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Abstract

The paper analyses signals that have been measured by brain probes during
surgery. First background noise is removed from the signals. The remaining
signals are a superposition of spike trains which are subsequently assigned to
different families. For this two techniques are used: classic PCA and code
vectors. Both techniques confirm that amplitude is the distinguishing feature
of spikes. Finally the presence of various types of periodicity in spike trains
are examined using correlation and the interval shift histogram. The results
allow the development of a visual aid for surgeons.
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2.1 Introduction

The problem addressed in this study involves helping a neurosurgeon get his or her
bearings during deep brain surgery. A stereotactic frame is used to fix a patient’s
head during an operation, and simultaneously to provide a coordinate system for the
surgeon to navigate. The region to be operated is determined by imaging techniques
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2 Neural spike sorting with spatio-temporal features

prior to the surgery. For some tasks, like taking out a tumor, the resolution of the
image is good enough for the operation. For finer tasks, however, the structural
anatomy of the brain is less relevant than the functional anatomy. An example
of the latter is deep brain stimulation (DBS), which requires a high resolution to
determine the location at which to stimulate.

One method to determine the functional anatomy is to insert fine needles into
the brain to record neuron action potentials during the surgery. This can indicate
whether the targeted area is reached or not. However, this task is very difficult, and
requires a lot of expertise. The medical group we are working with uses the fol-
lowing approach. Several micro-needles (10 micron thick, multiple needles about
2 millimeters apart) are inserted into the operating region. The neural activity is
recorded for periods of 10 seconds, converted to sound waves, and played to the
surgeon, who then decides whether the needle is on target or not. If not, the surgeon
moves the needle some 0.5mm and the procedure is repeated.

Our aim in this project is to determine which methods of analysis and information
presentation would help the surgeon to classify the recorded neural activity in real
time. Moreover we would like to incorporate the knowledge of the expert surgeon
into the analysis in a way that helps inexperienced surgeons, particularly as expert
knowledge is highly qualitative, depends on intuition honed by many surgeries and
is very difficult to state as a procedural description.

Apart from the difficulty of modeling expert knowledge, there are several other
challenges in this problem. When a needle is recording neural activity, it records a
great deal of background noise too, which needs to be accounted for. Deep brain
recordings have much higher noise levels than cortical recordings. Depending on
the proximity of neurons in the area, several neural activities can be recorded with
a single needle, and the fact that closely spaced neurons usually have highly corre-
lated activities makes their separation difficult. A single neuron can have relatively
regular interspike intervals, or it can alternate periods of low activity and high-
frequency firing. Furthermore, neurons can go active or inactive during a single
recording, and the number of neurons contributing to the signal may change. The
recording time is typically short, which makes temporal classification via statistical
methods difficult, if not impossible. On the other hand, classification via the spike
shape is not trivial either.

2.1.1 The data and problem details

The basic object of study are voltage traces x (¢, L) with L the level of insertion and
t the time. Possible levels are L € {0, 50, 100, ..., 500} m and the time ranges
over precisely 10 seconds, ¢ € [0, 10]. Available for analysis are sampled

xi = x(kTs, L)
at a sampling frequency of

fi = 1/T, = 20kHz.

22



2.1 Introduction

500

450

400 BRI st o

350

30

o

L

IO

250
200

150

100 p= .

Figure 2.1: Traces x(z, L) for levels L = 50,100, ...,500 um and time t €
[0, 10]s.
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2 Neural spike sorting with spatio-temporal features

This means that frequencies up to 10kHz can in principle be captured by the discrete
measurements xi. Note that from now on the level L is suppressed in our notation
xi. We will analyze voltage traces only for a given fixed level. Powerline artifacts
and similar disturbances are assumed to have been removed from x;. Figure 2.1
shows a typical set of traces for various levels L. Its behavior changes per level
but also within each level the signal characteristics may change over time. We
assume that signals are stationary within 1 second. At most levels in Figure 2.1
peaks are clearly visible, which suggests that significant signal power is attributed
to these peaks. A quick scan however shows that the power due to the peaks is
negligible and also in the frequency domain the power due to the peaks turns out to
be not clearly separated from that of background noise, i.e. their respective spectra
overlap significantly. Inspection of Figure 2.1 suggests that background noise can
be removed in the time domain using a threshold. This is explained in Section 2.2,
where we follow the approach given in [10].

The basic waveform, and repeated waveform, respectively known as spike and
spike train can be depicted as follows:

spike spike train
- -
~ 1.4ms € [5,200] ms

Given the sampling frequency of 20kHz this means that a single spike covers at
least 20 samples. Spikes with a large amplitude stand out in Figure 2.1. Surgeons
distinguish three types of spike trains:

1. spike trains of regular firing rate. These originate from neurons that fire at a
rate of SHz to SOHz;

2. spike trains of regular-HF firing rate. These originate from neurons that fire
at a rate of 5S0Hz to 150Hz;

3. spike train bursts. These originate from neurons with firing rates around
100Hz with the main feature that pockets of activity are interlaced with pock-
ets of inactivity. The amplitude of spikes may vary within a burst.

