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Problem
Stated briefly the problem presented by CAA was to predict or model aspects of
the delay to flights from UK airports caused by Air Traffic Control restrictions.

Important points .o note about the cause of such delays are as follows:

• Although all UK flights require a flight plan to be filed at least four hours
in advance of departure, flights on routes subject to flow restrictions, in ad-
dition, need specific take-off slots to be granted, by flow regulators. Airlines
must bid for these slots, but not earlier than three hours before requested
departure.

• in theory, airlines are given a take-off slot in the order in which the requests
are made;

• there are const aints on the number of flights leaving an airport each hour;

• there are constraints on "he number of flights passing through key geograph-
ical points, called 'way points'.

vVe have throughout assumed that each airline attempts to put in its request
for a take-off slot at exactly three hours before it is required since this maximises
the chance of getting the slot. However, the order that the requests are displayed
to the regulator may differ from the flight plan order. Such perturbations may
have many causes, for instance

• different airlines entering requests for identical departure times

• single airlines entering requests for identical departure times (at different
airports) .

Let us glve some examples of how small changes in ordering may affect delay.
The examples are intenrionallv simplified but are illustrative of the type of situation
which arises. In Figure 1 we see the flight route Heathrow (LHR) to Z. The point
annotated 8/60 is a way point which can accept a maximum smoothed traffic of 8
flights per 60 minutes. If less than eight flights are requested per hour then there
are no delays.

On the other hand, suppose that we have the more complicated situation shown
in Figure 2. Depending on the order in which requests for take-off slots come,
there mayor may not be differing delays. This can be seen by comparing the two
following situations ill which one plane wants to go from GLA to X and another
from GLA tf) Y. Suppose that there have already been three flights to X and 11
flights to Y already requested.



Figure 1: No interaction.
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Figure 2: Interaction.



1. If the request for the flight to X comes in before that to Y there will be no
delay to X but a five minute delay to Y.

2. If the request for Y comes before X then there will be no delay for Y but a
15 minute delay for X.

From this example it is clear that there is great scope for minimising total delays
(perhaps suitably weighted) but this is not what the regulators are supposed to
do. The true situation is more complicated in that different regulators are in
competition for slots at common domestic way points.

The CAA have a computer program that takes as input the flight plan times
and ordering and outputs delays:

FLIGHT PLAN ORDER ---+ DELAY

Unfortunately, the output is in poor agreement with reality.
We can represent the problem schematically as
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An interesting feature of the CAA computer program is that there are no
significant trends in the error between predicted and actual delays. It does not
consistently over- or under-estimate the delays.

Some of the CAA questions
1. Is it possible to produce realistic delays with this kind of model?

It is unlikely that a totally deterministic model will predict the delays accu-
rately.

2. What kind of modelling strategy is needed?

Since real-world delays and alterations to the theoretical ordering are un-
predictable-and difficult to model it is probably best to seek a probabilistic
model.

3. What level of agreement between modelling and actual delays is it feasible
to aim for?

If we accept a probabilistic model then we expect, with a sufficiently large
sample, to predict the mean and the standard deviation of delays.



Simple paradigm models show that small scale reordering can easily l~ad to
large scale changes in delays. It is important that any probabilistic model is based
on changes to orderings of requests for take-off slots rather than the times at which
these requests are made: the probability of a reordering of two flights is insensitive
to the time between the requests, at least if these times are not large.

One strategy of obvious appeal is to use 'weather forecasting tactics', that is, to
make small random alterations to the order of flight requests, then use the current
computer code to calculate estimated delays. This will lead to a distribution of
predicted delays. It will then be possible estimate the amount of random ordering
needed to get theoretical results close to the actual results. Such an amount of
reordering mayor may not be realistic but will give useful information about why
the current computer code is inaccurate. This idea is illustrated by the following
simulation.

A simple simulation
To investigate how flight departure delays can develop, it is illustrative to consider a
simple case. Suppose, for example, that a sequence of flights are designated to leave
London (L) and fly either through one constrained way point P, or through two
constrained way points, P then R. Let the total number of flights be n = np + nn,
with np flights through P only, and nR through P and R. Flights are designated to
leave at equal time intervals. For simplicity, we will assume that the time between
successive flights, the journey time from L to P and the journey time from P to R
are all integer multiples of some unit of time. Furthermore, we adopt the times as
follows:

time between designated departures T,
journey time from L to P = 1,
journey time from P to R K.

