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Abstract

Understanding the origins, or provenance, of a sedimentary deposit is an important
aspect of geology. Sedimentary rocks are derived from the erosion of other rocks and
thus provide important records of the geological environment at the time they were de-
posited. Some minerals found in sedimentary rocks, such as zircon particles, can be dated
using uranium-lead techniques to trace the age of their parent rock thus providing useful
information about the geological environment.

Statistical and mathematical analyses that can assist in the analysis of the distribution
of ages of the zircon crystals are examined. Methods of defining a difference between the
distributions of ages found in rock samples are proposed, and demonstrated in the division
of multiple rock samples into clusters of similar types.

A test for the existence of a cluster is developed, and statistics for comparing different
rock samples examined. Estimating an accurate age for the sedimentary deposit itself
proves to be difficult unless prior distributions providing significant extra information are
available.

Keywords: age of sedimentary rocks, zircon ages, clustering, testing for clusters.

1 Introduction

Geoscience Australia is an agency of the Australian Government. It provides “geoscience
information and services such as maps, earth monitoring and strategic data about mineral and
energy resources” [3]. It is very interested in the science of geochronology (analysing the age of
geological events), which leads to a need to date rocks. This project is specifically interested in
the dating of sedimentary rocks, such as sandstone, because these have been formed from the
eroded detritus of other rocks and can thus provide a snapshot of the geological environment at
the time when the detritus was deposited. Zircon crystals form in molten magna which cools
to form igneous rocks. When the igneous rocks are eroded they form part of sedimentary rocks.
The zircon crystals can have their age determined and thus provide valuable information on
the components that have combined to form a sedimentary deposit.
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As zircon crystals form in molten magma, they absorb uranium but not lead. Over time
the uranium slowly decays to lead, providing a means to determine the ages of the zircon
crystals. Dating a sample of the zircon crystals within a sedimentary rock produces an
estimate of the distribution of ages of the igneous source rocks contributing to the sediment.
This estimation is, of course, subject to the usual limitations of statistical sampling as the
zircon grains whose ages are determined are only a small sample from all the grains in the
deposit, and although great care is taken, the sample may have been contaminated by grains
of other ages.

Two of the key questions are How many grains are needed to estimate the age distribution
adequately? and How to compare or classify samples from different locations, on the basis of
their age distributions? Both questions imply the use of a metric to quantify the “distance”
between two distributions. For the first, the term “adequately” implies that the estimated
distribution is acceptably close to the true one. However this depends on the needs of the
application, which will vary from case to case. For the second question, we need some objective
measure of how similar one distribution is to another. Hence we focus on probabilities,
distance measures and clustering of the age estimates.

2 Distance measures for probability distributions

A probability distribution µ can be thought of as a way of spreading a unit mass over the
real number line (−∞,∞). The mass assigned to (an interval or other set) A is µ(A) ∈ [0, 1].
Often a distribution is identified with its cumulative distribution function (cdf) F , where
F (x) = µ((−∞, x]). Some distributions can also be described by a density function f , where

∫ b

a
f(x) dx = F (b)− F (a) = µ((a, b]) ;

thus f = F ′. We will use several different metrics to quantify the dissimilarity between one
distribution and another. In the following, suppose that µ1, µ2 are distributions; F1, F2 their
cdfs; and (where appropriate) f1, f2 their densities.

Kolmogorov-Smirnov metric. Defined by

dKS(µ1, µ2) = maxx |F1(x)− F2(x)| .
Wasserstein metric. Defined by

dW (µ1, µ2) =
∫ ∞

−∞
|F1(x)− F2(x)| dx

or

dW (µ1, µ2) =
∫ 1

0
|Q1(u)−Q2(u)| du,

where Q1, Q2 are (more or less) the inverses of F1, F2

Qi(u) = min {x : Fi(x) ≥ u} .

This is sometimes called the “earth-mover’s distance”: it is the average distance that mass
must be moved to transform one distribution into the other.

The Kolmogorov-Smirnov and Wasserstein distances are illustrated in Figure 1. The
Kolmogorov-Smirnov distance is represented by the length of the vertical arrow, and the
Wasserstein distance by the area enclosed between the two curves.
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Figure 1: The Kolmogorov-Smirnov (maximum vertical difference) and Wasserstein (sum of
areas between curves) metrics.

L2 metric on densities. When dealing with distributions that have densities, we may use a
metric on the density functions. For example, the L2 metric, as used in [5] is given by

dL2(µ1, µ2) =
(∫ ∞

−∞
(f1(x)− f2(x))2 dx

)1/2

.