This is a coarse classification and irregular firing patterns and many other types may
be present as well. For instance a neuron can stop firing for some time or change its
amplitude. There are many other sources of non-stationarity. One source is due to
the movement of the neurons with respect to the needle. Another is the dynamics
of the neuron itself. For example, when a needle advances, it can stun the nearby
tissue, so that the neuron stops firing completely or at least temporarily alters its
firing behavior, before turning back to normal behavior. Detecting time windows of
near stationarity is crucial and this is why the analysis has to take place for every
window of, about, 1 second.
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2.1 Introduction

The problem is to automate what the surgeon does and to do so in real time, with
a delay of at most 5 seconds. In short, we want to:

1. pinpoint the location of spikes (i.e. remove background noise),

2. separate the set of spikes trains into various classes (corresponding to different
neurons),

3. determine for each of the classes of spike trains to which of the three types
they belong (if any),

4. visualize the findings.

Problems 2 and 3 combined are known as the problem of spike sorting. In the rest
of the paper we describe a set of ideas that could be useful in solving these problems
in real time. A color-coded visualization as exemplified in Figure 2.2 is a possible
desired outcome of the project, as it would help the surgeon to decide on the nature
of neuronal activity in the measured area.

burst burst

regular HF regular HF

regular

t=0 [=10

Figure 2.2: Visualizing the presence of regular spike trains (green), regular-HF
spike trains (blue) and spike train bursts (red) as a function of time.

2.1.2 Literature survey

Spike sorting has been around since the 1960s. The earlier methods relied on tem-
plate matching, and required heavy offline processing [14]. More recent methods
combine feature extraction, probabilistic modeling, and clustering. The accuracy
and efficiency of these methods are much greater than before, but most of them are
still too computationally intensive to be used during the surgery, and they do not
work well with deep brain recordings. An excellent recent review of the problem is
the one by Lewicki [6].

The success of spike sorting methods is determined by simulations on artificial
data (for which the correct classification is known) or by comparisons to human-
annotated real recordings. Harris et al. studied the performance of a human op-
erator when sorting spikes recorded from a tetrode (4-wire electrode) manually,
and decided that human operators sort the spikes suboptimally [5]. Single-needle
recordings (as we study in this work) were markedly more difficult to classify than
tetrode recordings, where the presence of multiple sensors provides robustness in
the decisions. Their conclusion was that “automatic spike-sorting algorithms have

25



2 Neural spike sorting with spatio-temporal features

the potential to significantly lower error rates.” Similar observations were made
in [17], which reports average error rates of 23% false positive and 30% false neg-
ative for humans sorting synthetic data. In artificially created data sets, this type of
error is reduced. Consequently many researchers create artificial data sets by mod-
ifying a small set of annotated signals, adding noise and superposing them to make
the problem more difficult [1, 2, 10, 18], or by resampling from the distribution that
characterizes the data [17]. Generation of realistic data is another issue. In [8],
a cortical network simulation based on GENESIS was used to generate artificial
spike data. The authors note that the spike sorting algorithms tested on their simu-
lated data failed. More recently, Smith and Mtetwa proposed a biophysical model
for the transfer of electrical signals from neural spikes to an electrode to generate
realistic spike trains for benchmarking purposes [15].

Assuming that the procedure to validate a proposed spike sorting method is ade-
quate, the first phase is usually filtering to remove artifacts and noise. The record-
ings are influenced by the ambient signals, interference from nearby electronic de-
vices, vibrations caused by movement and noise from other neurons firing in the
vicinity. The amplitude of the signal is a good indicator of a neural spike, and is
frequently used to determine spike occurrences. It is necessary to select static or
adaptive thresholds for this purpose. Once a threshold is selected, activity below
the threshold is considered to be noise. To eliminate noise on the selected spikes,
a smoothing procedure can be applied. In [3] the signal is resampled with a cubic
spline interpolation for a better alignment of the spike shape with its peak ampli-
tude. (Section 2.2 of our paper describes an efficient alternative approach.) In [13]
spikes are detected by looking at threshold crossings of a local energy measurement
of the bandpass of a filtered signal, which is shown to be more reliable than the raw
signal.

