
Multipoint-to-multipoint network communication

Philip Kilby
NICTA and Australian National University

Desmond Lun
University of South Australia

Giang Nguyen
University of South Australia

1 Introduction

Multi-user virtual environments are becoming popular in a number of areas. Complex virtual
environments are becoming available, such as Massively Multiplayer Online Role Playing
Games (MMORPG) (e.g., World of WarCraft and Travian) and social networks (e.g. Second
Life). The number of participants in these environments can be hundreds, thousands or
even tens of thousands of people. Within such a virtual environment, the users, typically
represented by their avatars, can freely interact with other avatars or virtual objects on the
network. In many situations, a user might want to talk to one or more users on the network.
Then the user has to send his or her voice along the network to the intended recipient(s).
Similarly, users might also wish to broadcast their own live videos, images or other content
such as video clips, audio files or virtual objects created by themselves.

Currently, most MMORPG employ the client-server model, where the server has complete
information about the virtual world, and facilitates the dissemination of multimedia infor-
mation amongst the users [5]. For example, if Alice wants to communicate with Bob, the
information will be sent along the network to the server, which will then pass the information
along the network to Bob. It is obvious that maintaining the server presents a huge cost
factor, especially as the environment grows larger. An alternative model, currently the focus
of study by The University of Wollongong’s ICT Research Institute, employs a peer-to-peer
model, which eliminates the need for a server. In this case, Alice can send information along
the network to Bob, without going through a server first.

The peer-to-peer topology is a kind of “user-pays” system – in effect users provide the
infrastructure. When an underlying network, such as the world-wide web, is used for physical
transport, a virtual network is overlaid. Messages are routed through the virtual network,
using only a limited part of the physical network. The virtual network is made up arcs linking
nodes representing each game participant. Each participant can act as source, relay, and sink
of information. The majority of network traffic is therefore passed through the participants
themselves. The construction of this virtual peer-to-peer network is the focus of the problem
brought to MISG. It is worth noting that peer-to-peer networks have many successful appli-
cations, including file sharing (e.g. eMule), streaming (e.g. Pandora) and internet phones
(e.g. Skype).

109



The design and construction of peer-to-peer networks should take into account three main
factors. First, most virtual topologies change quickly and continuously: users join the net-
work, move from one location to another or drop out completely. Second, there is limited
capability: due to bandwidth capacity, each user can only be connected directly to a certain
number of people. Finally, time constraints should be observed: a piece of information has to
be sent from one user to another within a desired amount of time [4]. These time constraints
are dependent on the distance between users in the virtual network. The further apart two
users are in the virtual world, the more tolerant they are of delays in multimedia delivery.
Peer-to-peer networks should also continuously reconfigure to accommodate the ever changing
nature of the virtual world.

In Section 2, we describe the problem and introduce notation. In Section 3, we propose
a feasibility integer linear program (ILP) as an exact formulation of the problem, report
preliminary numerical results on small-size problems and formulate a Lagrangian relaxation
approach to the original ILP. We explain an heuristic approach to the problem in Section 4,
and detail our implementation and numerical results in Section 5.

2 Problem description and notation

The problem can be formally described as follows. Consider a complete network G(V,E). V
is a set of nodes, with v ∈ V representing a user on the network. E is a set of arcs, (u, v) ∈ E
representing a direct connection (via the underlying network) between two users. Associated
with each arc (u, v) is a direct cost cuv which is the amount of time it takes to physically
transfer a piece of information directly from one user to another (direct transmission). These
costs reflect the relative position of the nodes in the physical world. We assume the triangle
inequality for these costs, that is, the direct arc between any two nodes has no greater cost
than any other, indirect, path between the nodes. Mathematically, if u, v and t are mutually
adjacent, then cut + ctv ≥ cuv ∀t. Note that costs cij are not necessarily symmetric – i.e. cij

is not necessarily equal to cji.
There is a time limit kuv determined for each arc (u, v). This is a time constraint signifying

the desired maximum time for communication between two users. These costs reflect the
relative position of the two users in the virtual world. For any two users, the time limit
kuv is at least the cost of the direct arc cuv between them: kuv ≥ cuv for all (u, v) ∈ E.
In current simulations carried out by ICT Research Institute, there are no time constraints
for 70 percent of pair-wise distances (because they are too far apart in the virtual world to
interact). Finally, there is an upper bound mi for the degree d(i) of each node i ∈ G, that is,
a limit of the number of people to whom a user can directly connect. The simulated upper
bounds generated by the ICT Research Institute can vary from 3 to 10 people.

