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1 Introduction

A plaque is an accumulation and swelling in the artery walls and typically consists of cells,
cell debris, lipids, calcium deposits and fibrous connective tissue. A person is likely to have
many plaques inside his/her body even if they are healthy. However plaques may become
“vulnerable”, “high-risk” or “thrombosis-prone” if the person engages in a high-fat diet and
does not exercise regularly. Such plaques are characterized by a large lipid core, a thin fibrous
cap and the presence of macrophages [1]. Vulnerable plaques have an increased likelihood of
rupturing and causing cardiac infarction (a heart attack). In fact, about 70% of fatal heart
attacks are caused by plaque rupture [3]. Hence their study is of great medical importance.
It is the goal of our working group to develop models to understand the growth and rupture
of vulnerable plaques.

The growth of a plaque is a very complicated process, coupling together cell biochemistry
[7], solid mechanics [10] and fluid-structure interactions [8, 9]. A few of the biochemical
factors that are thought to be important are shown in Fig. 1.
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Within the workshop, we developed two separate models. The first is a mechanistic model
of plaque growth. The second deals with some of the biochemical aspects.
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Figure 1: Schematic of a few processes that are important in the growth and rupture of
plaques.

2 Mechanical model

2.1 Governing Equations

We developed a 2D model based on mechanical expansion of the plaque, treating the cap as
an elastic balloon, the base as a rigid beam and performing a force balance at the shoulders.
The main assumption is that the plaque cap (the interface between the core and the blood)
is always a circular section: see Fig. 2. We also ignored the effect of microcalcifications in
the cap that are thought to locally increase the stress [2]

The evolution of the cap is divided into two stages. In the first stage, we fix the footprint
radius s = 1 and evolve the plaque volume V and angle α according to the two equations

V̇ = µ(L(α, s)− 2s), (1)

V = V (α, s). (2)

where µ is a known constant. In equation (1) we assume that the rate of increase of the
volume is proportional to L− 2s, a qualitative measure of the internal pressure in the core.
Note that for a given V , α is determined by solving (2). The functions V (α, s) and L(α, s)
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Figure 2: A 2D mechanical model of an inwardly growing plaque whose geometry is charac-
terized by the contact angle α, arclength L, footprint radius s and basal deformation y(x, t).
Within the plaque shell (shown in red) is the lipid core (shown in yellow).

are determined from geometry:

V =
s2

sin α

( α

sin α
− cos α

)
, (3)

L =
2αs

sin α
. (4)

F is then determined from the tension in the cap and a force balance at the shoulders: (see
Fig. 2 for an explanation of the notation):

T = λ(L− 2s), (5)

F = T sin α. (6)

Here, λ is assumed to be a known constant. During the first stage, the volume V and the
cap arc length L will grow. Therefore the angle α will grow since V (α, s) is an increasing
function of α and T sin α will also grow. When T sin α reaches a predetermined value Fcrit,
the second stage of the plaque evolution begins. In this case, the footprint radius s is allowed
to increase and it evolves according to the extra constraint

λ(L(α, s)− 2s) sin α = Fcrit. (7)

Once the evolution of the upper surface of the plaque is determined (so V and T are known
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Figure 3: Results of integrating equations (1)-(12) (a) Plaque shapes for different times.
The fibrous cap always takes the shape of a circular arc while the basal deformation y(x, t)
is determined by equation (9). (b) Pressure as a function of time. (c) The angle α as a
function of time

for all time), the basal deformation y can be found via

Ė = −γV E, (8)

P =
T

r
, (9)

∂4y

∂x4
= −P

E
, (10)

where γ is a known constant, E is the Young’s modulus and P is the pressure inside the
plaque. Note that the pressure P in equation (9) does not account for the extra volume caused
by the basal deformation and so equations (8)-(10) are only valid when these deformations
are small compared to s. The equations are supplemented by boundary conditions at x = ±s

y = 0, (11)

∂y

∂x
= 0. (12)

The results of integrating equations (1)-(10) are shown in Fig. 3.
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2.2 Conclusions

Our model predicts two qualitatively different evolutions for the plaque. The first stage
consists of a localized growth (see blue curves in Fig. 3(a)) where the lateral extent of the
plaque is constant. The basal deformation is relatively small in this case. In the second
stage the plaque grows globally: the footprint radius and the arclength can both grow (see
red curves in Fig. 3(a)) and the basal deformations are larger. With this second stage of
growth, there is corresponding decrease in the interior pressure of the lipid core (see the red
curve in Fig. 3(b)). In actual vulnerable plaques, such a reduction may lower the likelihood
of rupture. This suggests that strategies of stabilizing plaques could focus on controlling the
transition between the local and global growth stages. According to this mechanical model, it
is desirable to start the second stage of growth as soon as possible as this prevents the interior
pressure from building up. Therefore more work should be done to see (i) how the transition
time between the two growth regimes changes as a function of the model parameters µ and λ
and (ii) how µ and λ could be affected by factors such as diet, smoking and exercise. In our
model, the plaque grew by “negative” remodeling: that is, it increased its size by gradually
narrowing the vessel lumen and growing inwards. However, many vulnerable plaques grow
by “positive” remodeling: they actually cause very little stenosis and grow outwards, causing
the outer vessel wall to expand. As a result, they are harder to detect angiographically [4]
and have larger cores than negatively remodeled plaques.

Also, more work should be done to explore how the plaque shoulders are “pinned” to the
blood vessel lining and the nature of the forces involved.