Normal mixtures. It can be assumed that the ages of crystals from one source follow a normal
distribution, as they are based on counts of atoms, and the clustering procedures can overlap
normal distributions to approximate the actual distribution of ages. When crystals from
several sources are combined, this produces a mixture of Normal distributions of the form

µ =
m∑

i=1

xiνi,

where ν1, . . . , νm are normal distributions and x1, . . . , xm (the mixing proportions) are non-
negative numbers with

∑m
i=1 xi = 1. Within such a class of distributions, a metric may

be based in a straight-forward fashion on the mixing proportions: if µ1 =
∑m

i=1 xiνi and
µ2 =

∑m
i=1 yiνi, then

dNM (µ1, µ2) =

(
m∑

i=1

(xi − yi)2
)1/2

.

Example. To illustrate the differences between the various metrics, we consider the following
example. Let µ1 be a normal distribution with mean 0 and standard deviation w, and µ2 a
normal distribution with mean and standard deviation both equal to w (Figure 2). Then

dW (µ1, µ2) = w, dKS(µ1, µ2) = Φ(1/2)− Φ(−1/2) ≈ 0.3829
dL2(µ1, µ2) = Cw−1/2, where C ≈ 0.3533, dNM (µ1, µ2) =

√
2.

Here Φ is the standard normal distribution function.
Suppose that w decreases to 0. Then the horizontal separation between µ1 and µ2 likewise

decreases to 0, but only the Wasserstein metric recognizes this. On the other hand, as w is
simply a scaling of the horizontal axis, the two distributions always intersect half way between
the maxima, and thus the relative degree of overlap between the two distributions remains
constant; this is recognized by the Kolmogorov-Smirnov metric. The L2 metric has a tendency
to blow up when distributions become concentrated (i.e. have high density values); according
to this metric, µ1 and µ2 (rather unintuitively) move farther apart as w decreases. Finally,
dNM simply observes that our distributions are different components; neither the overlap nor
the separation of the normal distributions is relevant.
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Figure 2: The distributions µ1 and µ2 showing densities f1 & f1 and cumulative distribution
functions (F1 & F2).
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Figure 3: All the zircon ages and their uncertainties.
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3 Data and Clustering

The primary data provided by Geoscience Australia consists of a collection red of 38 samples
from across eastern and central Australia. The origins of most of these samples are discussed
in [5]. Each sample comprises age determinations for between 22 and 131 zircon grains taken
from a single location, with each age determination having an associated 1-sigma uncertainty
estimate. All 2374 age determinations in the dataset are illustrated in Figure 3. A few
additional samples were provided mainly for calibration purposes.

Given a measure of the dissimilarity between two samples, based on the distribution of
their zircon ages, we have a basis on which to compare and classify the samples within a larger
collection. Most often, we would like to group the samples into a small number of clusters,
with similar samples being grouped together. This is the problem of clustering, for which
several standard algorithms are available; a good general introduction to the topic is [4].

Some clustering algorithms, including the popular k-means method, assume that the ob-
jects to be classified can be represented as points in some Euclidean space of fixed dimension.
But in this application, we are clustering probability distributions (or estimates thereof),
which cannot be easily represented in this way. We will therefore limit ourselves to clus-
tering algorithms which can accept as input only a dissimilarity matrix giving the pairwise
dissimilarities between the samples in our collection.

We investigate the use of four such algorithms commonly used in the statistical literature.
Two, the “partitioning around medioids” (PAM) method and “fuzzy analysis clustering”
(“fanny”), partition data into a pre-selected number of clusters. Two more, “agglomerative
nesting” (“agnes”) and “divisive analysis clustering” (“diana”) construct a hierarchy of nested
clusters. All four methods are described in [4] and implemented in R.

The output of the hierarchical methods can be represented as dendrograms, as shown in
Figure 4 for our samples. These suggest that the distance measure used will have more effect
on the result than the clustering method.

We attempt to group our set of 38 samples into five clusters, using each of our four
methods and the Kolmogorov-Smirnov and Wasserstein distances. (This number of clusters
was chosen because 25 of the samples are the same ones appearing in Section 6.4 of [5], where
they are classified into four clusters. Most of the remaining samples contain younger grains,
so tend to cluster with each other.) Five recognisable clusters emerge (see Figure 5):

• Cluster A samples are dominated by relatively old grains (around 1750 Myr);

• Cluster B samples have the greatest variety of grain ages, often resembling a mixture
of the A and C age distributions;

• Cluster C samples contain mostly grains around 1150 Myr old;

• Cluster D samples are dominated by younger grains (around 600 Myr);

• Cluster E samples contain the youngest grains of all (400 Myr or less).