We wish to determine a spanning subgraph H, which is a virtual network that connects
all users. The spanning subgraph should observe all degree constraints on nodes and time
constraints on paths between pairs of users. However, if all constraints cannot be met, the
degree constraints are seen to be more important. That is, it is permissible to exceed some
desired time limits. In that case, the objective is to minimise either the number of such
violated constraints, or the sum of violations.

For nodes i, j where (i, j) ∈ E the time for direct transmission from i to j is cij . We wish
to choose a set H ⊂ E of arcs to use in the virtual network. Let nH(i) be the number of

110



neighbours of node i in the arc set H. We require nV (i) ≤ mi. Let cH(i, j) be the shortest
time to send a message from i to j using the arcs in H. We require that cH(i, j) ≤ kij .

As the virtual topology changes frequently, this spanning subgraph should be continuously
modified to take into account updates in the network. This could be done in two different
ways: either a fast algorithm that can be run in real time periodically with high frequency,
or an optimal algorithm that is run once then updated with reduced computational time to
accommodate virtual topology changes. Assuming that each user has reasonably complete
information of the virtual topology, the ideal algorithm is a distributed algorithm that runs
independently in each user, then partial solutions from each user can be combined to obtain
an overall solution for the network.

3 Feasibility integer linear program

3.1 Exact Formulation

To start with, we have formulated the problem as a feasibility integer linear program (ILP):

∑

j|(i,j)∈E

x
(u,v)
ij −

∑

j|(j,i)∈E

x
(u,v)
ji =





1, i = u
−1, i = v

0, otherwise,
for all i, u, v ∈ V, (1)

zij ≥ x
(u,v)
ij , for all (i, j) ∈ E, u, v ∈ V, (2)

∑

j|(i,j)∈E

zij ≤ mi, for all i ∈ V, (3)

∑

(i,j)∈E

cijx
(u,v)
ij ≤ kuv, for all u, v ∈ V, (4)

x
(u,v)
ij , zij ∈ {0, 1}, for all (i, j) ∈ E, u, v,∈ V. (5)

In this ILP, decision variables zij correspond to arcs (i, j) ∈ E. If a decision variable zij

is 1 in a solution, then the corresponding arc (i, j) is included in the spanning network H,
and 0 otherwise. There are arc-path variables xuv

ij , each of which determines whether an arc
(i, j) ∈ E is included in a path (u, v) between two users, and these variables are also binary.

The ILP has five sets of constraints. Constraint set (1) ensures that information is pre-
served in the network. That is, along every path (u, v) between two users u and v, all media
content goes into a user on the path has to come out from that user (relayer), unless that
user is at the beginning of the path (source) or at the end of the path (sink). Constraint set
(2) (arc-path constraints) specifies that if an arc (i, j) is in an intended path between two
users, then it is included in the solution corresponding to our desired spanning network H.
The third and fourth sets of constraints correspond to upper bounds on degrees of nodes and
cost limits of pair-wise paths, respectively. Finally, the fifth set of constraints (5) restricts
arc-path variables xuv

ij and decision variables zij to binary values only. As there is no ob-
jective function, this is a feasibility program and any solution that satisfies these five sets
of constraints determines a feasible spanning network that we are looking for. A potential
extra constraint for this ILP is that the decision variables zij have to be symmetric, that is,
zij = zji for all i, j, in the final solution. This constraint is equivalent to ensuring that every
direct link between two users, if exists, has to be bidirectional.

111



If a network has n users, then the total number of decision variables and other variables is
of order n4. It is clear that the number of variables quickly grows as the network size increases.
This makes the ILP quickly becomes computationally expensive or even intractable for large-
size instances. However, it provides a benchmark for heuristic algorithms developed for the
problem.

