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Abstract

We study a surveillance wireless sensor network (SWSN) comprised of
small and low-cost sensors deployed in a region in order to detect objects
crossing the field of interest. In the present paper, we address two problems
concerning the design and performance of an SWSN: optimal sensor place-
ment and algorithms for object detection in the presence of false alarms. For
both problems, we propose explicit decision rules and efficient algorithmic
solutions. Further, we provide several numerical examples and present a sim-
ulation model that combines our placement and detection methods.

Keywords: sensor deployment, detection probability, overlap, hypothesis test-
ing, Bayesian approach, hidden Markov models, Viterbi algorithm, simula-
tions.

5.1 Introduction

An important class of wireless sensor networks (WSN) is the WSNs comprised of
small and low-cost sensors with limited computational and communication power [1].
Sensors are deployed in a region, they wake up, organize themselves as a network,
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and start sensing the area. The objective of the sensors is sensing the environ-
ment and communicating the information to a data collection center. Many types of
employment are envisaged for WSNs ranging from the monitoring of endangered
animal populations to military surveillance or the surveillance of critical infrastruc-
tures [12], archaeological sites [2], perimeters, or country borders [10]. The tasks
of a surveillance wireless sensor network (SWSN) is to detect objects crossing the
field of interest. The sensors monitor the environment and send reports to a central
control unit. The major requirement of a surveillance application is that the SWSN
is to monitor the environment with a certain quality for a specific period of time.
Important issues in designing an SWSN are the deployment decisions such as the
sensing range of sensor nodes and density of the SWSN, and deployment strategy
(random, regular, planned, et cetera.) to be applied [10].

Different types of sensors may have to be utilized in a WSN to address the prob-
lem at hand. For outdoor surveillance systems, radar, microwave, ultrasonic and/or
infrared sensors are typical. To analyze the detection performance of the sensors
or the surveillance systems, a common measure such as the single-sensor detection
probability p may be utilized since it allows to abstract the different working prin-
ciples of the sensors. The factors that affect p are the object-to-sensor distance, en-
vironmental characteristics, the size and the motion pattern of the object, et cetera.
Moreover, He et al. [7, 8] showed that sensors produce a non-negligible amount
of false alarms. The false alarms are defined as positive reports of a sensor when
no object exists. Each sensor may produce a false alarm with a certain probability
q. If data/decision fusion [5] is allowed, then the false alarm probability q nega-
tively affects the detection performance of the network. The cost of false alarms
varies depending on the application. For example, it is lower in a home surveillance
system when compared to the cost of false alarms in a surveillance application of
mission-critical infrastructure such as a nuclear reactor. Hence, the objective of an
upstanding SWSN design is to maximize the detection probability of the system
while minimizing or bounding the false alarm rate of the system. To this end, in
the present paper, we study two problems concerning the design and performance
of an SWSN: optimal sensor placement and algorithms for intruder detection in the
presence of false alarms. Our main performance characteristics of the SWSN are
the system’s intruder detection probability and false alarm probability, for given in-
put parameters p and q representing single-sensor probabilities. The problem of
correctly communicating the reports of the sensors to the central control unit (with
possibly additional failure probabilities) is beyond the scope of the present study. It
has been studied elsewhere, among others in a previous study group Mathematics
with Industry [9]. Therefore, we will assume perfect communication of the reports.

The sensor placement problem addressed in this work is formulated as follows:
given a limited number of homogeneous sensors with an effective sensing range
r and a field of interest modelled as a one- or two-dimensional area, determine
the optimal location of the sensors that maximizes the detection performance of
the SWSN. In Section 5.2.1, we study the trade-off involved in overlapping sensor
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5.1 Introduction

ranges. If the number of sensors is limited then, clearly, overlaps decrease the total
sensing part of the area but increase the detection performance in the overlap of two
or more sensor ranges. We give an explicit condition when overlap in sensor ranges
leads to better detection performance of the system. Next, in Section 5.2.2 we pro-
pose an algorithm for efficient coverage of a 2-D area, based on a priori knowledge
on the probability distribution of the intruder position. When the distribution of
an object’s location in the area is uniform, our algorithm performs closely to the
optimal hexagonal placement.

Given a particular layout of the sensors, the probability of intruder detection and
the false alarm probability of the network depend on the decision rule that prescribes
in which situation an intrusion alarm has to be reported, based on observations
from all deployed sensors. For instance, if we have two completely overlapping
sensors and report an intrusion alarm only if both sensors signal an intruder, then
the intruder detection probability of the SWSN is p2 and the false alarm probability
is q2. The problem is to determine a decision rule for reporting an intrusion alarm
such that the detection performance of the network is maximized. In Section 5.3
we attempt to resolve this problem by statistical methods. Our main conclusion is
that several observations of the same object are absolutely necessary to report an
intrusion alarm with a reasonable confidence. However, multiple observations will
result in a huge variety of observed patterns. Which patterns signal the intruder and
which are caused by false alarms only? This question is tackled in Section 5.4 where
we design a procedure for intruder detection, based on hidden Markov models and
the Viterbi algorithm.

Finally, in Section 5.5 we present a simulation model that combines our place-
ment and detection methods. Using this model, we characterize the detection per-
formance in several configurations of a detection area.

Throughout the paper, we use the following notations:

• p – single-sensor detection probability, the probability that a sensor signals
an object given that the object is present in the sensing range (assumed to be
a circle, or sphere);

• q – the single-sensor false alarm probability, the probability that a sensor
signals an intruder given that there is no intruder in the sensing range;

• r – sensing radius of a sensor;

Further, a random variable X ∈ {0, 1} is an indicator of the event that an object is
present in the sensing range of a sensor, and a random variable Y ∈ {0, 1} is an
indicator of the event that a sensor gives an alarm. We will also assume that the
alarm events of individual sensors are mutually independent when conditioned on
the absence or presence of the object.
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5.2 Optimal coverage of the area

In this section we study the problem of optimal sensor placement, or sensor deploy-
ment, formulated as follows. Consider an area where a number of sensors are to be
deployed, and assume that there is an object in the area. We define as pdetection the
probability that at least one sensor correctly detects the object. The goal is to find a
sensor deployment maximizing pdetection. In order to compute pdetection, throughout
the section we assume an a priori statistical knowledge on the object position.

One natural solution to this problem is to maximize the coverage of the observed
area for a given number of sensors, or, equivalently, minimize the number of sensors
employed while covering the complete area. If each sensor has a range with radius
r , then we model the sensing area as a circle of radius r with a center at the sensor
location. Thus, the question of minimizing the number of sensors while covering
the complete area is equivalent to the so-called covering problem in two dimensions:
cover a given area completely with the least amount of circles with a given fixed
radius. This problem (and many others like the packing and kissing problems)
is solved by using the hexagonal lattice, defined as the set of points λv + µw,
λ, µ ∈ Z, where v = (1, 0) and w = (1/2,

√
3/2) are the vectors spanning the

lattice. To cover an area with circles of radius r , the vectors v, w must be scaled
by a factor r

√
3. In the asymptotic limit, with a large area covered by sensors and

with negligible boundary effects, the sum of the sensor ranges is 1.209 times the
covered area, meaning that about 20.9% of the area is covered by two sensors and
the remainder by one sensor. For further details, see [4]. An example of 7 sensors
placed by using the hexagonal lattice and completely covering a rectangular area
is given in Figure 5.1. An example of hexagonal placement of 105 sensors with
non-covered gaps in between is given in Figure 5.3.