The various methods and distance measures produce fairly similar results, with disagree-
ment for only a few of the samples. The Kolmogorov-Smirnov metric has a tendency to isolate
some samples. (For the Agnes method, it places MTF in a cluster all by itself, but we have
chosen to ignore this rather than allow a sixth cluster.) The Wasserstein metric (and the L2

metric of [5]) produce a more definite classification. However experience in the use of these
methods will determine which is the most useful in providing geological information.
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Figure 4: Hierarchical clustering.
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4 Determining if a cluster of ages exists

One question of interest is whether several ages that occur close together can be considered to
form a cluster of ages that can be given a geological interpretation. Guidelines for determining
when ages can be considered a cluster were developed, using the assumption that, if the ages
are distributed with a uniform distribution, no cluster exists.

The width of a group of k ages relative to the total age range, can be used to test
whether those ages form a cluster. Calculate the probability that this relative width will be
achieved by k adjacent observations selected from n observations generated from the uniform
distribution. If this probability is “too low” the alternative hypothesis that these k ages form
a cluster becomes reasonable. Note that this is the probability of a Type I error, that is,
inferring that a cluster is present when it is not present, as the probability is generated from
a uniform distribution, which does not generate clusters.

The probability that k = n values chosen at random from a uniform distribution exhibit
a cluster can be calculated, either from theory (for instance using information from chapter
2 of [1]) or simulation.

The range (from minimum to maximum) spanned by the entire sample of n uniformly
distributed points has a Beta distribution with parameters n− 1 and 2. The probability that
this range is less than x is thus ∫ x

0
tn−2(1− t)dt

∫ 1

0
tn−2(1− t)dt

(1)

which simplifies to nxn−1 − (n− 1)xn, and as we are only interested in small values of x this
is approximately: nxn−1.

The range spanned by k of the n uniformly distributed points, from the rth to the (r +
k − 1)th smallest for a fixed value of r, has a Beta distribution with parameters k − 1 and
n− k + 2 (note that this distribution does not depend on r). The probability that this range
is less than x is thus ∫ x

0
tk−2(1− t)n−k+1dt

∫ 1

0
tk−2(1− t)n−k+1dt

. (2)

Again simulations show an excellent agreement. However the actual case of interest is the
minimum value of the width of any group of k points out of n. This appears to be more
difficult to determine by theory but an examination of simulations suggests the behaviour at
small widths is very close to the above Beta(k − 1, n − k + 2) distribution with the width
multiplied by the factor (n− k + 1)1/(k−1)

∫ x(n−k+1)1/(k−1)

0
tk−2(1− t)n−k+1dt

∫ 1

0
tk−2(1− t)n−k+1dt

. (3)

Figure 6 shows some typical cases of the simulations and this formula. Equation 3 gives, for
a fixed width x, a higher probability than that given by equation 2, as the minimum width of
any k points out of the n available is selected. When k = n this formula is the same as given
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earlier. Similar to the previous case, this formula can be approximated for small values of x
as

n! xk−1

(n− k)! (k − 1)!
. (4)

For example, given the ages 1000, 1200, 1210, 1230, 2000, 3000 million years over the range
of 4000 million years, the pair 1200, 1210 has a probability of 0.05 of a chance occurrence,
which gives a marginal suggestion of a cluster. The triple 1200, 1210 & 1230 has a probability
of 0.0017 of occurring by chance, which gives a strong suggestion that these are not random
but form a cluster. In both cases there is essentially no difference between the simulated
result and the formulas (3) and (4).

5 Comparing groups of clusters

Having decided on the groups of ages that exist in samples, the number of ages found in each
group can be determined. Comparing samples is then a matter of comparing the proportions
in each group, as suggested earlier with the statistic dNM .

Let there be k clusters. Suppose that sample j has m(j) distinct ages, and that n
(j)
i of

these ages are found in the ith cluster (j = 1, 2; i = 1, . . . , k), with
∑k

i=1 n
(j)
i = m(j). The

following statistic based on contingency table comparisons [2] can be used to compare the
two samples

s =
k∑

i=1

(n(1)
i − rim

(1))2

rim(1)
+

k∑

i=1

(n(2)
i − rim

(2))2

rim(2)
(5)
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Figure 7: A comparison of the distribution of the statistic s of equation (7) after being
transformed using cumulative χ2 distributions.

where ri is the combined estimate of the proportion in the ith cluster

ri = (n(1)
i + n

(2)
i )/(m(1) + m(2)) (6)