We have relaxed our ILP by partially removing the last set of constraints, that is, the arc-
path variables are no longer restricted to binary values. This results in an ILP that is easier
to solve, but requires a slight difference in solution interpretation and subsequent network
construction. In a solution of the original ILP, if Alice sends Bob a file, this file is sent as a
whole along the network via exactly one path. With the employed relaxation, in a solution
of the resulting ILP, this file might be split into smaller pieces, each piece to be sent along a
different path, and these pieces are regrouped to form the original file at Bob’s location.

We have also introduced extra variables yuv corresponding to the amount of violation of
each cost limit and modified constraints (4) to be

∑

(i,j)∈E

cijx
(u,v)
ij − yuv ≤ kuv, for all u, v ∈ V. (6)

These violation variables gives rise to an objective function, which minimises the total amount
of violation of cost limits

min
∑

u,v∈V

yuv.

If this objective function has a value of zero, then we have found a solution that satisfies all
constraints, including ones on cost limits of pair-wise paths. This modification is to cater for
situations where no feasible solution can be found. In these cases, it gives us a “good-enough”
solution and a measure on how close to feasibility this solution is, while still observing the
degree constraints.

3.2 Numerical results on small problems

Using the ILP approach described in the previous section, we have successfully solved toy
examples using the optimisation solver MILP CPLEX. These toy examples have complete
10-node networks where arc costs, cost limits and degree constraints are generated randomly
and appropriately, using the problem generator described in Section 5. Table 3.2 gives the
results for 10 10-node problems.

3.3 Lagrangian relaxation

One way to approach the solution of the original problem is via Lagrangian Relaxation. The
following model relaxes the maximum time constraints.

max
λ,µ≥0

L(λ, µ), where

L(λ, µ) = min
x,z>0

∑
u,v

∑

i,j

µ
(u,v)
ij (x(u,v)

ij − zij) +
∑
u,v

λu,v


∑

ij

cijx
(u,v)
ij − kuv




s.t. (1), (3) and (5)

112



Problem Feasible solution found Time (seconds)
#1 Yes 7
#2 Yes 5.9
#3 Yes 5.9
#4 Yes 5.9
#5 Yes 5.9
#6 Yes 5.9
#7 Yes 5.9
#8 Yes 5.9
#9 Yes 5.8
#10 Yes 5.9

Table 1: Results for 10-node networks, using the ILP model and the optimisation solver
MILP-CPLEX, on an Intel Pentium 4, 3.2 GHz, Gentoo Linux, 2GB RAM

= min
x,z>0

∑
u,v

∑

i,j

(µ(u,v)
ij + λuvcij)x

(u,v)
ij −

∑
u,v

∑

ij

µ
(u,v)
ij zij −

∑
u,v

λuvkuv

s.t. (1), (3) and (5)

= min
x>0

∑
u,v

∑

i,j

(µ(u,v)
ij + λuvcij)x

(u,v)
ij −max

z>0

∑
u,v

∑

ij

µ
(u,v)
ij zij −

∑
u,v

λuvkuv.

s.t. (1) and (5) s.t. (3) and (5)

This is a dual version of the problem but with only two sets of constraints: preservation
of information in the network and degree constraints of nodes. Cost limits and arc-path
constraints have been moved to the objective function of this relaxed Lagrangian model, to
provide a measure of violation of these constraints. By reformulating the original problem in
this form, we can separate it into three independent sub-problems. The second sub-problem

−max
z>0

∑
u,v

∑

ij

µ
(u,v)
ij zij , s.t. (3) and (5), (7)

can be solved simply by inspection. The first sub-problem

min
x>0

∑
u,v

∑

i,j

(µ(u,v)
ij + λuvcij)x

(u,v)
ij s.t. (1) and (5), (8)

corresponds to n2 well-defined shortest path problems. These can also be solved in a straight-
forward manner, using existing, computationally competitive algorithms.

One may solve the integer problem using the the subgradient method [1]. Once we find
a solution to the relaxed Lagrangian model of the LP, we can use steepest descent to find a
direction and an appropriate step size to go towards a better solution in the next iteration.
This is repeated until we converge at a solution for the original ILP.

There are two reasons for pursuing such an iterative algorithm for the relaxed Lagrangian
model. First, with a good updating mechanism, this iterative algorithm can converge to
a solution within a reasonable amount of time, even for large size networks. Second, this
iterative algorithm allows us to develop appropriate distributed algorithms for the problem,
which is the ultimate aim of the project.