Figure 5.1: Rectangular area covered by seven sensors placed by using a hexagonal
lattice.
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Intuitively, a sensor placement with minimal overlapping or without overlapping
must be optimal if the distribution of the object’s position is uniform. Below in
Section 5.2.1 we show that this is often the case also for non-uniform distributions,
and in Section 5.2.2 we propose a procedure for close-to-optimal sensor placement.

5.2.1 Optimal allocation of two sensors

Does it make sense to let two sensors overlap? Having some overlap might be
reasonable if we want a better detection in most vulnerable regions. However, if
the number of sensors is limited then overlaps reduce the total coverage. In order to
resolve this trade-off, we consider the following simplemodel. We restrict ourselves
to a one-dimensional area, which constitutes an interval of length two, and a pair of
sensors with r = 1/2. For each of the two sensors, the detection probability is p
and the probability of a false alarm is q. The question is how to place these sensors
so that the detection probability pdetection is maximized.
Formally, let S = [0, 2] be the area under surveillance. Denote by x1 the leftmost

point of the first sensor’s coverage and by x2 the leftmost point of the second sen-
sor’s coverage. Thus, the first sensor covers the segment S1 = [x1, x1 + 1] and the
second one covers the segment S2 = [x2, x2+1], where x1 ∈ [0, 1] and x2 ∈ [x1, 1],
as shown in Figure 5.2.

0 2
x1

S1

x2 S2

Figure 5.2: Partial overlapping of two sensors.

Now assume that the intruder location L has a distribution P(L ≤ x) = F(x),
x ∈ [0, 2]. Then in the doubly covered segment S1 ∩ S2 the detection probability
by the two-sensor system is p2 + 2p(1− p), and the object is in this segment with
probability F(x1 + 1) − F(x2). In the singly covered segment (S1 ∪ S2) \ (S1 ∩ S2)
detection probability is p, and the object is there with probability F(x2 + 1) −
F(x1 + 1) + F(x2) − F(x1). Finally, in the remaining uncovered part S \ (S1 ∪ S2)
the detection probability is 0.
Rearranging the terms, we can formulate the problem of maximizing the detec-

tion probability pdetection as follows:

max
x1,x2

{pdetection(x1, x2)} (5.1)

= max
x1,x2

{p (F(x2 + 1) − F(x1)) + p(1− p) (F(x1 + 1) − F(x2))}.

In general, in order to find an optimal pair (x1, x2) we need exact knowledge of
F(x). However, as a direct consequence of (5.1), we can provide the following
particular decision rule.
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Lemma 5.2.1 (No-overlap principle). It is optimal to allocate sensors without
overlapping, if

1− p ≤
f (x)

f (x + 1)
≤

1

1− p

for every x ∈ [0, 1], where f (x) = d F(x)
dx is the probability density function of the

object location.

Proof. By differentiating the expression to be maximized in (5.1), we show that
it decreases in x1, if f (x1)/ f (x1 + 1) ≥ 1 − p, for every x1 ∈ [0, 1]. In this
case, 0 is the optimal value for x1. Similarly, this expression increases in x2 if
f (x2)/ f (x2 + 1) ≤ 1/(1− p) for x2 ∈ [0, 1], which sets 1 as the optimal value for
x2.

The no-overlap principle indicates that it is optimal to maximize the coverage
if the distribution of the intruder’s position is sufficiently close to uniform. We
illustrate the no-overlap principle by means of two examples, namely one example
where the principle is applicable, and another where it is not.

Example 5.2.2. Assume that the intruder’s entering position has uniform distribu-
tion, i.e., f (x) = 1/2, for every x ∈ [0, 2]. In this case our decision rule says that
it is optimal to avoid any overlapping.

Example 5.2.3. Assume that the intruder’s position has a linear density function,
e.g., f (x) = x/2, for every x ∈ [0, 2]. The no-overlap rule cannot give us an
unambiguous answer in this case. By solving (5.1), we obtain a more sophisticated
joint sensor’s allocation:

x1 = min

�
1− p

p
, 1

�

and x2 = 1.

5.2.2 Sensor deployment in a 2-D area

Let N ∈ N, and let X ⊆ {1, . . . , N } × {1, . . . , N } be a two-dimensional discrete
grid. Further, for all x ∈ X , let f (x) be the probability that an object is at position x,
provided that there is an object in the area. As before, r is an effective sensing
range of a sensor, and p is the detection probability of one sensor. Our objective is
to provide an algorithm which finds the ‘optimal’ deployment of sensors in X , so
that the probability to miss the object is decreased as much as possible. Note that
the problem now is discretized by allowing only placements on some pre-specified
points.
We say that a sensor is deployed at position y ∈ X if y is the center of the sensor’s

sensing range. Further, a tuple �y = (y1, . . . , yn) ∈ X n (n ∈ N ∪ {0}) is called a
deployment of size n, if n sensors are deployed at positions y1, . . . , yn. We use ∅
for the empty deployment.
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Now, for x ∈ X , n ∈ N and �y = (y1, . . . , yn) ∈ X n, define g(�y | x) to be
the probability that an intruder is not detected by any of the sensors deployed at
positions y1, . . . , yn provided that the intruder’s position is x. Further, denote by
pmissed(�y) the probability that none of the sensors of the deployment �y detects the
intruder. Then, given that there is an intruder in the area, we obtain:

pmissed(�y) =
�

x∈X

f (x)g(�y | x), for �y = (y1, . . . , yn) ∈ X n, n ∈ N. (5.2)

One can compute pmissed((y1, . . . , ym)) for all m ∈ {1, . . . , n} iteratively as follows.
First, note that, naturally, g(∅ | x) = 1 for all x ∈ X , and thus

pmissed(∅) =
�

x∈X

f (x)g(∅ | x) =
�

x∈X

f (x) = 1.

Next, let d : X ×X → R be the Euclidean distance function. Take m ∈ {1, . . . , n},
x ∈ X and consider a deployment (y1, . . . , ym) of size m. Since the sensors are
independent, we get

g((y1, . . . , ym) | x) = g((ym) | x)g((y1, . . . , ym−1) | x)

=

�
g((y1, . . . , ym−1) | x) if d(x, ym) > r
(1− p)g((y1, . . . , ym−1) | x) if d(x, ym) ≤ r .

(5.3)

Now, given the deployment (y1, . . . , ym−1), the probability

pmissed((y1, . . . , ym−1, ym))

can be computed using (5.2) and (5.3).
Using the described iterative approach, we can now address two (closely related)

optimization problems: Minimum Size Deployment (MSD) and Minimum Proba-
bility Deployment (MPD).

• MSD: Given β ∈ [0, 1], find a deployment �y of minimal size such that
pmissed(�y) ≤ β.

• MPD: Given n ∈ N, find a deployment �y of size n such that pmissed(�y) is
minimal.

We provide a heuristic algorithm described below, which can be used for both prob-
lems. The only difference is in the stopping criterion. In the main iterative step
of the algorithm, a sensor is added to the deployment in such a way that the non-
detection probability pmissed(·) is minimized (in case of a tie, the algorithm sticks to
the candidate deployment that has been found first). This implies that the algorithm
will find a ‘locally optimal’ solution, not necessarily the globally optimal one.
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The heuristic algorithm

Input:

• MSD: β ∈ [0, 1];

• MPD: n ∈ N.