Once the spikes are extracted, they can be classified by their shape characteristics,
temporal characteristics, or both. For temporal characteristics, the interspike inter-
val distribution and its correlation-based analysis can reveal different spike firing
patterns [11]. But these methods ignore the spike shape. For shape-based character-
ization, the spike shapes are normalized by their maximum amplitude, cropped, and
treated like shape vectors. The two approaches that are frequently used are clus-
tering to get the mean shapes for spikes, or matching against a pre-specified set of
templates. The difficulty in the clustering approach lies in the fact that the number
of clusters is usually unknown. One method proposes to start with a large number
of clusters, and to combine clusters that are sufficiently close, until a stopping cri-
terion is reached [3]. This resembles the method proposed by Figueiredo and Jain
for determining the complexity of a Gaussian mixture model automatically [4]. In
this approach, the number of clusters in the mixture is not specified prior to model
learning, but determined on the fly. The algorithm is initialized with n clusters,
and during each step of the algorithm the smallest cluster is combined with another
cluster, and the expectation-maximization (EM) algorithm is run until convergence.
Each step ends with one component less than the previous step, until only a single
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2.2 Spike classification

component remains. Then, all the intermediate steps are evaluated by a minimum
description length criterion to select one model as the final output of the system.
In [3], instead of generating all possible models, a statistical test is employed to
stop the combination procedure.

Both template matching and clustering methods face the potential problem that
spikes do not have fixed amplitude and shapes. During the recording, movements
of the electrode or a change in the membrane potential can cause a change in the
spike amplitude and shape [6]. Similarly, Quiroga et al. remark that when the spike
features deviate from normality, most unsupervised clustering methods will face
difficulties [10].

In [16], several spike characteristics were contrasted to see which features lead to
a better classification. The parameters of the waveform (i.e. amplitude, spike width,
peak-to-zero-crossing time, peak-to-peak time) were found to be insufficient for ef-
fective discrimination. The authors also contrasted optimal filtering techniques [12],
template matching (with root-mean squares error criterion), and principal compo-
nents analysis (PCA)-based techniques. Their results show that even though it is
possible to obtain good results with the costly template matching method, PCA-
based approaches were much more robust against higher noise levels. The overlap
of waveforms was found to be greatly impairing the accuracy of template-based
methods. A possible solution to this problem was proposed in [18], where PCA and
clustering techniques are combined to test incrementally whether a single source or
multiple sources contribute to the signal. Recently, Pavlov ef al. contrasted wavelet
and PCA-based methods, and argued that wavelet-based methods could perform
better than PCA, yet they need to be carefully tuned for this purpose [9].

For real-time applications, even the PCA-based methods may be too computa-
tionally intensive. In [19] a front-end hardware architecture is described for spike
sorting, but the system is tested on a ‘clean’ sample for which PCA achieves 100%
accuracy. Still, the proposed algorithm can achieve good results with much less
computation steps.

2.2 Spike classification

In this section we formulate ways to separate dominant spikes from background
noise and subsequently try to split the many spikes into classes that correspond to
individual neurons, or at least to neurons with similar firing behavior.

2.2.1 Detection, double spike removal and time shifting

Consider a noisy trace xi, such as in Figure 2.1. If the value x; of the signal is above
a certain threshold, it is assumed to belong to a spike. The paper [10] describes
how to choose the threshold using the standard deviation oy, of the noise. Under the
assumption of being normally distributed (and the background noise indeed appears
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2 Neural spike sorting with spatio-temporal features

to be so) the standard deviation equals

On median(|xq[, ..., |xn]).

~0.6745
The usual formula using an average of squares is not used, because then the ex-
tremes due to the spikes would affect o, too much. The threshold is given by a
constant oy, times oy,

Vinr = Gthr On,

with agy = 4 or 5, or a number in between, the choice of which appears to be
somewhat subjective as different values were found in the literature.

Each spike will lead to a small interval of values above the threshold. To have a
simple criterion, we take maxima in the signals whose value is above the threshold,
which define a set of points 7, ; (p for ‘peak’). This is our initial set of ‘raw’ spike
times®. We crop a temporal window that contains the spike, starting 0.4 ms before
the peak and ending after 1.2 ms, resulting in a 1.6 ms data window. These form our
‘raw’ set of spike traces. An example of such a raw set is displayed in Figure 2.3.
In this example 674 spikes where found in 10 seconds of data.

spike book, comp_trace for double spike removal and taper
0.6 T T T T T

Voltage

-0.4 -0.2 0 0.2 0.4 0.6 0.8 1 1.2
time (ms)

Figure 2.3: ’Raw’ spikes, cropped and aligned by their peaks at time zero. Also
displayed are the functions wq, used for identifying double spikes (thick
solid line), and the taper function (thick dashed line), which we use
to select only the part of interest for each spike. (Every fourth spike
plotted.)

The transformation from the no-activity state (signal within noise level) to the
peaked activity is very fast, comprising about 0.15 ms, which means that with our

8The coding was done in MATLAB, and the experiments were conducted on a set of traces that
were available from patient measurements
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2.2 Spike classification

sampling rate, three samples can be acquired for the spike before it peaks. After the
peak some of the spikes continue for up to about 25 samples (1.25 ms), although
for the shape analysis the first 20 samples seem to be sufficient.