113



4 A heuristic approach

While the exact approach is useful as a baseline, it is currently not able to solve problems
of the size expected in some real applications, where between 1000 and 10000 users may be
expected to be on-line at any one time. We therefore looked at developing a heuristic solution
technique able to solve larger problems in a reasonable amount of time.

The heuristic approach is in two phases. In the first phase, a “backbone” is created which
ensures all nodes are connected. The backbone observes all the degree constraints. In the
second phase, additional arcs are added which try to improve the performance of the network.
The intuition here is that if we have an efficient backbone, a large number of the required
connections can be made within the requirements. We can then use “spare” connections to
improve the performance where maximum time requirements have not been met. We want
a backbone that is efficient and which spans (i.e. connects) all nodes. In graph theory, a
minimum-weight spanning tree is called a Minimum Spanning Tree. In our case, we have
maximum degree constraints, which is known as the Degree-Constrained Minimum Spanning
Tree (DCMST).

An interesting question is, how should we weight the MST? There are two options. If we
use the maximum time requirements (kij), then we will tend to link nodes that must be close
in the virtual world. This is very useful, and will tend to give the best performance to those
who need it most. It may, however, tend to use a lot of long (in the physical world) links.
Another approach is to use the actual transmission times (cij) to weight the MST. This will
tend to link nodes that are close together in the physical world. This will mean that each
individual link will tend to be short, but many hops may be required to cross the network.

4.1 Creating the backbone

Unfortunately, solving the DCMST is an NP-hard problem [3]. However, some efficient heuris-
tics have been developed [6]. The team developed a method suited to our application. We
base this method on Prim’s algorithm for the MST (see, for example, [2]). In that algorithm,
a tree is built up by adding the lowest weight arc to any currently unconnected node. We can
use a variant of this algorithm where we simply place an extra restriction that adding the arc
does not break any degree constraints.

We use wij to denote the weight of a potential arc. As noted in Section 4, we can base
the MST on either closeness in the physical network (wij = cij), or closeness in the virtual
world (wij = kij). The full algorithm is given in Figure 1.

At the end of this procedure, we have a connected backbone. By construction, it observes
the degree constraints, and has a low total weight, where weights are derived from either
the virtual network or the physical network. Backbones for an example 100-node problem
(created using the test problem generator described in Section 5 are given in Figure 2 (based
on the physical network) and Figure 3 (based on the virtual network).

4.2 Augmenting the backbone

Once the backbone has been created, extra arcs are added which help to reduce the time
to transmit messages between nodes in the virtual network that require small transmission
times. Potential arcs (i, j) are considered in order of increasing weight wij . The weight here
is different to the weight used in constructing the backbone. In the simplest version of the

114



• Find the arc (i0, j0) which minimises wi0j0 .
• B = {(i0, j0)}
• while ∃i ∈ N such that nB(i) == 0

– Among all potential arcs (i, j) for which

∗ nB(i) == 0 and 0 < nB(j) and nB(j) < mj ,
or

∗ nB(j) == 0 and 0 < nB(i) and nB(i) < mi

– find the arc (i′, j′) which minimises wi′j′ .

– Add arc (i′, j′) to B.

Figure 1: The DCMST algorithm

Figure 2: A backbone using transmission time as arc weight

115



Figure 3: A backbone using maximum allowable time as arc weight

procedure, the weight is exactly ki,j , the required transmission time. Variants to this are
discussed below.

The arc-set G is initialised to contain all the arcs in B (from the algorithm description in
Figure 1). Then, for each arc (i, j) in order of increasing wij

• if (i, j) ∈ G they are connected as well as they ever will be. Continue with the next arc.
• If nG(i) < mi and nG(j) < mj (i.e. neither node has reached its maximum number of

neighbours), the arc (i, j) is simply added, and we continue with the next arc.
• Otherwise, we attempt to connect i and j via existing neighbours. We find ki and kj

such that

– ki is i itself, or a neighbour of i in G

– nG(ki) < mki

– kj is j itself, or a neighbour of j in G

– nG(kj) < mkj

If such one or more such (ki, kj) can be found, we choose the pair so that C(ki, kj) is
minimised among all such ki and kj , and add (ki, kj) to G.