Initialization: m := 0.

Iterative Step:

ym+1 := argmin
y∈X

pmissed((y1, . . . , ym, y))

= argmin
y∈X

�

x∈X

f (x)g((y1, . . . , ym, y) | x),

where g((y1, . . . , ym, y) | x) is computed by (5.3) for all x ∈ X ;

m := m + 1.

Termination:

• MSD: pmissed((y1, . . . , ym)) ≤ β, then STOP;

• MPD: m = n, then STOP.

Output: �y := (y1, . . . , ym).

Note that there is a strong connection between the proposed algorithm and the
no-overlap principle (see Lemma 5.2.1). Indeed, (3) says that the deployment of a
new sensor at a position y reduces the non-detection probability f (x)g(�y|x) by a
factor 1− p for all x such that d(x, y) ≤ r . Since, ideally, we would like to reduce
the highest values of f (x)g(�y|x), the equivalent formulation of the iterative step is
as follows:

ym+1 := argmax
y∈X

�

x:d(x,y)≤r

f (x)g((y1, . . . , ym) | x). (5.4)

Now assume that we have deployed two sensors, and our algorithm allowed an
overlap. Denote the sensing range of sensor i = 1, 2 by Si . Then, since (5.4) holds
for the deployment of sensor 2, it follows that

�

x∈S1∩S2

(1− p) f (x) +
�

x∈S2\S1

f (x) ≥
�

x∈S

f (x)
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Figure 5.3: The hexagonal deployment of 105 sensors.

for any possible sensor range S in the area that does not overlap with S1. (Otherwise,
S could have been chosen instead of S2.) Since the density in the first term of the
left-hand side is taken with the factor 1 − p we see that for the inequality to hold,
the values of f (x) in S1 ∩ S2 and/or in S2\S1 should be considerably larger than in
their neighborhoods. This can be seen as the condition of the no-overlap principle,
applied in two dimensions: overlap is possible only if there exist positions x such
that the density f (·) varies considerably (by a factor of 1− p) within a sensor range
of a sensor deployed in x.
In case two positions y would reduce the maximum non-detection probability

by the same amount, we can break the tie arbitrarily, e.g. by using the first such
position encountered, or by doing this randomly. The actual tie-breaking procedure
does not matter too much on a global scale, because in the next iteration it is most
likely that the other position will be chosen, except if the two positions are close
(within a distance 2r). Locally, there may occur significant effects of tie-breaking.
We did not study this, but this topic warrants further investigation.
We have implemented the proposed algorithm inMathematica. Below we present

two examples of the deployment which is the output of our algorithm. Another
example will be given in Section 5.5.

Example 5.2.4. Suppose X = {1, . . . , 200} × {1, . . . , 195}, p = 0.9 and r = 10.
Moreover, suppose that f is the uniform distribution. We can construct a hexagonal
deployment of 105 sensors in X such that an intruder cannot be within the range
of two different sensors (see Figure 5.3). It is easy to see that this deployment is
optimal for the given number of sensors, and a simple calculation shows that the
non-detection probability of this deployment is 0.255. Deploying the 105 sensors
according to our algorithm leads to the deployment shown in Figure 5.4. The non-
detection probability of this deployment is 0.267 which is close to the non-detection
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Figure 5.4: Deployment of 105 sensors according to the MPD algorithm: uniform
distribution of the object location.

probability of the optimal hexagonal deployment.

Example 5.2.5. Suppose X = {0, . . . , 100} × {0, . . . , 100}, p = 0.8 and r = 10.
Moreover, define σ = 25 and define rx as the distance of x to the north-east axis

(the line y = x) of X for each x ∈ X . Now suppose that f (x) = ce−
1
2 (

rx
σ )2 for all

x ∈ X , where c is the normalization constant making f a probability distribution
on X . In other words, the signed distance between the intruder’s position and the
north-east axis of X follows a discrete version of the normal distribution with mean
0 and standard deviation σ = 25. Here, the sign is positive for positions above the
line, and negative for those below.
Having 200 sensors at our disposal, applying our algorithm leads to the deploy-

ment in Figure 5.5. As one would expect, the density of the sensor deployment
increases when approaching the north-east axis. Moreover, a simple calculation
shows that the non-detection probability of this deployment is 0.066.

We conclude that our heuristic algorithm can be used to find deployments which
result in a good detection probability and are in line with the analytical results from
Section 5.2.1. In particular, in the case of a uniform a priori probability distribution
of the intruder position we found a nearly optimal solution.

5.3 Statistical methods for intruder detection

Optimal sensor deployment studied in the previous section is important for increas-
ing the overall detection probability, that is, the number of true alarms produced by
the system. However, since the false alarm probability q can be high in practice
(e.g. q can be about 2%, which already has a considerable impact), sensor networks
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Figure 5.5: Deployment of 200 sensors according to the MPD algorithm: normal
distribution of the signed distance between the object location and the
north-east axis.

may even produce multiple false alarms at each moment in time. Still, the pres-
ence of an intruder increases the number of alarms, and after several observations
one should be able to recognize an intrusion and report an alarm. To this end, we
present in this section two statistical methods for intruder detection: one is based
on classical hypothesis testing, and the other employs a Bayesian approach.
The hypothesis testing approach in Section 5.3.1 provides a decision making tool

for reporting an intrusion alarm after a single observation of n identical sensors.
In practice, false alarm reports are highly undesirable. Therefore, we bound the
probability of a false report by choosing a high confidence level of the test. This
sometimes leads to a poor performance of the test in a sense that with high proba-
bility, after one observation of n sensors, an object will stay undetected. In practice,
however, this is not a big problem because there is usually enough time to produce
several observations, not necessarily by the same sensor. Then the probability of
the intruder’s presence can be updated after each observation, for instance, using
the Bayesian approach described in Section 5.3.2.
The Bayesian approach allows for great flexibility, because, along with the total

number of alarms, it also takes into account the locations of the alarms. Therefore,
in Section 5.3.2 we analyze a more general model than in Section 5.3.1. Specifically,
we consider several non-overlapping parts of the coverage area, each deploying
a number of completely overlapping sensors. Furthermore, we let the intrusion
probabilities, as well as the detection and false alarm probabilities, depend on the
sensor location. The motivation for this model is that although identical sensors
will usually cover parts of the intrusion area with roughly equal sizes, the terrain
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in which the sensors are placed may vary, e.g. in altitude, which can influence the
local intrusion probabilities and the performance of the sensors.

5.3.1 Hypothesis testing for intruder detection

In the following, we consider the two extreme cases:

• Case I: n sensors, all at the same position; i.e. with identical sensing range;

• Case II: n non-overlapping sensors.

If there is an object in the area, then Case I is the case in which all sensors follow
the same Bernoulli distribution with parameter p and Case II is the case that one of
the sensors detects the object with probability p and each of the remaining sensors
detect the object with probability q.
Assume that there can be at most one object in the area. Within the hypothesis

testing formulation, we test the null-hypothesis that there is no intruder in the area
against the alternative that the area is penetrated. If a critical number of alarms
is observed then we reject the null-hypothesis and report an intrusion alarm. For
i = 1, . . . , n let [Yi = 1] be the event that sensor i detects an object and [Yi = 0] be
the complementary event. Assuming that there is an intruder in the range of sensor
i , we have P(Yi = 1) = p.
Consider Case I: n sensors deployed at the same position with 100% overlap.