There are several potential problems at this stage:

e Double detection: A single spike could be mistaken for two individual spikes
due to noise, say within two or three sample points. A possible strategy to
deal with this is to consider the largest of two close peaks to be the real peak,
and to ignore the other. For the limited set of sample traces that we worked
with, this problem did not occur.

e Overlapping spikes: It is possible that a second spike occurs shortly after or
before a spike. It can be seen in the figure that this happens in our data. These
are outliers for the purpose of spike shape analysis, as a single neuron cannot
fire again in such a small period, and we should therefore remove them.

To remove double spikes, we use two threshold areas around the peak, one
containing samples [-0.2ms, 0.2ms] around the peak (about 9 samples) and
the second from [0.25ms, 0.8ms] after the peak (about 11 samples). Values
above the threshold (depicted with a thick solid line in Figure 2.3) indicate the
presence of a double spike. Obviously, it remains to be investigated whether
the parameter settings we use are suitable for other measurements, i.e. on
larger collections of recordings. But a visual inspection of Figure 2.3 and a
plot of the rejected spikes can be used to assess reliability of the result. In our
data set 24 of the 674 spikes were rejected as double spikes.

We use a taper function to limit the interval around the peak, and the subse-
quent smoothing of the signal depends on the choice of the taper function.
This can be important when interpolation is applied later in the process. The
taper function we have used had a width of 0.1 ms to keep tapering to a mini-
mum, and to prevent lossy smoothing. A scaled version of the taper function
is plotted as the thick dashed line in Figure 2.3. The spikes that are thus
excluded from the analysis and the remaining valid spikes are plotted in Fig-
ure 2.4.

e Negative polarity spikes: Spikes with negative polarity were ignored.

The next step would be to apply time shift corrections to the spike traces, to align
them better. Spikes can have a time shift that is a fraction of the sampling period, so
interpolation becomes necessary to apply such time shifts. In a Scholarpedia paper,
it is proposed to interpolate the spikes at a finer resolution and then align them
by their maxima. To keep keep the subsequent computational complexity low we
developed an alternative approach. Each spike f;(¢), j =1, ..., N is time shifted

8www.scholarpedia.org/article/Spike;sorting
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2 Neural spike sorting with spatio-temporal features

over a time ;. Now the vector f = (1, ..., Bn) is chosen that maximizes the total
correlation of the traces, given by

[ a3 i~ 8
J

2 ) .
,  with constraint Z Bi=0.
J

Fourier interpolation was used, so that the interpolation and optimization can both
be done in the Fourier domain, using off-the-shelf interpolation algorithms. Compu-
tation time in MATLAB takes about 0.5 second for 640 spikes on a regular machine,
which indicates that an optimized code will have acceptable temporal complexity.

A comparison of Figures 2.3 and 2.4 shows that time shifting leads to much
higher similarity between the spikes. In the next section, we will show that time
shifting is also beneficial for PCA-analysis. Optimal time shifting results in much
better clustering behavior, with tighter clusters, and occasionally with better sepa-
ration, resulting in more clusters.

To summarize, we have implemented the necessary codes for the following pur-
poses:

1. Detection of maxima above the threshold.

2. Removing double spikes.

3. Tapering the remaining spikes.

4. Time shift corrections in order to maximize total correlation.

These steps give an adequate pre-processing for the subsequent shape analysis, see
Figure 2.4(b), and our method of computation of time shift corrections makes the
overall procedure efficient.

2.2.2 Principal Component Analysis (PCA)

The Principal Component Analysis (PCA) is a popular tool that is used in numerous
scientific, medical, and engineering applications such as noise reduction in signal
processing and face recognition. Here we will use the PCA to recognize and analyze
the different types of spikes.

Let A € R”*" be the wide matrix containing the spike data as columns,

A;j = sample i of spike j, ie{l,...,m}, je{l,...,n}.

Here n is the number of spikes found in the signal (for instance, n &~ 650 in the
previous subsection), and m is the number of samples per spike, typically m = 20.
Although it is no real restriction, for convenience we will assume in the following
that n > m; in practice n may be much larger than m.
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Figure 2.4: (a) Double spikes removed from the set of spikes; (b) spikes after re-
moval of double spikes, tapering and time shift correction (every fourth
spike plotted in part (b)).

The PCA is based on the Singular Value Decomposition (SVD); often, the SVD
and PCA are used as synonyms. However, in PCA the SVD is applied to the matrix
A obtained from A by subtracting from each trace (column) the mean of that trace

1 m
Aij=Aij - — > Ay
k=1

The SVD of a matrix is a decomposition of the form

A=UzvT
with UTU = I, VVT = I and X a diagnonal matrix with nonnegative, non-
increasing entries, o1 > g2 > - - - on its diagonal (The  denotes transpose.) There

are two forms of an SVD: a full and a reduced SVD. In the full SVD, both U and V
are square matrices. For almost all applications the data contained in the full SVD
are superfluous and it is much more efficient to use the reduced SVD, in which U
is still square, size m x m, with ¥ now size m x m as well, and V has size m x n.