The augmentations considered are shown in Figure 4.

4.3 Algorithm variants

Several variants to the algorithm described in Section 4.2 were explored.

116



Figure 4: Augmentations considered

4.3.1 Favouring arcs

In the augmentation procedure, we consider potential arcs in order of increasing weight wij .
We can use wij = kij , the required transmission time, but we also looked at some alternatives.
Favour short arcs Here, we adjust the weight so that amongst arcs with the same kij , arcs

that have low physical transmission times are considered first. The intuition is that we
want to use high-speed connections where possible.

wij = kij + 100C ′
ij , where C ′

ij =
cij

maxi,j cij
.

and Cij is a normalised cost
Favour long arcs This is the converse of the above – we adjust the weight so that amongst

arcs with the same kij , arcs that have high physical transmission times are considered
first. The intuition here is that we want to favour looking at nodes that have low
allowable transmission times, but are far apart in the physical world. For this we use

wij = kij + 100(1− C ′
ij),

where C ′
ij is a normalised cost as above.

Favour high-degree nodes We can favour high-degree nodes, so that nodes with the most
spare connections are considered first. The intuition is that we want to delay using up
scarce connections as long as possible. Here

wij = kij −mi −mj .

117



4.3.2 Randomness

In addition to the favouring methods outlined above, some randomisation may help. So, after
the favouring calculation, we set

wij = wij + rand() ∗R

where rand() is a uniform random number generator given samples in the range [0, 1), and R
controls the magnitude of randomness (RandMag).

4.3.3 Path check

Notice that when examining the link between i and j, we do not look at the time required to
transmit from i to j through G. Hence we may be using up precious connections to reduce
the time for nodes that are already sufficiently “close” in G.

We can add test, after the test for direct connection between i and j:
• If cG(i, j) ≤ kij , continue with the next arc.
The main reason not to look at this feature is the cost of computation. Because the set

G is constantly changing, we must calculate cG(i, j) for each arc considered.
We use an “A∗” method (see, for example, [8]), using the direct connection delay cij as the

heuristic estimate function h in that description. This method is able to calculate distances
in such a graph very efficiently. Our implementation also stops looking when it can prove
that the cost exceeds kij , also saving time.

4.3.4 MST Improvement

The algorithm that is used to create the degree-constrained minimum spanning tree is a
“construct-only” method – it does not try to improve the solution afterwards. It may be
possible to find a better DCMST by post-processing the solution.

We looked at an improvement procedure that tries to swap arcs in B for cheaper ones.
That is for each (i, j) ∈ B, we try to find a j′ such that

• Connecting i to j′ is cheaper than connecting via j.
• Replacing (i, j) with (i, j′) must also preserve the connectedness of the graph.

All feasible swaps are examined, and the one that decreases the total weight the most is
implemented. The procedure is repeated until no more cost-reducing swaps are found.

4.3.5 Double MST

We have mentioned that we can create a backbone based on distance in either physical or
virtual networks. But why not both? In this variant, the backbone was created by first using
the DCMST based on physical distance. Another DCMST was then created based on virtual
distance. Arcs from the second tree were added so long as they did not break the degree
constraint for a node. The backbone augmentation procedure (Section 4.2) was then called
as usual.

118



4.3.6 Hubs

One idea developed during MISG week was to try to use a Travelling Salesman Problem tour,
rather than a tree, as the basis for the backbone. In the Travelling Salesman Problem (TSP)
[7] a salesman must visit each of a set of cities exactly once, then return to their start city, at
minimum cost. The advantage of such a tour over a tree is that each node has exactly two
neighbours, so the capacity “used up” by the procedure is limited. The idea was to group
nodes into clusters with a high-degree node at the centre. These nodes were then connected
using a travelling salesman tour.

The way it was implemented for testing was that a search was made for the highest value
d such that at least d nodes can be found with at least d spare connections. These d nodes
would form the clusters, and be connected to d − 2 neighbours. We would then use a TSP
to connect the d centres. Unfortunately, this procedure cannot guarantee that the graph is
connected, so it cannot be used as a backbone. We therefore calculate the hub graph, and
add add arcs from the hub to the DCMST backbone.