Thus, our hypothesis testing formulation is as follows:

Case I:

�
H0 : P(Yi = 1) = q for all i = 1, . . . , n,

H1 : P(Yi = 1) = p for all i = 1, . . . , n.

In Case II, the sensors are not overlapping. Thus, the object can penetrate the
range of at most one sensor. This leads to the following formalization:

Case II:






H0 : P(Yi = 1) = q for all i = 1, . . . , n,

H1 : P(Y j = 1) = p for exactly one j = 1, . . . , n;
P(Yi = 1) = q for i = 1, . . . , n, i �= j.

In both cases, as a statistic, we use the stochastic variable T = Y1 + · · ·+ Yn, the
number of alarms produced by the system. We reject H0 if and only if T ≥ c, for
some critical c > 0. Clearly, under H0, T has a Binomial(n, q) distribution. Denote
the Binomial density function with parameters n and p at k by Bn,p(k):

Bn,p(k) =

�
n

k

�

pk(1− p)n−k . (5.5)

In our test, two types of errors can be made: false positives and false negatives (in
statistical terms, type-one and type-two error, respectively). A false positive means
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n 3 4 5 6 7 8 9 10
q
0.02 1 1 1 1 1 1 1 1
0.04 1 1 1 1 1 1 1 2
0.06 1 1 1 1 2 2 2 2
0.08 1 1 2 2 2 2 2 2
0.10 1 2 2 2 2 2 3 3
0.12 1 2 2 2 2 3 3 3
0.14 2 2 2 2 3 3 3 3
0.16 2 2 2 3 3 3 3 4
0.18 2 2 2 3 3 3 4 4
0.20 2 2 3 3 3 4 4 4

Table 5.1: Critical number of alarms c for Cases I and II.

a false report, i.e., an intruder alarm is reported while there is no object in the area.
In both Cases I and II, one has

pfalse = P(false positive) = PH0(T ≥ c) =

n�

k=c

Bn,q(k).

We choose c in such a way that the above probability does not exceed an acceptable
frequency of false alarm reports. A false negative means that an intruder is missed
by the system, i.e., the intrusion alarm will not be reported while there was an object
in the area. For Case I, we get

pI
missed = P(false negative) = PH1(T < c) =

c−1�

k=0

Bn,p(k),

and for Case II, we obtain

pI I
missed = P(false negative) = p

c−2�

k=0

Bn−1,q(k) + (1− p)

c−1�

k=0

Bn−1,q(k).

In this setting, the detection probability pdetection of the system is equal to the power
of the statistical test, i.e.,

pdetection = 1− P(false negative).

We select some values for p and q and calculate corresponding values of c and
pdetection so that pfalse ≤ 0.05. In Tables 5.1 and 5.2 we present the values of c for
Cases I and II. Table 5.3 gives the values of pdetection for Case I, whereas Tables 5.4
and 5.5 give the values for Case II. In all the tables, the single-sensor detection
probability is fixed at p = 0.9. The values of c used in Tables 5.3–5.5 are chosen
according to the results of Tables 5.1 and 5.2.
As we see in Case I, pdetection is very high. This is not surprising because in

fact, in this case we have to distinguish between Binomial(n, p) and Binomial(n, q)
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n 15 30 45 60 75 90 105 120 135 150
q
0.02 1 2 3 3 4 4 5 5 6 6
0.04 2 3 4 5 6 7 8 9 9 10
0.06 3 4 6 7 8 9 11 12 13 14
0.08 3 5 7 8 10 12 13 15 16 18
0.10 4 6 8 10 12 14 16 18 19 21
0.12 4 7 9 12 14 16 18 20 23 25
0.14 4 7 10 13 16 18 21 23 26 28
0.16 5 8 11 14 17 20 23 26 29 32
0.18 5 9 12 16 19 22 26 29 32 35
0.20 6 10 14 17 21 24 28 31 35 38

Table 5.2: Critical number of alarms c for Cases I and II.

n 3 4 5 6 7 8 9 10
q
0.02 0.9990 0.9999 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.04 0.9990 0.9999 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.06 0.9990 0.9999 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.08 0.9990 0.9999 0.9995 0.9999 1.0000 1.0000 1.0000 1.0000
0.10 0.9990 0.9963 0.9995 0.9999 1.0000 1.0000 1.0000 1.0000
0.12 0.9990 0.9963 0.9995 0.9999 1.0000 1.0000 1.0000 1.0000
0.14 0.9720 0.9963 0.9995 0.9999 0.9998 1.0000 1.0000 1.0000
0.16 0.9720 0.9963 0.9995 0.9987 0.9998 1.0000 1.0000 1.0000
0.18 0.9720 0.9963 0.9995 0.9987 0.9998 1.0000 0.9999 1.0000
0.20 0.9720 0.9963 0.9914 0.9987 0.9998 0.9996 0.9999 1.0000

Table 5.3: Values of pdetection for Case I; p = 0.9.

n 3 4 5 6 7 8 9 10
q
0.02 0.9000 0.9001 0.9002 0.9004 0.9006 0.9008 0.9010 0.9013
0.04 0.9002 0.9005 0.9009 0.9015 0.9022 0.9029 0.9038 0.2772
0.06 0.9004 0.9010 0.9020 0.9032 0.2795 0.3170 0.3524 0.3857
0.08 0.9006 0.9018 0.2554 0.3073 0.3551 0.3993 0.4402 0.4780
0.10 0.9010 0.2440 0.3099 0.3694 0.4233 0.4721 0.1687 0.2035
0.12 0.9014 0.2868 0.3609 0.4265 0.4846 0.1816 0.2242 0.2672
0.14 0.2344 0.3278 0.4087 0.4788 0.1807 0.2310 0.2817 0.3318
0.16 0.2650 0.3670 0.4534 0.1654 0.2232 0.2818 0.3396 0.1473
0.18 0.2948 0.4044 0.4951 0.2006 0.2672 0.3332 0.1454 0.1907
0.20 0.3240 0.4400 0.1629 0.2371 0.3119 0.1337 0.1838 0.2376

Table 5.4: Values of pdetection for Case II; p = 0.9.

n 15 30 45 60 75 90 105 120 135 150
q
0.02 0.9031 0.4010 0.1989 0.3008 0.1680 0.2404 0.1421 0.1975 0.1208 0.1648
0.04 0.3935 0.2944 0.2346 0.1922 0.1599 0.1344 0.1138 0.0968 0.1569 0.1337
0.06 0.1841 0.2288 0.1114 0.1298 0.1429 0.1526 0.0876 0.0945 0.1004 0.1053
0.08 0.2811 0.1813 0.1252 0.1759 0.1255 0.0909 0.1183 0.0875 0.1094 0.0822
0.10 0.1434 0.1448 0.1339 0.1213 0.1091 0.0980 0.0879 0.0789 0.1135 0.1009
0.12 0.2103 0.1157 0.1393 0.0836 0.0943 0.1020 0.1077 0.1117 0.0741 0.0772
0.14 0.2836 0.1952 0.1424 0.1065 0.0810 0.1040 0.0798 0.0971 0.0754 0.0891
0.16 0.1583 0.1567 0.1438 0.1297 0.1164 0.1044 0.0935 0.0839 0.0753 0.0677
0.18 0.2143 0.1253 0.1440 0.0908 0.0987 0.1036 0.0691 0.0722 0.0743 0.0756
0.20 0.1180 0.0995 0.0792 0.1084 0.0833 0.1020 0.0790 0.0925 0.0725 0.0828

Table 5.5: Values of pdetection for Case II; p = 0.9.
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distributions. This can be done with a good precision because of a large difference
between p and q. For instance, for 10 sensors, p = 0.9, q = 0.02, and c = 5, the
probability pdetection is 0.9999 while pfalse is as small as 7.4× 10−7.