The columns uy, uy, ..., u, of U are the left singular vectors or principal com-
ponents and give information on the patterns that are present in the collection of
spike data. Their corresponding singular values o1, 02, . . ., 0, indicate how strong
the respective patterns are. By construction the patterns uy, ua, . .., u, are orthog-
onal; they do not represent spikes except u.

We compute the PC’s of the spike collection and show the main results in the
figures below. In Figure 2.5 we plot the first two singular values against each other
for all spikes in a single trace x;. This kind of plot is useful to find clusterings
of spike shapes in the trace, i.e. groups of spikes with similar shapes. In this case
three clusters can be observed. This was exceptional, most of the traces had only
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2 Neural spike sorting with spatio-temporal features

two clusters, one consisting of large spikes, and the other of the remaining spikes.
Some had no clear clustering. In Figure 2.6 we plot the mean of the traces (the thick
dashed line), and the first four principal components, the thickest being the first, and
the thinnest the fourth.

Principal component coordinates, pc2 vs. pc1
0.15 T T T T

01

0.051

pc2

-0.05

-0.15

02 I I I I I I
-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6

Figure 2.5: The first two singular values from PCA analysis plotted against each
other. Three clusters can be observed.

Mean and principal component vectors
06

0.4

0.2

Voltage

-0.4 —0‘.2 (‘?l 0‘.2 (img‘.;‘ms) 016 0.‘8 1‘ 1.‘2
Figure 2.6: The mean (dashed black line), and first 4 principal component vectors,
the first corresponding to the thickest solid line.

Since in Figure 2.5 o7 is much smaller than o1, this figure suggests that there is
one quite dominant spike pattern. Indeed, the distinguishing feature is the size of
the spikes. Of course, this outcome is influenced by the removal of the outliers (the
second spike in a sequence of two consecutive spikes) in the previous subsection.
In signals where many spikes with negative polarity are present, we expect a much
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2.2 Spike classification

larger o, corresponding to a pattern u,. In Figure 2.7 we plot the largest singular
value against time. This picture shows that the presence of several clusters is related
to a change in observed spike shapes that occurs around 1 = 8000ms, and thus
reveals even more structure in the data.

pc versus time

—0.6

08 I I I I I I I I I
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

time (ms)

Figure 2.7: The largest singular value from PCA plotted against time (in milisec-
onds). The clustering can also be observed in this picture.

at

T

Figure 2.8: Coding spike features.

2.2.3 Coding

Another technique to classify spikes is to represent any distinguishing feature by a
number on a scale and combine these numbers to create a code vector. There are
several features that can be defined:

e A spike has a top value a™. As the amplitude depends on how close the probe
is to the neuron, it should be normed e.g. by considering a, = a/a;;,x where
Amax 18 the maximum amplitude occurring during a measurement.

33



2 Neural spike sorting with spatio-temporal features

e A spike also has a bottom value a™ (taken positive). Now the total amplitude
b = a™ — a~ can be considered as a feature, scaled as b/ max(b).

e The polarity p depends on the temporal order of a* and a™. It is positive,
p = 1, if a4 is attained before a_, and negative p = —1 otherwise.

e The width w can be defined as the time difference between the time 7; when
the signal reaches half peak value a™ /2 and the time 7, when it first exceeds
a~ /2 after the occurrence of a™ for a spike with positive polarity. For a spike
with negative polarity the width can be defined as the width of minus the
signal.

These features are illustrated in Figure 2.8. The idea of coding is now as follows.
After normalization, a,, takes a value in the interval [0, 1]. This value could be taken
as the encoding of the amplitude, but the interval may also be divided into some,
say three, equal parts that can be encoded by 0 (if a, € [0, %)), 1@Gfa, € [%, %)),
and 2 (if a, € [%, 1]). The amplitude is thus encoded on a 3-point scale: “low”,
“medium” and "high”. In a similar way the width, polarity and amplitude of a spike
can be encoded on either a 2-point or a 3-point scale. With these four features we

have 3 x 2 x 2 x 2 = 36 different code vectors
(an, b, p,w) €{0,1,2} x {0, 1} x {—1, 1} x {0, 1}.
Some other features were also suggested:

e Similar to total amplitude, the relative height hye) = |Z—t| can be defined and
may be encoded by a 2-point scale, O if sy > 1 and 1 if Ay < 1.

e The slope at the second halftime 7, as there are some neurons which can
show an afterhyperpolarization, i.e. a prolonged negative phase.

e Different types of neurons may show spikes that differ in the regeneration
quotient of the two time intervals between start and passage of zero respec-
tively passage of zero and the end. So for "width” there are various ways to
define “start” and “end”.