An example hub graph is given in Figure 5. For the example dataset, there are only 8
centres with (spare) degree 9, but 13 centres with 8 spare connections. Hence those 13 are
used as the centres of hubs.

Figure 5: A Hub graph

5 Testing the heuristic

Unfortunately, we were not able to obtain test data from the real world. Instead we developed
a test data generator. Essentially, it takes random points in a Euclidean box as nodes on the
physical network. The (symmetric) cost to transmit a message is the Euclidean distance, plus
a “hop cost” – the delay introduced by passing through a node, regardless of the distance
travelled.

119



hopcost 10
box 100
virtbox 10000
dmean 6.5
dstddev 3
clusbox 200
numinclusave 5
numinclussd 2
minvirtdist 100

Table 2: Paremeters for testing the heuristic

A separate virtual network is made. This world is clustered. Again, distances are Eu-
clidean distances between nodes. The virtual nodes are then randomly assigned to physical
nodes. The clustering in the virtual world is achieved by first deciding how many nodes will
be in the cluster – the number is drawn from a Normal distribution. A mid-point is selected
for the cluster within virtual space, and nodes are distributed uniform-randomly in a box cen-
tred on that mid-point. Maximum degrees for a node are selected randomly from a Normal
distribution. The generator takes a number of parameters:
size The number of nodes to generate
box The size of the (square) box from which physical coordinates are drawn
virtbox The size of the (square) box from which virtual coordinates are drawn
numinclusave,numinclussd The parameters of the Normal distribution used to select the

number of nodes in a cluster of virtual nodes.
clusbox The size of the (square) box within which members of a cluster are positioned
hopcost The extra cost of transmitting through a node
dmean, dstddev The mean and standard deviation of the Normal distribution from which

maximum degree constraints are drawn
minvirtdist The minimum virtual distance
The kij are given simply by the Euclidean distance between nodes in the virtual world. Some
sanity checks are done

• If the distance is less than the minimum virtual distance given in the parameters, kij is
set to the minimum distance.

• If the virtual distance is less than 1.1 * (the physical distance), the kij is set to the
larger value. Otherwise, the problem is trivially unsolvable.

We generated 100 test problems of size 100, so that we could look at the effect of the algorithm
variants.

5.1 Results for size 100 problems

By construction, the degree constraints are always met by the heuristic solution method. In
the test problems we generated, not all maximum-time constraints could be met. We therefore
treat the deviation from the maximum-time constraints as an objective to be minimised. We
looked at two forms of this objective

• Minimise the number of minimum-time constraints violated
• Minimise the sum of minimum-time constraint violations

120



Variant Section Variant values
Backbone Type 4.1 and 4.3.5 Physical, Virtual, Both
Favour 4.3.1 Long, Short, Max-degree
Randomness (R) 4.3.2 0, 25, 50, 100, 200, 500
Path Check 4.3.3 False, True
ImproveMST 4.3.4 False, True
Double MST 4.3.5 False, True
Hubs 4.3.6 False, True

Table 3: Algorithm Variants (default in bold)

Objective Backbone type 10% Mean 90% Increase %
Number of Violations Physical 36 76.3 120 0

Virtual 26 65.6 102 -15
Both 18 50.5 84 -2

Sum of Violations Physical 466 1360 2480 0
Virtual 548 1880 3000 38
Both 198 713 1340 -0

Table 4: Backbone type

Table 3 gives the variants examined. The default variant is given in bold. The following
sections provide results for each variant. The results for various values the parameter are
given, with other values held at the defaults in Table 3. Each table gives
10%: The tenth percentile of the 100 problems – i.e. only 10% of problems had a better value

than this. 100 test problems
Mean: The mean value from the 100 problems
90%: The ninetieth percentile for the 100 problems – i.e. only 10% of problems had a worse

value than this.
Increase %: The amount by which that variant increases the objective value of the default variant,

on average over the 100 problems, expressed as a percentage. So negative numbers mean
a better objective.