In Case II, pdetection is low except for the cases when c = 1, that is, a detection
signal of one sensor already triggers an intrusion alarm. The value c > 1 is obtained
when the probability of just one alarm is reasonably high even if there is no intruder
in the area. Effectively, c > 1 means that at least c − 1 false alarms are needed to
detect the intruder. This is an undesirable result, which explains, in particular, the
low power of the test. We conclude that in Case II one observation is simply not
enough for efficient intruder detection, because in this case the observations with
and without the intruder differ by at most one signal, which is difficult to reveal by
classical hypothesis testing. One either has to make sensors overlap (as in Case I)
or use several observations in a row. The latter can be done in several ways, for
instance, one can use the Viterbi algorithm as in Section 5.4.

5.3.2 Bayesian approach for intruder detection

Consider Case II from the previous section, where n ∈ N different sensors are
placed in such a way that the sensing ranges of different sensors do not overlap.
Let X ∈ {0, 1} denote the number of intruders present, with P(X = 1) = α an
a priori probability of the intruder being present in the area. As before, let T be
the stochastic variable denoting the total number of single-sensor alarms given at a
particular time instant, so T ∈ {0, 1, . . . , n}. We have

P(X = 0 | T = k)

=
P(T = k | X = 0)P(X = 0)

P(T = k | X = 0)P(X = 0) + P(T = k | X = 1)P(X = 1)
.

Let F be the (unobservable) number of false alarms among the T . Then for all
k ≥ 0 we obtain

P(T = k | X = 1) = P(T = k, F = k − 1 | X = 1)

+ P(T = k, F = k | X = 1)

= pBn−1,q(k − 1) + (1− p)Bn−1,q(k)

= Bn,q(k)
�

kp
nq + (n−k)(1−p)

n(1−q)

�
,

P(T = k | X = 0) = Bn,q(k).
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Hence, the a posteriori probability of the presence of an object is

P(X = 1 | T = k)

= 1−
P(T = k | X = 0)P(X = 0)

P(T = k | X = 0)P(X = 0) + P(T = k | X = 1)P(X = 1)

= 1−
1

1+ P(T =k|X=1)P(X=1)
P(T =k|X=0)P(X=0)

= 1−
�
1+ α

1−α

�
kp
nq + (n−k)(1−p)

n(1−q)

��−1
. (5.6)

This formula can be generalized to the case combining Cases I and II from Sec-
tion 5.3.1 as follows. Assume n non-overlapping ranges. Range i = 1, . . . , n con-
tains mi ∈ N completely overlapping sensors. Let Ti ∈ {0, . . . , mi } be the number
of alarms for range i and denote �T = (T1, . . . , Tn).

The stochastic variables Xi ∈ {0, 1}, i = 1, . . . , n, indicating the presence of an
object in range i , have a priori probabilities P(Xi = 1) = αi i.e., we allow certain
parts of the area to have a higher a priori probability for intrusion than others. Also,
we allow the detection and false alarm probabilities to depend on the sensor range;
we use pi and qi to denote these respectively.

Since we assume that there can be at most one intruder at any given time instant,
the vector �X = (X1, . . . , Xn) can attain values in the set {e j : j = 0, . . . , n} where
e j is the j th unit vector in R

n and e0 the zero vector in that space. We will use the
notationN = {0, 1, . . . , n}. We then calculate

P( �X = e j | �T = �k)

=
P( �T = �k | �X = e j )P( �X = e j )

P( �T = �k | �X = e j )P( �X = e j ) + P( �T = �k | �X �= e j )P( �X �= e j )

=
P( �T = �k | �X = e j )P( �X = e j )

P( �T = �k | �X = e j )P( �X = e j ) +
�

s∈N \{j} P( �T = �k | �X = es)P( �X = es)
.

Further, we immediately have for j > 0 that

P( �T = �k | �X = e j ) = Bm j ,p j (k j )
�

i∈N \{j}

Bmi ,qi (ki ). (5.7)

If we define m0 = k0 = 0, this formula also holds for j = 0. Furthermore, if we
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define α0 = 1−
�

i∈N \{0} αi , we can state

P( �X = e j | �T = �k)

=
P( �T =�k| �X=e j )P( �X=e j )

P( �T=�k| �X=e j )P( �X=e j )+
�

s∈N \{j} P( �T =�k| �X=es )P( �X=es )

=

�

1+
�

s∈N \{j} P( �T =�k| �X=es )P( �X=es)

P( �T =�k| �X=e j )P( �X=e j )

�−1

=

�

1+
�

s∈N \{j} αs Bms ,ps (ks)
�

i∈N \{s} Bmi ,qi (ki )

α j Bm j ,p j (k j )
�

v∈N \{j} Bmv ,qv (kv )

�−1

=



1+
�

s∈N \{j}

αs
α j

(
ps
qs

)ks (
1−ps
1−qs

)ms−ks (
p j

q j
)−k j (

1−p j

1−q j
)−(m j−k j )





−1

=

�
�

s∈N

αs
α j

(
ps
qs

)ks (
1−ps
1−qs

)ms−ks (
p j

q j
)−k j (

1−p j

1−q j
)−(m j −k j )

�−1

=
α j (

p j

q j
)k j (

1−p j

1−q j
)m j−k j

�
s∈N αs(

ps
qs

)ks (
1−ps
1−qs

)ms−ks
. (5.8)

For j = 0, we thus find

P( �X = e0 | �T = �k) =
1−

�
i∈N \{0} αi

1−
�

i∈N \{0} αi +
�

s∈N \{0} αs(
ps
qs

)ks (1−ps
1−qs

)ms−ks
,

so the conditional probability of an intruder given the observed area alarms vector
�T equals

P( �X �= e0 | �T = �k) = 1− P( �X = e0 | �T = �k)

= 1−

�

1+

�
s∈N \{0} αs(

ps
qs

)ks (
1−ps
1−qs

)ms−ks

1−
�

i∈N \{0} αi

�−1

.

Notice that the Case II treated in Section 5.3.1 corresponds to

pi = p, qi = q, mi = 1, αi = α/n,

for all i ∈ N and we then find back our earlier formula (5.6) for the conditional
probability of an intrusion.
In the case where we use only one time instant to observe the alarms, it seems

natural to conclude that an intruder is present whenever

A(�k) = P( �X �= e0 | �T = �k) = 1−

�

1+

�
s∈N \{0} αs(

ps
qs

)ks (
1−ps
1−qs

)ms−ks

1−
�

i∈N \{0} αi

�−1

(5.9)
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satisfies A(�k) ≥ γ for some critical threshold γ , where e.g. we can choose γ ∈
(0.5, 1), which means that we raise an alarm whenever the conditional probability
of an intruder is sufficiently larger than the conditional probability that there is no
intruder. The probability of a false intrusion alarm then becomes

pfalse = P( (A( �T ) ≥ γ ) ∧ ( �X = e0) )

=
�

�0≤�k≤ �m

1{A(�k)≥γ } P( �T = �k | �X = e0)P( �X = e0),

where we use the shorthand notation �0 ≤ �k ≤ �m for {�k : 0 ≤ ki ≤ mi , i ∈ N }.
The probability of a missed intrusion is

pmissed = P( (A( �T ) < γ ) ∧ ( �X �= e0) )

=
�

�0≤�k≤ �m

1{A(�k)<γ }

�

j∈N \{0}

P( �T = �k | �X = e j )P( �X = e j ).