As we have seen in the former subsection it seems doubtful that many essentially
different types of spikes occur. This is confirmed by this alternative classification
method. In fact encoding only amplitude, polarity and relative height, leads to
only 12 different code vectors, from (0,0, —1) to (2, 1, 1). Figure 2.9 shows four
histogram of two traces, one at level L = 200 and one at level L = 50. First, we
see that a, and b within a single trace encode more or less the same feature. A
fast majority of spikes have positive polarity, and manual inspection of spikes with
negative polarity led to the conclusion that there was in fact another cause for an
early negative peak to be present. The few spikes with negative polarity we did find
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Figure 2.9: Histogram for four coding features for two traces x;: (top four) trace at
level L = 50; (bottom four) trace at level L = 200.
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20 40 60 80 100 120 140 160 180 200 ] 50 100 150 200 o 200 400 600 800 1000

Figure 2.10: Data that cause problems when defining features. Top: negative polar-
ity; middle: several spikes after each other; bottom: burst. The peaks
are above threshold.

could be due to a dying cell. So polarity does not distinguish spikes. Neither does
the width. Moreover, the “half”’-times 71 and 7, did not always exist in case several
spikes occurred shortly after each other or during a burst, see Figure 2.10.

These computations show that the neurons can be distinguished using just the
maximum ay. Only a few code vectors are relevant, i.e. correspond to occuring
types of spikes. This is in agreement with the PCA results.

2.3 Regularity extraction

Now we assume that background noise in a trace has been removed and that the
remaining spikes in x; are classified (separated) into a collection of a few different
spikes, each with its own characteristics. In this section we continue with the anal-
ysis of a single spike train. By definition then any spike in a spike train shares the
same features, hence we need only specify the time instances at which the spikes
occur (e.g. where the maximum of the spikes occur). We use s; to denote such a
spike train time series. That is, sy = 1 if a spike occurs at discrete time index k,
and s; = 0 if no spike occurs at k. The repeating firing patterns of neurons induce
periodicities in the spike train s and we should now try to pinpoint what type of
firing pattern is present in si: a regular firing rate, a regular-HF firing rate or a burst,
and possibly a superposition of the above.

2.3.1 Autocorrelation and Fourier Analysis

Classically periodicities are determined by correlation ry := Zi Si+ks; and the dis-
crete Fourier transform (DFT). A distinct advantage of both correlation and DFT
is that computation is very efficient: for a trace of n samples it takes O(n log,(n))
opertions to compute correlations and the DFT. Fourier and equivalent autocorrela-
tion analyses are fairly robust with respect to small variations in the periodicity of
the spikes. A more severe problem occurs when the spike train is a superposition
of periodic signals (and noise). Figure 2.11(a) demonstrates this problem: while
the signal si clearly is a superposition of two purely periodic signals—with period
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2.3 Regularity extraction

5 and 8—the autocorrelation analysis does not clearly pinpoint the periodicities of
the involved signals, and does not help in separating them.

autocorrelation Interspike interval histogram
10 (o] 10
8 8
6 6

0 &B ESSS SSSESEEIN 0
-40 -20 0 20 40 -40 -20 0 20 40

Figure 2.11: Autocorrelation (left) and interspike interval histogram (right) of spike
train s; with spikes att = (0, 5, 8, 10, 15, 16, 20, 24, 32, 40).

While autocorrelation and DFT consider a spike train as a function s of time
k, it is more efficient for computational purposes to store spike trains as sequences
t = (t1, 1o, .. .) of time instances at which spikes occur. For instance the spike train

k=0 k=4 k=10 k=15 k—

can be stored more efficiently as the sequence t = (0, 4, 10, 15). The analysis of
time sequences ¢ is considered next.

2.3.2 Interspike interval histogram

Several mathematical techniques are known for discovering regularity in time se-
quences, with autocorrelation, discussed in the former subsection, being one of
them. The method that we will describe in this subsection is related to autocor-
relation, but turns out to be appropriate for determining the beginning and end point
of periods of regular firing of neurons, even when there are pockets of inactivity be-
tween windows of regular activity. The idea will be introduced for strictly regular
sequences. Let us consider a regular time sequence with period 5,

t =(0,5, 10, 15, 20, 25, 30).

The regularity with period 5 is discovered simply by looking at the consecutive time
differences, which indeed are all equal to 5. Now suppose the data is contaminated
with time instances at 8, 16 and 18, so

t =(0,5,8, 10, 15, 16, 18, 20, 25, 30).
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2 Neural spike sorting with spatio-temporal features

The period 5 is now masked. Considering consecutive differences now gives rise to
new “periods” 8 —5=3,10—8=2and 16 —15=1,18—-16=2,20—- 18 = 2.
The idea now is that by comparing not only neighboring time differences, but also
other possible time differences, we can recover the dominant difference, which is 5
in this case. In fact, addition of the series of neighboring differences will produce,
among others, in our case 3 + 2 = 5 and adding up once again produces 1 + 2 +
2 = 5. Considering all differences between pairs of time instances will result in a
histogram in which the period 5, as well as multiples of 5 dominate. If there are m
time instances, then (’;) = %m(m — 1) differences are to be calculated.