These are given for both the number of violations, and the sum of time violations. Table 4
shows an interesting result. Using virtual rather than physical distances reduces the number
of violations, but then increases the magnitude of those violations. Using both networks does
not seem to improve matters. We use backbones based on physical distances in all runs.
Table 5 shows that favouring long arcs in augmentation seems to give the best results. Table
6 shows that a small amount of randomness can improve the result – here by more than
10% under either objective. This indicates that it would be worthwhile to make several runs
with different seeds and choose the best result. Table 7 shows that checking for an existing
connection seems to make a small improvement. Table 8 Improving the MST makes a very
small difference – on the whole probably not worth the effort. Table 9 shows that the use of
hubs does not seem to improve on the basic DCMST backbone.

121



Objective Favour 10% Mean 90% Increase %
Number of Violations Long 36 76.3 120 0

Short 40 84.6 130 12
High-Degree 54 96.1 142 32

Sum of Violations Long 466 1360 2480 0
Short 564 1530 2550 16
High-Degree 816 1700 2570 36

Table 5: Favour

Objective R 10% Mean 90% Increase %
Number of Violations 0 36 76.3 120 0

25 30 67.4 112 -12
50 30 67.5 110 -12
100 30 69.8 110 -7
200 32 75.7 114 0
500 44 89 132 21

Sum of Violations 0 466 1360 2480 0
25 348 1140 2140 -18
50 400 1150 2130 -17
100 464 1180 2030 -12
200 442 1290 2080 -3
500 618 1530 2410 18

Table 6: Randomness

Objective Do path check? 10% Mean 90% Increase %
Number of Violations False 36 76.3 120 0

True 32 73.5 122 -3
Sum of Violations False 466 1360 2480 0

True 444 1290 2250 -6

Table 7: Path check

Objective Improve MST? 10% Mean 90% Increase %
Number of Violations False 36 76.3 120 0

True 32 76.4 126 0
Sum of Violations False 466 1360 2480 0

True 450 1370 2480 -1

Table 8: Improve MST

122



Objective Use hubs? 10% Mean 90% Increase %
Number of Violations False 36 76.3 120 0

True 44 82.5 130 11
Sum of Violations False 466 1360 2480 0

True 658 1500 2560 15

Table 9: Hubs

5.2 Results for larger problems

Using the insights gathered from the smaller problems, we ran tests on some problems with
1000 nodes. These are closer to the size of problems that will be encountered in practice. The
algorithm variant used was

Backbone Type Physical
Favour Long
Randomness (R) 0
Path Check True
ImproveMST False
Hubs False

We note that using some randomness may improve results, but decided to use no randomness
to give a more stable baseline. The results are

10% Mean 90%
Number of Violations 1120 1310 1500
Sum of Violations 18200 27800 34200

Thus, of the 106 possible connections, less than 0.2% fail to meet the performance requirement.
However, execution time for this version was rather long1. Average execution time was
around 130 seconds. However, if we do not use the path-check option, solution time decreases
significantly. The following results were achieved with Path Check set to false:

10% Mean 90%
Number of Violations 1090 1300 1470
Sum of Violations 18300 27800 33800

These results are essentially the same. However the execution time was less than 3 seconds
on average, split equally between spanning tree calculation, and heuristic augmentation. In-
terestingly, using both physical and virtual spanning trees (that is, Backbone Type “Both”)
gave a significant improvement in the larger size problems.

10% Mean 90%
Number of Violations 642 929 1110
Sum of Violations 10700 19900 25300

1Our testing machine was a desktop Linux box (dual core, Intel Pentium-4 3600 MHz processors, 2GB
cache)

123



This was also very slow when using the path-check option – execution times around 2.5 min-
utes. Again, simply skipping the path-check speeded up execution without notably decreasing
quality:

10% Mean 90%
Number of Violations 662 933 1190
Sum of Violations 12100 20100 24600

Execution time without path check was around 4.5 seconds. We would therefore recommend
this as the variant with best prospects of success.