The choice of T and K is discussed later.

We suppose that initially airspace is empty. Each flight takes off at its desig-
nated departure time, or as soon as possible afterwards, according to the following
rules:

• Only one aircraft can occupy each of the LP and PR routes during a single
time interval.

• In general, a 'first-come, first-served' system applies. When a flight is des-
ignated to depart, time corresponding to the soonest possible journey is re-
served on the LP and PR routes. Reservations cannot be overwritten (even
for the sake of global optimisation).

• A flight through R cannot pause at P, and so cannot leave London if the PR
route is not free when necessary, i.e. 1 time unit after departure.



One feature of this system is that a limited form of 'queue-jumping' can occur.
Specifically, a flight through P only can depart as soon as a time interval of 1 unit
is available on the LP route - even though several future bookings for this route
may already exist. Following this system, we may compute the departure time
of each flight, and the delay d, of the ith flight: d, = (actual departure time) -
(designated departure time).

As an example of the way we calculate delays, consider the following trivial
example. Here n = 4, n» = 2, nn = 2, K = 4, T = 3, and we take a sequence of
flights {P, R, R, P}. The table below shows the reservations made for each flight
on the two routes, and any delays.

designated departure
time interval flight no. destination delay L-P P-R

1
2
3
4
5
6
7
8
9
10
11
12
13

1 P o #1

2 R o #2

#3

#2
#2
#2
#2
#3
#3
#3
#3

3 R 1

4 p o #4

total delay = 1

The choice of the time interval T is obviously important. If T is large, then
delays may be few and far between; if T is very small, then significant delays may
be inevitable. The minimum value of T where a sequence can exist that gives rise
to no delays is T = (nr In)K. Since with this value of T delays may generally be
large, T is taken to be the smallest integer:::; 2(n, In)K.

Given a sequence of flights, we may thus compute the average delay (1
2::f:l d, In. Suppose that the original sequence is now perturbed by successively
swapping adjacent pairs with probability p. To investigate the effect of such a per-
turbation on (1, a short FORTRAN program was written. The program produces
an original sequence, calculates the (average) delay, and then repeatedly perturbs
the original sequence as above, and calculates the new delay in each case. Random
perturbations were simulated by using a pseudo-random number created by a NAG
routine.



Figure 3 below shows computed distributions of average delays for the case
n = 1000, np = 750, nR = 250, K = 4, T = 2, with the number of perturbations
m = 1000 and p taking values 0.03 and 0.01. The same original sequence was
used, and the average delay for this unperturbed sequence is 0.237 units. Both
distributions clearly exhibit multiple local peaks.
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Figure 3: Distribution of average delays

Let's examine a sequence of P's and R's to discover the patterns that gives rise
to delays. To do that it is useful to look at clumps. A clump is a subsequence of
maximal length with an equal number of Rand P's beginning with two R's. For
example, in the following sequence the underlined parts are the clumps:

PPRPRPRRPRPRPPRPPPRPPPRRPPPRRPRPRPPP.

When perturbing a sequence of R and P's as above, it is most important what
happens to the P's immediately in front of a clump. Consider a clump C, with ne
elements in it. Note that a clump is preceded by prefixes of type RP or PP. If the



prefix of C is of type RP, and the P in front of C is swapped forward (with R),
then depending on the distribution of P's in C a little consideration shows that
the total delay increases with between ne - ne /2 and ne + ne /2 units. If on the
other hand the P is swapped backwards (possible in both cases) then the total
delay decreases by between (ne - 2) - (ne/2 -1) and (ne - 2) + (ne/2 -1) units.
All other swaps, inside or outside clumps, change the total delay by either 0, 1 or
3 units.

The distribution of average delays when perturbing a sequence depends cru-
cially on the size and number of clumps in the original sequence. Because of the
large effect described above that a swap in front of a clump has on the average
delay, one expects a rather large variance in the distribution. This is also observed
on the shown figures with a multiple number of peaks. We conclude that the size
of average delay is rather unpredictable when there is a random element in the
perturbation method.
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