3 Biochemical-stress model

3.1 Governing Equations

Matrix Metalloproteinases (MMPs) are thought to play an important role in plaque evolution
because they degrade the fibrous cap [5] and therefore increase the likelihood of rupture. The
model proposed in this section focuses on how stresses in the plaque cap can increase the
concentration of MMPs and hence degrade the cap thickness.

The governing equations take a general form

σ̇ = f(V )− rσ, (13)

Ṁ = g(σ, V )− µM, (14)

V̇ = h(σ), (15)

ξ̇ = αξ(ξ0 − ξ)− βM. (16)

where σ is the stress in the cap, M is the concentration of MMPs, V is the volume of the
lipid core and ξ is the thickness of the cap.

Equation (13) stems from the cap mechanics. As the volume of the plaque grows, the
cap is mechanically stressed. The −rσ term represents a relaxation of the stress as the
cells proliferate [11] and the cap remodels. Equation (14) describes the regulation of MMPs.
MMPs are upregulated by stresses within the cap. Also, a larger lipid core arises from more
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inflammatory cells which in turn secrete MMPs [5]. Hence we model g as depending on both
σ and V . Equation (15) describes how stresses affect the production of signaling molecules
such as PDGF [6] or cytokines which could attract (repel) inflammatory cells into (out of)
the core with a resulting change in volume. Finally, (16) is an equation for the cap thickness.
The −βM term represents cap thinning through MMPs. The logistic growth term has a
“preferred” cap thickness ξ0 which is a stable fixed point when M = 0.

For definiteness, we assume specific forms for the functions f , g and h so that our system
of equations becomes

σ̇ = f0V
2/3 − rσ, (17)

Ṁ = k1V

(
σ

σ1 + σ

)
− µM, (18)

V̇ = k2

(
σ

σ0 + σ

)
, (19)

ξ̇ = αξ(ξ0 − ξ)− βM. (20)

We use Hill forms for the dependence of Ṁ and V̇ on the stress σ so that the rate of increase
of MMPs and volume saturates for σ � σ0 and σ � σ1.

Unfortunately, most of the parameters in the model are unknown. There were some
parameter values considered from a quick literature search on some tissues, but without
corroboration with regard to plaque parameters, and lack of time, we simply set constants to
1 for initial computational purposes: see Table 1. V (0) and ξ were estimated to be 10−3 mm3

and 250µm respectively and the initial values for σ and M were taken to be the equilibrium
values i.e. σ(0) = f0V (0)2/3/r and M(0) = (k1/µ)V (0) σ(0)

σ1+σ(0)
: see Table 2.

The results of integrating equations (17)-(20) are shown in Fig. 4. We see an increase
in cap stress, an upregulation in MMPs, an increase in plaque volume and a thinning of the
fibrous cap. A rupture time can be found by stopping the integration at a time t∗ such that
ξ(t∗) = ξmin where ξmin is a predetermined cap thickness below which the cap tears.

3.2 Conclusions

The proposed biochemical stress model incorporates some factors that are known to be
important in the rupture of vulnerable plaques. In the model, increased cap stress and
upregulation of MMPs leads to growth of the plaque and a subsequent thinning of the cap.
Future studies and experimental work should focus on the measurement of the parameters
in Fig. 1. Also, the system of equations (17)-(20) could be improved to account for the
presence of oxidized lipoproteins, macrophage accumulation and other factors related to the
inflammatory response. Further work also needs to be done to analyze how tissue stresses
affect the production of signaling molecules such as cytokines and how these molecules affect
macrophage behavior.
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Constant Description Unit Value used
f0 cap viscoelasticity Pa/mm2/year 1
r Inverse relaxation time of tissue (remodeling rate) 1/year 1
k1 Upregulation rate of MMPs ng/mm6/year 1
k2 Macrophage inflammatory response rate mm3/year 1
µ MMP degradation rate 1/year 1
σ0 stress that saturates MMP growth Pa 1
σ1 stress that saturates macrophage response Pa 1
α Cell division rate per unit cap thickness 1/mm/year 1
β Cap thinning rate (by MMPs) 1/year 1
ξ0 “preferred” cap thickness mm 0.2

Table 1: Table of parameters used to solve equations (17)-(20). Where values were found in
the literature or estimated, they are given. Otherwise, the value of the constant is taken to
be 1.

σ(0) 0.046 Pa
M(0) 10−3 ng/mm3

V (0) 0.01 mm3

ξ(0) 0.25 mm

Table 2: Initial values for the cap stress, MMP concentration, plaque volume and cap thick-
ness used in Fig. 4.
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Figure 4: Evolution of cap stress (σ), MMP concentration (M), plaque volume (V ) and cap
thickness (ξ) measured in Pa, ng/mm3, mm3 and mm respectively. Time is measured in
years.
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4 Project summary

The rupture of vulnerable plaques is thought to responsible for a large fraction of fatal my-
ocardiac infarctions. In this study group, we proposed two mathematical models to describe
plaque growth and rupture. The first model is a mechanical one that approximately treats
the plaque as an inflating elastic balloon. In this model, the pressure inside the core increases
and then decreases suggesting that plaque stabilization and prevention of rupture is possible.
The second model is a biochemical one that focuses on the role of MMPs in degrading the
fibrous plaque cap. The cap stress, MMP concentration, plaque volume and cap thickness
are coupled together in a system of phenomenological equations. The equations always pre-
dict an eventual rupture since the volume, stresses and MMP concentrations generally grow
without bound. The main weakness of the model is that many of the important parameters
that control the behavior of the plaque are unknown: see Table 1.

The two simple models suggested by this group could serve as a springboard for more
realistic theoretical studies. But most importantly, we hope they will motivate more exper-
imental work to quantify some of the important mechanical and biochemical properties of
vulnerable plaques.
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