5.3 Results for small problems

In order to see how far from optimal the heuristic solutions are, we ran the heuristic procedure
on the small problems tested in Section 3.2. We generated five solutions to each problem,
and selected the best. Execution times in all cases were negligible (< 0.01 seconds). The
results are presented for the standard combination of parameters (set 1) and a set which
gives improved results (set 2). So, even though we know that feasible solutions exist, only
two of these solutions could be found using the standard parameter values (set 1). Exploring
other parameters values, we found that set 2 gave better results. This shows that while the

Backbone Type Physical
Favour Long
Randomness (R) 0
Path Check False
ImproveMST False
Hubs False

Backbone Type Physical
Favour Long
Randomness (R) 200
Path Check True
ImproveMST True
Hubs False

Table 10: Parameter values, set 1 (left) and set 2 (right)

Number of Sum of
Prob Violations Violations
#1 2 2
#2 6 126
#3 2 16
#4 2 2
#5 2 54
#6 2 6
#7 0 0
#8 12 142
#9 0 0
#10 10 198

Number of Sum of
Prob Violations Violations
#1 2 6
#2 2 30
#3 0 0
#4 2 2
#5 2 58
#6 2 6
#7 0 0
#8 12 70
#9 0 0
#10 8 104

Table 11: Results for small problems: parameter set 1 (left) and set 2 (right)

heuristic is able to produce some good solutions, it fails to find good solutions when we know
they exist. Unfortunately, we were not able to compare the exact and heuristic solutions, to
see if there were systematic features that could be used to improve the heuristic approach.
We must leave this for future exploration.

124



6 Conclusions

We have formulated an exact ILP model for the problem of communicating on a virtual net-
work. While this ILP model was successful in solving small problems, it is not recommended
to handle larger instances, due to the fact that the number of variables in the model grows
exponentially as the graph size grows. However, this ILP model can provide a benchmark for
heuristic algorithms developed for this problem. We have also described a heuristic approach,
and explored several variants of the algorithm. We found a solution that seems to perform
well with reasonable computation time. The heuristic is able to find solutions that respect
the degree constraints, but show a small number of violations of the desired time constraints.
Tests on small problems show that heuristic is not always able to find feasible solutions, even
though the exact method has shown they exist. It would be interesting in the future to look
at whether insights gained by looking at exact solutions can be used to improve the heuristic.
We look forward to obtaining some real-world data to see if the heuristic algorithm (or one
of its variants) gives acceptable results.

Acknowledgements

NICTA is funded by the Australian Government as represented by the Department of Broad-
band, Communications and the Digital Economy and the ARC through the ICT Centre of
Excellence program. The third author is supported by the ARC Discovery Grant DP0984470.
The authors would like to thank the team of contributors Pam Davy, Gregory Doherty and
Jacqui Ramagge, and the AMSI Summer School students Pierre Braun, James Holland, Ge Li,
Michael Sun, Robert Tang and Fan Wu. The authors are also grateful to Michael Haythorpe
for his assistance.

References

[1] Bertsekas, D.P. (1999) Nonlinear Programming, Athena Scientific, Cambridge, MA.
[2] Cormen, T.H., Leiserson, C.E. & Rivest, R.L. (1989) Introduction to Algorithms, The

MIT Electrical Engineering and Computer Science Series, The MIT Press, Cambridge
Massachusetts.

[3] Garey, M.R. & Johnson, D.S. (1979) Computers and Intractability: A Guide to the Theory
of NP-Completeness, W.H. Freeman, San Francisco.

[4] Jiang, X., Safaei, F. & Boustead, P. (2005) Latency and scalability: A survey of issues
and techinques for supporting networked games, In IEEE 7th Malaysia International
Conference on Communication and the 13th IEEE International Conference on Networks.

[5] Jiang, X., Zafaei, F. & Boustead, P. (2007) An approach to achieve scalability through
a structured peer-to-peer network for massively multiplayer online role playing games,
Computer Communication, 30, 3075-3084.

[6] Krishnamoorthy, M., Ernst, A.T. & Sharaiha Y.M. (2001) Comparison of algorithms for
the degree constrained minimum spanning tree, Journal of Heuristics, 7 (6), 587-611.

[7] Lawler, E.L., Lenstra, J.K., Rinooy Kan, A.H.G. & Shmoys, D.B. (1985) The Traveling
Salesman Problem: A Guided Tour of Combinatorial Optimization, John Wiley and Sons,
Chichester.

[8] Russell, S. & Norvig, P. (1995) Artificial Intelligence: A Modern Approach, Series in
Artificial Intelligence, Prentice Hall, Englewood Cliffs, New Jersey.

125


	mainnew.pdf