The resulting histogram is called the Interspike Interval Histogram, or IIH for
short [11]. The IIH procedure can be visualized as follows: for all #; € ¢ the
sequence ¢ is first shifted by —#; (effectively shifting its kth element to zero) and
the resulting sets of shifted r —1; are then added up, see Figure 2.12. As we count the
differences to obtain the histogram, it might also be called a Difference Histogram
but we stick the literature standard of 1IH.

1 B N | =1t—1

| A 1 R R R | =t—1t

| I T T | =t—1

| A 1 1 o =1t—1I

1 . .1 1 1 =1 —t5

+

I....I.II.I.II.‘.II.I.II.]....I

Figure 2.12: Visualization of the construction of the ITH.

To illustrate the procedure differently we superimpose a random set of times on
our example sequence. Say we have

t=1(0,5,8, 10, 14, 15, 16, 18, 20, 25, 27, 28, 30). 2.1
The consecutive differences form the sequence
(t—t,t3—1,...)=0(5,3,2,4,1,1,2,2,5,2, 1, 2).

In this sequence the difference 2 occurs five times while difference 5 occurs only
twice. Adding two consecutive differences leads to the sequence

(89 59 69 59 29 39 49 79 79 39 3)'
Adding three consecutive differences leads to the sequence

(10,9,7,6,4,5,9,9,8,5).
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ﬂs\ i me.

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Figure 2.13: IIH of the 7 of Eqn. (2.1). By symmetry we need only specify the ITH
for positive lags, as done here.

On the basis of these three sequences of differences we already see that “2” and “5”
show up as likely periods of regular subsequences. The full IIH, for positive lag, is
shown in Figure 2.13.

The six intervals in ¢ of length 2 are [8, 10],[14, 16],[16, 18], [18, 20], [25, 27]
and [28, 30], whereas the six intervals of length 5 are [0, 5], [5, 10], [10, 15], [15, 20],
[20, 25] and [25, 30].

The first six intervals show regular sequences 8—10, 14—16-18-20, 25-27 and
28-30, while the second six intervals show one regular sequence 0-5—-10—-15-20—
25-30. We thus find the regularity with period 5 and duration (total length) 30 but
also a regularity with period 2 and duration 6. Just two times cannot be considered
a real sequence. Looking upon intervals as train wagons that can be coupled by
spikes which occur at common times (the ends of the wagons) we indeed can speak
of spike trains as coming forward by this procedure.

Figures 2.14 and 2.15 show how IIH can be employed to determine the firing
frequency of the dominant neuron in the recording. In Figure 2.14, a small portion
of the raw spike data is shown on the left. Once the data is processed, and the spikes
are localized, the IIH is constructed by pooling spike events after each spike. The
peak of the IIH represents the dominant interspike interval time, i.e. 187 Hz. When
we look at the rest of the IIH, the global wave pattern is indicative of long-term
tremor. In Figure 2.15, the high-frequency signal from a dying neuron is depicted.
The IIH reveals that the neuron bursts with 227 Hz frequency.

2.3.3 Connection between autocorrelation and IIH

The IIH procedure generates from a sequence of m time instances ¢ a new sequence
of m — 1 positive time lags and it appears to require O (m?) operations. Forming
the autocorrelation ry = > jSjSk+j of asignal s € R” on the other hand requires
O(nlog(n)) operations. In theory there is no relation between n and m (other than
n > m and some variations) so without further assumptions it is hard to compare
the complexity of the two approaches. Oddly enough autocorrelation and IIH are
equivalent for a single event type”:

9When different categorical events can be related to each other, the inter-event interval histogram
can be employed to determine the regular patterns too, see [7]

39



2 Neural spike sorting with spatio-temporal features

The raw data 187 Hz, i.e. once every 5.35 milliseconds
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Figure 2.14: 187Hz period+long term tremor. Left: raw data xj; right: IIH with a
peak at = 5.35ms corresponding to frequency of 186.9 Hz.

227 Hz, i.e. once every 4.4 milliseconds.
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Figure 2.15: X-cell (RIP). Left: raw data xj; right: IIH with peaks at 1 = 4.4 ms
and multiples, indicating a frequency of 227.3 Hz
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Lemma 2.3.1. Lett € N" and s € N" form a pair of time sequence and corre-
sponding time series. Then the autocorrelation of s equals the time series of the [IH

of t.

Proof. The IIH seen as an operation on s (rather than ¢) is a sum of shifted s and
therefore is a discrete convolution £ = s. It is easily seen that /4 is in fact the time
reversed s, but then the convolution /4 * s is the autocorrelation. ]

Indeed the two plots in Fig. 2.11 are equivalent. The result remains valid if time
instances appear more than once in ¢, in which case s; should be defined to mean
the number of times that k appears in ¢. The result also implies that IIH and spec-
tral analysis (DFT of s or its autocorrelation) contain the same information. The
difference is the way they are computed and stored. It is as yet an open problem
which of the two approaches is more efficient computationally. The IIH appears
more natural.

