incorporate wind
tunnel and CFD data to calculate the aerodynamic load for many different
configurations.
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1 Introduction

Airbus UK is a centre of excellence for wing design. The aerodynamic group calculates
the aerodynamic loads on wings for different Mach numbers and angles of attack, to pass
on to the structures group. The pressure data is obtained from several sources.

e Wind tunnel experiments provide a good source of surface pressure data but are
expensive and can provide only a limited number of measurements.

e CFD calculations are used to calculate the pressure data by solving the Navier-
Stokes equations. These calculations take several hours to run.

The aerodynamic group cannot perform wind tunnel experiments for all required
configurations, and neither can they perform CFD calculations for all configurations.
Therefore they propose to combine the multiple data sources to obtain data for a large
number of configurations with a high level of confidence. Thus the problem presented
to the Study group is to find a suitable means of combining the data from wind tunnel
experiments and CFD experiments.

Airbus supplied, for use at the Study Group, wing pressure coefficient data obtained from
both wind tunnel experiments and CFD calculations; see Figure 2. The data covered
a number of Mach numbers and angles of attack at discrete points along several eta
stations on the upper and lower surfaces of the wing; see Figure 1.
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Figure 1: Diagram describing the layout of the wing and chords.

C-2



Original] CFOY

-1.0000

-0 000 o,

’,J‘ —a—Original(CF D)
-0.6000
-0.4000 rr \W

0.2000

20.0000 IEZ.DDDD 4.0000 260000 ZF0000  300ODD 3 340000 M.DDDD
0.0000

; /' e z
0.2000

0.4000 {

0 G000

02000

Figure 2: An example of the surface pressure coefficient data supplied by
Airbus, calculated using a CFD package.

2 Neural Networks

An artificial neural network is essentially an adaptive computer programme which can
simulate the relationships between sets of inputs and output variables. The simulation is
achieved by a training process in which sets of inputs are applied to the network and the
resulting sets of outputs are compared with known correct values, allowing automatic
corrective modifications to network parameters. A general account of the technique has
been given by R Beale and T Jackson, Neural Computing: an Introduction (Institute of
Physics Publishing Ltd, 1992). The software used was a commercial neural network
development tool Neudesk 2.11, provided as a free download by Neural Computer
Sciences. This is Windows-based software with a spreadsheet-style data input section,
which enables the configuration of a wide variety of network architectures and training
algorithms.

2.1 Initial Test

In order to assess the suitability of neural networks to interpolate the pressure coefficient
data, a network was trained on CFD data for one chord. The results from the output of
the trained neural network were then compared with the original CFD data.

The network inputs were the x and z coordinates around the wing. The z coordinate
runs along the length of the aircraft, the y coordinate runs along the length of the wing
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Figure 3: The layout of the nodes used in a trained neural network.

and the z coordinate runs perpendicular to both x and y. The network output was the
pressure coefficient calculated at 288 points on the upper and lower surface of the wing.
The network was trained to an average least square error of 1% using a hidden layer of
8 nodes and 24 weights. The results for the comparison can be seen in Figure 4.

The lift coefficient was calculated using the CFD data and the output from the trained
neural network. The results are given in the table below.

Data Source Value
CFD 0.3009
Neural Network | 0.2976

Table 1: A comparison of the lift coefficient calculated using original CFD
data and the output of a trained neural network.

Thus we can conclude that the neural network representation of data can provide an
acceptable value for lift.

2.2 Neural networks for the entire wing
A neural network was then trained using CFD data for the entire wing, comprising 18

eta stations, each containing 288 data points. The neural network was trained using the
x, y and z coordinates as an input against the CFD pressure coefficients as an output.
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Figure 4: The plot of the output from the trained Neural network and the
CFD calculations for one chord at one angle of attack and one mach number.

Networks were trained using 8, 10, 12 and 16 hidden nodes. However, the training was
slow and produced errors greater than 8%. The plot of the trained neural network output
against the CFD data, Figure 5, revealed the cause of the error and slow training times.

The trained network produced a poor fit to the data at chords close to the wing tip.
The trained neural network results in a cross over of the pressure coefficient at locations
where the x and z coordinates are close together.

This error was overcome by replacing the x coordinate input to the neural network by
the arc length along the chord. This has the effect of separating the coordinates along
the upper and lower surfaces. A neural network with a hidden layer of 20 nodes was
trained with the new coordinate data for the same wing. The training remained slow,
but the error reduced to 5% and produced the comparison with the original CFD data
shown in Figure 6

2.3 Improvement

In order to improve the accuracy and reduce the training time for the network, the arc
lengths for all chords were recalculated using locally normalised = and z coordinates.
This eliminates the effect of the reduction in width of the chord along the wing. The
network with 20 hidden nodes was retrained with the normalised data. The network was
trained to an error of 2.8% in around 30 minutes on a laptop PC. The results for the
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Figure 5: A plot showing the output at a single eta station of a trained neural
network trained on data for a whole wing.

network compared with the original CFD data for chords along the wing are given in
Figures 7, 8 and 9

3

Conclusion

Neural networks are a promising way of fitting and interpolating wing pressure coefficient

data.

They provide an easy-to-use technique that can be readily updated with wind

tunnel data and data for differing angles of attack and Mach numbers.

3.1

Suggestions for further work

A full investigation should be performed using state of the art neural network
software in place of a 10-year-old free download.

The networks should be trained on data sets for a range of angles of attack and
Mach numbers.

The wind tunnel data should be incorporated.
Investigate ways of prioritising training on high-confidence experimental data.

Comparison should be made with other interpolating methods, e.g. splines.
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Figure 6: A comparison of the output from a neural network trained using arc
length data
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Figure 7: The output from a neural network trained using normalised arc
length data at the wing tip.
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Figure 8: The output from a neural network trained using normalised arc
length data at an eta station on the middle of the wing
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Figure 9: The output from a neural network trained using normalised arc
length data at the wing root.