This statistic can be simplified by eliminating ri, giving

s = m(1)m(2)
k∑

i=1

(n(1)
i /m(1) − n

(2)
i /m(2))2

n
(1)
i + n

(2)
i

, (7)

which for larger values of n
(1)
i and n

(2)
i can be approximated by a χ2 distribution with k − 1

degrees of freedom. Figure 7 shows a particular case compared to χ2 distributions. Four
clusters with proportions 0.5, 0.25, 0.15 & 0.1 and numbers of ages 100 & 50 in the samples
were simulated 10000 times. Each curve on the graph consists of five overlapping repeats
of this simulation. The approximation is good in this case, and seems to be only slightly
less accurate for cases with lower numbers of ages. Thus this χ2 distribution can be used
to give a probability that provides a useful measure of the difference between distributions.
This probability can be used in the clustering algorithms to divide the age distributions into
groups with similar properties.
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Figure 8: Prior distributions for sedimentary deposit age, and the time between formation of
zircon crystals and formation of sedimentary deposit.

6 Estimating the age of sedimentary deposits

One piece of information that is of particular interest to geologists is the age of sedimentary
deposits. Assuming no outlier has intruded, the age of the sedimentary deposit is clearly
later than the most recent zircon age. Additional prior information can be added (Figure 8),
on the likely time between the formation of the zircon grains f(t) and the formation of the
sedimentary deposit, and on the range of possible ages for the sedimentary deposit a(t). As
the probabilities will be normalised, both f(t) and a(t) can be expressed as relative values.

The observed ages of the zircon crystals zi (Figure 9) can be combined with the prior
for the time difference as the geometric mean of the individual probabilities for each crystal
sample. This geometric mean provides an estimate that is not biased by the number of age
samples and is multiplied by the prior for the likely age of the deposit to get an estimate
proportional to the probability density function of possible ages of the deposit

∏

i

a(x)

(
n∏

i

f(zi − x)

)1/n

(8)

for age x. Integrating and normalising this gives the cumulative distribution function

∫ x

0
a(x)

(
n∏

i

f(zi − x)

)1/n

dx

∫ xmax

0
a(x)

(
n∏

i

f(zi − x)

)1/n

dx

. (9)
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For the priors given in Figure 8 and the zircon age distribution in Figure 9, Figure 10 gives
the cumulative distribution of the estimated age of the sedimentary deposit. Figure 10 shows
a wide spead for the possible ages of the sedimentary deposit. The zircon ages only provide
an upper limit to the age of the sedimentary deposit. To obtain a more refined estimate,
additional information needs to be provided in the assumed prior distributions. Then the
accuracy of the prior distributions determine the accuracy of the estimate of the sedimentary
deposit age. To allow for the possibility of an occasional more recent outlier in the zircon
ages, a small probability of negative age differences can be included in the prior.

7 Conclusions

Interpreting zircon age estimates is an interesting problem that introduces multiple mathemat-
ical aspects. The distribution of the ages can be defined directly as an empirical distribution
using the data. Alternatively, standard smoothing or clustering techniques can be used to
obtain an estimate of the underlying distribution of the age data. Expressing the distribution
as the sum of Normal clusters has the advantage of allocating the ages into groups that may
have geological significance.

Several different metrics can be used to quantify the difference between the distributions
of ages found for different rock samples. These measures can then be used in a clustering
program to estimate relations between the different rock samples. This provides a quantitative
method of relating the rock samples.

A particular interest is when the measured ages form a cluster that can be examined for
geological significance. Determining the probability of an apparent grouping of ages forming
when the age are generated from a uniform distribution provides a method of testing for the
existence of a cluster. The distribution of this statistic can easily be generated from a Monte
Carlo simulation, and a useful approximation to the low probability part of the distribution
is given.

Given the number of ages in clusters, a measure of the difference between rock samples
can be specified in a manner similar to that used for contingency tables. A close approxima-
tion using the χ2 distribution is available and more accurate probabilities, if needed, can be
obtained by simulation.

Statistics with the help of prior distributions can be used to calculate a distribution of
the probable age of the sedimentary deposit. Unfortunately, unless there is useful additional
information input via the prior distributions, the deposit age estimate is not well determined.
However, making the assumed information explicit as prior distributions gives a clear descrip-
tion of the assumptions made.

The worth of the different methods of analysing the zircon age data ultimately depends
on the value they provide in the subsequent geological interpretation, and the extent to which
they make the procedure used quantitative. It remains for geologists to evaluate which of the
alternatives proposed add the greatest value to their work.
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