By substituting (5.7) and (5.9) in these expressions, we can now calculate explicitly
what the probabilities of a false intrusion alarm or missed intrusion are (based on a
single observation in time) for the given a priori probabilities in �p and �q and a given
sensor configuration vector �m.
We note that the Bayesian approach can be also extended to a sequence of obser-

vations. For instance, the a posteriori probabilities obtained by using (5.8) after the
first observation, can be substituted back into (5.8) instead of α j ’s to recompute the
probabilities of the intruder’s presence after the second observation, and so on.

5.4 Viterbi algorithm for intruder detection

In this section, we present a novel method of using sequential observations for
intruder detection. We model the signals from the sensors as a so-called hidden
Markov model. This is a stochastic process, based on a Markov chain to which
noise is added. Using this representation we can distinguish between the signals
that should have been given off by the sensors, i.e. the ‘true’ state of the system,
and the signals that are actually given off, including the false alarms and missed
detections.
Given a sequence of signals we determine the most likely sequence of true states,

using the so-called Viterbi algorithm. In this way, we decide whether the signals
indicate indeed an intruder, or are only false alarms. From this we derive a decision
rule for when to report an intrusion alarm, thus reducing the number of false reports.
All calculations needed to obtain this rule can be pre-computed.
We outline the proposed method for the case of one sensor. In particular, we

explain the hidden Markov model, and illustrate how, based on a few signals from
the sensor, we decide if an intrusion alarm should be given. We indicate how the
method can be extended to networks of sensors. As the state space, and so the
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number of calculations, increases exponentially with the number of sensors, we
show how to truncate it in a clever way.

5.4.1 A one-sensor model

Consider the case of one sensor, where an object possibly passes by. Assuming a
low speed of the object, the object is in the range of the sensor for multiple time
steps. Let the stochastic process {Xt}t∈IN denote if an object is in the range of the
sensor, where

Xt =

�
1 if an object is in the range of the sensor at time t,
0 otherwise.

So Xt gives the ‘true’ state of the system at time t.
We assume that the process {Xt} is a Markov chain, so the probability law for

Xt+1 only depends on Xt . Denote pi j = P(Xt+1 = j | Xt = i). The speed of
the object and its path through the range of the sensor are modelled in the transition
probabilities. The number of consecutive ones in a Markov chain follows a geomet-
ric distribution, with E(# of steps in sensor range) = 1/p10. We want the stationary
distribution of {Xt}, say X∞, to be such that P(X∞ = 1) = 1− P(X∞ = 0) = α,
the a priori probability that there is an object in the system. This gives the following
transition probability matrix A:

A =

�
1− α

1−α
p10

α
1−α

p10
p10 1− p10

�

.

We take the initial distribution for X0 to be equal to the stationary distribution.
To the process {Xt} we add noise, which consists of false alarms and missed

detections. This gives the process of signals given off by the sensor, say {Yt }t∈IN.
Let

Yt =

�
1 if the sensor gives an alarm at time t,
0 otherwise.

So Yt is the observed state at time t. The noise is such that Yt only depends on Xt , in
an independent and identically distributed (i.i.d.) way. A false alarm occurs when
[Yt = 1] given [Xt = 0], and this happens with probability q. A missed detection
occurs if [Yt = 0] given [Xt = 1], and this happens with probability 1− p.
We now have that the process {Yt } is a hidden Markov model [11]. We can inter-

pret {Yt } as observing {Xt } via a noisy channel. Only the process {Yt } is observed,
while the states of the process {Xt} are not known, i.e. hidden, which explains the
name of this model. The process {Xt} is often referred to as the underlying or hid-
den process. Whereas for a Markov chain it holds that the next state of the process
depends only on the previous state, or a fixed number of previous states, for a hid-
den Markov model the transition probabilities depend on the entire history of the
process.
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5.4.2 The Viterbi algorithm for the one-sensor model

Given a sequence of observed states, say O = {O1, O2, . . . , OL}, the question
now rises, what is the most likely sequence of underlying (‘true’) states, Q =
{Q1, Q2, . . . , QL}. There is an efficient algorithm for solving this problem, called
the Viterbi algorithm [6]. This algorithm, based on dynamic programming, calcu-
lates

max
Q

P(Q | O).

Applying this algorithm we are able to correct false alarms and missed detections
for a given sequence of observations. For example, a single one in between many
zeros is likely to be a false alarm, while a zero in between many ones is probably a
missed detection. If we, for instance, observe the sequence 000111011000 then it is
not surprising that the most likely underlying state sequence is 000111111000, i.e.,
a missed detection is corrected. More important are the corrections of false alarms.
The observed sequence 0001000 will most likely have an underlying sequence of
all zeros, so a false alarm is corrected. In this way, we prevent reporting a false
intrusion alarm. While for these two examples the most likely underlying states are
straightforward to see, the algorithm also helps with cases like 00010100. Here, it is
not immediately clear whether the ones are two false alarms, or the zero in between
represents a missed detection.
Based on the results of this algorithm, we give a decision rule whether or not to

report an intrusion alarm for a given sequence of observations. We illustrate this for
two and for three consecutive observed states, but it can be done for every desired
number of observations. We give an intrusion alarm if the most likely underlying
state sequence contains at least one 1 in it, signifying that in the most likely sce-
nario, an intrusion took place in at least one moment in time. We also calculate the
probability that the underlying state sequence consists of only zeros, given the ob-
servation. One minus this quantity equals the probability that there was an intruder.
The latter is equal to the probability pmissed that the intruder will pass undetected
in case the sequence of all zeros happens to be most likely. All calculations can
be done off-line, resulting in a list of observed states for which an intrusion alarm
should be given.
For the values p = 0.9, q = 0.02, α = 0.01 and E(# of steps in sensor range) =

10, the probabilities for all possible combinations of states are given in Table 5.6
for two and three consecutive observations. For two observations, we only give an
intrusion alarm in case both observations are a 1. With probability 0.9441 this is
indeed the underlying sequence, and the probability that there was no intruder is
about 0.05. Giving no intrusion alarm when the observed sequence contained two
or one zeros turns out to be correct with probabilities 0.9997 and 0.92, respectively.
For three observations, there are four cases for which we give an intrusion alarm.
To improve the probability of correct decisions further, one could make use of more
consecutive observations.
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O Q alarm? P(Q | O) P(Q = �0 | O)

0 0 0 0 No 0.9997 0.9997
0 1 0 0 No 0.9196 0.9196
1 0 0 0 No 0.9196 0.9196
1 1 1 1 Yes 0.9441 0.0512

0 0 0 0 0 0 No 0.9998 0.9998
0 0 1 0 0 0 No 0.9491 0.9491
0 1 0 0 0 0 No 0.9833 0.9833
0 1 1 0 1 1 Yes 0.4016 0.2177
1 0 0 0 0 0 No 0.9491 0.9491
1 0 1 1 1 1 Yes 0.6060 0.3577
1 1 0 1 1 0 Yes 0.4016 0.2177
1 1 1 1 1 1 Yes 0.9936 0.0013

Table 5.6: Hidden Markov Model for the case of one sensor. For each observed
state O the most likely underlying state Q is given.