2.3.4 Approximate regularity

Neurons will fire at time intervals that are not completely equal in length, but suffi-
ciently close to call it regular firing. We therefore consider approximate regularity
for firing rates, demonstrated on a very simple but illustrative example. Let the time
sequence for spike events be

sy = (0, 30,59, 87, 119, 150).

The consecutive intervals have lengths 30, 29, 28, 32, 31, which would correspond
to quite “close” values in the ITH. A strictly regular sequence with period 30 would
show five times 30, but now there are five intervals close to 30 and with average 30.

The question of determining the regularity of a sequence can be answered by
considering intervals [30— A, 30+ A] around the average value. A = 0 corresponds
to the strictly regular sequence. We propose to use the following measure for the
regularity sequences:

R=1- ~ 0.93.

average

where R = 1 corresponds to strict regularity. A is the maximum difference occuring
betweeb interval lengths and the average for a set of close differences of times that
is tested for regularity. We assume that no set should be considered for which A is
larger than the average, so that R is a non-negative number in the interval [0, 1].

It must be stressed that once a set of differences is chosen, one still has to check
whether indeed one spike train has been found. A very simple example of two spike
trains with period 5 that interfere, is given by the sequence

t=1(0,1,5,6,10,11, 15, 16).
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2 Neural spike sorting with spatio-temporal features

The histogram shows peaks at “1”” and at “5”. The four differences of 1 do not form
a train at all, whereas the six differences 5 turn out to form two trains: (0, 5, 10, 15)
and (1, 6,11, 16).

An alternative approach to detect regularity using statistcal methods is indicated
next. For a sequence of time instances t = (1, t», . . .) at which spikes occur, define
the sequence of differences

At =(tr,—t,t3 —12,...).

Assume that the differences 7,4+ — f; are a realization of a single random variable
T. Based on the emperical distribution and using an unparametrc test it is possible
to find the distribuition of the random variable 7. Under the assumption that T’
is normally distributed, N (u, 02) and based on the available realization At it is
possible to find estimators 7 and 2 of the mean and the variance of the normal
distribution. Then taking into consideration a confidence level of, say, 95% for all
the realizations then 41 — fx € (& — 26, it + 26') can be considered indicating
approximate regularity of the firing rates.

2.4 Concluding remarks

In this paper we mentioned four goals in Section 2.1.1.

The first goal mentioned was pinpointing the location of spikes. The main prob-
lem was the removal of background noise in combination with fractional time shift
correction. This problem was dealt with in Section 2.2.1, with Figure 2.4(b) as
description of the final result.

The second goal, classification of spikes, was treated in sections 2.2.2 and 2.2.3.
We can view a spike as having several features (width, height, width and height of
upward part, width and height of downward part, et cetera). Also combinations of
features can be relevant. The PCA treated in Section 2.2.2 automatically selects
features that distinguish spikes. In the coding approach of Section 2.2.3 these fea-
tures are set manually. It turns out that the main feature is the amplitude. The PCA
analysis revealed that occasionally other features are relevant, as shown by the pres-
ence of three clusters in Figure 2.5. To obtain this second feature from the PCA it is
important that the alignment of the spikes in time is good. The three clusters were
only observed after the fractional time shifts of Section 2.2.1 were done.

In Figure 2.5 values for the two dominant features from the PCA are displayed
for a set of spikes. Clearly groups (clusters) can be distinguished. Although these
groups are clearly visible, it is still a question how to select the groups. For this
purpose automatic clustering algorithms exist. Of course in such simple examples
manual grouping is also easily done. We feel that automatic clustering combined
with visual inspection of the outcome and the possibility to change the cluster areas
could be of interest for the application.
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Both the manual and the PCA based feature selection were only applied to very
few traces, so it is difficult to say whether the manual or PCA based method is
better. Also, the main difference between spikes is in the amplitude, which is easy
to measure. But overall our judgment at this moment is in favor of the PCA. It is
a well established technique, which produces pictures suitable as input for cluster
analysis. Results of the manual method are less clear.

The third goal was to distinguish spike trains according to three types. This was
discussed in Section 2.3. The main problem was to determine spike trains with
certain characteristic time spacings and determine their duration. The difficulty
lies in the fact that different spike trains may overlap. In Section 2.3.1 classical
autocorrelation was applied, whereas in Section 2.3.2 another approach, the so-
called interspike interval histogram (IIH) was considered. In Section 2.3.3 the two
techniques were connected. Since the two techniques are essentially equivalent
they share the same advantages and disadvantages, except for their computational
complexity which is yet unsettled. For overlap free spike trains and artificial data
the two methods are transparent and appear to work well. The case of overlapping
spike trains needs to examined further before conclusions can be drawn.

To deal with the fact that the intervals between two consequitive firings of a neu-
ron will only be approximately the same in Section 2.3.4 the concept of approximate
regularity was introduced.
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