For this model we have assumed that {Xt} is a Markov chain. The number of
steps in the range of the sensor is geometrically distributed, which models a vari-
able speed and direction of the object. We can improve this by letting {Xt } be a
Markov chain of order k, where the probability law of Xt+1 depends on the last k
states: Xt−k+1, . . . , Xt . This allows us to vary the distribution of the number of
steps in the sensor range. For instance, in this way one can model a deterministic
number of steps. The state space then increases to 2k states, but the problem re-
mains numerically tractable since the calculations for the decision rule need to be
done only once.

5.4.3 A sensor-network model

We can extend this method to networks of several sensors. Consider for instance
the following example with n = 4 non-overlapping sensors as given in Figure 5.6.
Let �X T

t =
�
X1,t , X2,t , X3,t , X4,t

�
, where Xi,t = 1 if there is an intrusion in the

range of sensor i at time t, and Xi,t = 0 otherwise, i = 1, 2, 3, 4; t ≥ 1. Assume
that there is at most one object in the area at any moment in time, so that the state
space of {�Xt} consists of n + 1 = 5 states: the all-zero state and the states where
the object is in the range of one of the n sensors. We assume the process {�Xt} again
to be Markov. The path and the speed of the object are modelled in the transition
probabilities. This can be based on historical data, or on other knowledge about the
system. If the object can remain in the range of one sensor for several time steps,
pii is positive. Here, we assume that the object always enters via sensor 1, and
then continues its path through sensor 2, 3 or 4, or outside the range of any of these
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Figure 5.6: A network with four sensors. Indicated are possible transitions.

sensors. The transition probabilities and the corresponding states are given by

A =









1− α α 0 0 0
1− p1• p11 p12 p13 p14
1− p22 0 p22 0 0
1− p33 0 0 p33 0
1− p44 0 0 0 p44









,

(0, 0, 0, 0)
(1, 0, 0, 0)
(0, 1, 0, 0)
(0, 0, 1, 0)
(0, 0, 0, 1)

with the necessary conditions on the pi j imposed to let A be a stochastic matrix.

Here, p1• =
�4

j=1 p1 j .

The probability law of observing �Yt given �Xt follows a multinomial distribution.
As before, there are four possibilities for the pair (Xi,t , Yi,t ), specifically, P(Yi,t =
1|Xi,t = 0) = q and P(Yi,t = 0|Xi,t = 1) = 1− p.
The state space of {�Yt } now consists of 2n states: each sensor can give an alarm

or not. As the size of the state space grows exponentially with n, already for a
moderately large number of sensors n the problem becomes huge. Because of this,
but moreover because many of these states are very unlikely to occur, we truncate
the state space of {�Yt }. For this, we calculate the number of false alarms, say c, that
has a probability of occurring less than say 0.001:

P(# false alarms > c) < 0.001.

Now we allow only the vectors �Yt in the state space of {�Yt } that are at Hamming
distance ≤ c away from any of the states of { �Xt }, where the Hamming distance
between two zero-one vectors is the number of indices in which they are different.
In this way, we drastically reduce the state space of {�Yt }, making the calculations
more tractable.
We now again have a hidden Markov model, for which we can derive a decision

rule when to give an intrusion alarm in the same way as for the case of one sensor.
We can list all possible sequences of a number of observations of the process {�Yt }.
By the Viterbi algorithm, we calculate the most likely underlying state sequences
of the process {�Xt}. If it contains at least one 1, for such a sequence an intrusion
alarm should be given. By calculating the probability that the underlying states are
only zeros, the probability of making an error is found.
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The hidden Markov model method of the present section can be used in combi-
nation with the heuristic algorithm for placement of sensors presented in Section 2.
One way of doing this to use the Viterbi method to combine the results of multi-
ple single-sensor readings into one result, giving improved values for p and q that
can be used in the placement algorithm. This is done in some of the numerical
experiments of the next section.

5.5 Numerical results

We verify and combine the proposed methods for sensor deployment and intruder
detection using a simulation model of a network consisting of a number of individ-
ual sensors, which perform under uncertainty. The performance of each individual
sensor is characterized by the probability of true detection p and the probability of
false alarm q. As before, we use similar performance measures for characterizing
the performance of the sensor network. Thus, our performance measures are the
probability of true detection of the network pdetection and the probability of a false
intrusion alarm pfalse.
The objective of a surveillance wireless sensor network (SWSN) design is to get

a value pdetection that is as high as possible and a value of pfalse that is as small
as possible. In this study, we explore numerically the possibility of affecting the
values pdetection and pfalse of the sensors by arranging their locations as well as by
exploiting multiple readings. In the numerical experiments, we estimate pdetection
and pfalse for an SWSN. Numerically, these measures are defined as follows:

pdetection =
Ndetection

N
, (5.10)

pfalse =
Nfalse

N
, (5.11)

where Ndetection and Nfalse are the number of true and false detections respectively,
while N is the total number of experiments, with or without the object in the area,
respectively.
The experimental setup is as follows. The presence of an object in the SWSN

is simulated N times, and the intrusion alarm is reported based on the readings of
n individual sensors, according to the criteria of detection, e.g. as in Sections 5.3
and 5.4. Then pdetection is computed by formula (5.10). In this study, N is set to
1000. To account for the variability of the simulation results, we have repeated all
experiments 100 times. The estimate of pdetection is represented by the average of
the results as well as by the standard deviation. The results are also presented as
a histogram, where the x-axis gives the values of the estimates obtained and the
y-axis represents the relative frequency of occurrence of the estimates. The same
experimental setup is used for computing the pfalse of the SWSN by setting the
object to reside outside of the SWSN coverage area for N consecutive times and
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then using (5.11). In all the experiments presented here, the individual sensors are
identical with p = 0.9 and q = 0.02. The other parameters are varied in the
different examples to obtain the most demonstrative results.
To verify that our simulation gives correct estimates of pdetection and pfalse, we

first perform an experiment using a simple sensor network of one sensor but with
two consecutive readings. In this case, as suggested by the Viterbi algorithm from
Section 5.4, the criterion of an intrusion alarm is that the sensor raises an alarm in
two consecutive readings. Since the two readings are independent of each other, we
have pdetection = p2 = 0.81 and pfalse = q2 = 0.0004. The numerical results shown
in Figure 5.7 demonstrate that the numerical method gives accurate estimates.

Figure 5.7: (Left) Estimate of pdetection for one sensor with two consecutive read-
ings. The mean is 0.8093, the standard deviation is 0.0181. (Right)
Estimate of pfalse: the mean of the estimate is 4.4× 10−4 and the stan-
dard deviation is 6.9× 10−4.

In the example above, we have verified that our simulation program gives correct
estimates of pdetection and pfalse. As a next step, in our simulation model we will
combine the results on sensor deployment and intruder detection from the previous
sections to detect a moving target. The area of interest is assumed to be the unit
square, defined by x ∈ [0, 1] and y ∈ [0, 1], where (x, y) represents the location
of a point. We describe the motion of an object using the white noise acceleration
model described e.g. in [3, p. 263]:

xo(tk+1) = xo(tk) + vxdt +
√

dtaxηx(tk), (5.12)

yo(tk+1) = yo(tk) + vydt +
√

dtayηy(tk), (5.13)

where (xo(tk), yo(tk)) represents the object coordinate at time tk, dt the time step, vx

and vy the velocity in the x and y direction, respectively, ax and ay the acceleration
terms, and ηx and ηy the noise terms, which are independent standard-normally
distributed at each time step. The values of vx , vy, ax and ay are all set to 0.01
and dt is equal to 0.1. For illustration, we presented two realizations of the object’s
motion in Figure 5.8.
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5.5 Numerical results

Figure 5.8: Some realizations of the object path used in the experiments; t0 is the
starting point and t1 is the end point.

Now we would like to investigate the impact of sensor deployment. To this end,
consider an SWSN consisting of eight individual sensors. Three different sensor
arrangements are studied. In arrangements A and B, the locations of the sensors are
determined randomly. In arrangement C, the sensors are located according to the
MPD deployment algorithm from Section 5.2.2. Therefore, the sensors in arrange-
ment C are located along a diagonal of the area of interest since these are the most
likely locations of the object. The SWSN arrangements are depicted in Figure 5.9.
The position of the object is depicted by an asterisk and the sensor that gives an
intrusion alarm by a highlighted circle.

In this study, we have computed the pdetection and pfalse of the three sensor net-
works by exploiting the multiple readings by each sensor. Since the sensing ranges
practically do not overlap, we are in the situation of Case II of Section 5.3.1. How-
ever, since each sensor raises an alarm based on the results of k readings according
to the decision rule from Table 5.6, we have to adjust the probabilities p and q to
the detection probability p(k) and the false alarm probability q(k) for k = 1, 2, 3.
Simple calculations give:

p(1) = p, q(1) = q;
p(2) = p2, q(2) = q2;
p(3) = p3 + 3p2(1− p), q(3) = q3 + 3q2(1− q).

According to Table 5.1, the critical value for q = 0.02 is 1, that is the SWSN should
give an intrusion alarm if the alarm is coming from at least one of the sensors. Since
q(2) and q(3) are smaller than q = 0.02 the critical value remains the same if we
use multiple readings from each sensor. Thus, if k readings of each sensor are used
at each time point, for our three SWSN arrangements we have

pdetection = pcoverage · p(k), (5.14)

pfalse = 1− (1− q(k))8, (5.15)
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Figure 5.9: Example of sensor networks: (top) network A; (middle) network B;
(bottom) network C.
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where pcoverage is the probability that the object is within the network coverage,
i.e., within one of the sensor ranges. Clearly, p(k) in (5.14) and pfalse in (5.15) are
identical for the layouts A, B and C if the same number of readings is used. In this
case, the performance of the SWSN is determined by how likely the object will pass
through the network coverage, allowing the network to detect the existence of the
object. This relative frequency is the estimate of the probability pcoverage that affects
pdetection in (5.14).

To estimate pcoverage, we simulate the object’s motion into the area for each sen-
sor network and compute the relative frequency of the object passing through the
sensor network coverage. As in the previous experiments, the object is allowed to
move inside the area of interest for 1000 time steps. Moreover, the experiments are
repeated 100 times to account for the variability in the estimates. The results are
presented in Figure 5.10. The estimates of pcoverage are 0.2884, 0.1420, and 0.6367
for sensor network A, B, and C, respectively. The conclusion is that the SWSN C is
more likely to detect the object than the others.

Now, consider an SWSN of 50 sensors deployed by means of the MPD algorithm
from Section 5.2.2 (see Figure 5.11). As before, the advancing of the object in the
area is described by (5.12) and (5.13), where we choose vx = 0.02, vy = 0.02,
ax = 0.001, ay = 0.01. Again, we report an intrusion alarm if a sensor signals
an intruder in two consecutive readings, as suggested in Table 5.6 in case of two
observations. In Figure 5.11, we show one time instant of a simulation run. An
asterisk denotes the object position. The two overlapping highlighted circles depict
the two sensors that give a correct intrusion alarm. The highlighted circle that does
not contain the object, gives a false alarm.

For this network, the rate of false intrusion alarms is 0.0004. Furthermore, since
the SWSN consists of an ample amount of sensors, our deployment strategy ensures
that pcoverage (almost) equals one. The histogram for the detection probability at
each time point is given in Figure 5.12. The high values of pdetection are due to a
considerable overlap of sensor ranges for the most likely positions of the object.

5.6 Conclusions

In this paper, we addressed two problems concerning design and performance of an
SWSN: sensor placement and object detection. For the first problem, we suggest to
use a hexagonal placement for optimal coverage. Further, we recommend to cover
most vulnerable locations first, but avoid an overlap in sensor ranges unless the
distribution of the object position is highly irregular. As a rule of thumb, one may
call a distribution highly irregular if there exist pairs of points such that the distance
between two points in such a pair is ≤ 2r while the value of the density differs by a
factor 1− p.

For the detection problem, we state that several observations of the same object
are absolutely necessary to report an alarm with reasonable certainty. A classical
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Figure 5.10: Estimate of pcoverage of SWSN. (Top) Network A. The mean of the
estimate is 0.2884 and the standard deviation is 0.0698. (Middle) Net-
work B. The mean of the estimate is 0.1420 and the standard deviation
is 0.0631. (Bottom) Network C. The mean of the estimate is 0.6367
and the standard deviation is 0.2658.
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Figure 5.11: One time instant of a simulation run of the SWSN of 50 sensors con-
taining a moving object (∗). Highlighted circles: two correct intrusion
alarms and one false alarm.
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Figure 5.12: Estimate of pdetection of the SWSN in Figure 5.11. The mean of the
estimate is 0.9205 and the standard deviation is 0.0224.
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hypothesis testing works well only if multiple sensors overlap in the same location.
Otherwise, one must use information from consecutive readings of the SWSN. In
the latter case, either a Bayesian approach or a hidden Markov model (HMM) ap-
proach can be used for object detection. To the best of our knowledge, the HMM
approach involving the Viterbi algorithm to filter out the noise of non-detections
and false alarms, has never been used in an SWSN before. The advantage of this
approach is that it allows to pre-compute off-line all observation patterns that sig-
nal an intruder. Then the decision rule is very simple: report an intruder if one
of the alarming patterns is observed. The HMM techniques in the SWSN context
definitely deserve further study.

In this research, one could clearly see that the two problems under consideration
are closely related. Although each of the proposed methods may be useful in its
own right, it is essential to develop an integral approach to sensor deployment and
intruder detection, in order to enhance the SWSN performance. In the last numerical
example (see Section 5.5), we demonstrated that our techniques can be successfully
combined, thus considerably increasing the efficiency of the network.

We would like to add that, potentially, our methods can be also used for tracking
a target advancing through the area. For instance, by observing a simulation run
of a moving object in the last numerical example, one could see that in spite of
occasional false alarms, the correct intrusion alarms indicate a clear path that can
be easily deciphered from multiple sensor readings.
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