

RB/3/2011

Cryptographic techniques used to
provide integrity of digital content

in long-term storage

REPORT ON THE PROBLEM

PROVIDING INTEGRITY OF LONG-TERM STORAGE ESGI77

1

Problem presented by

Martin Šimka

Paweł Wojciechowski

Polish Security Printing Works (PWPW)

PROVIDING INTEGRITY OF LONG-TERM STORAGE ESGI77

2

Report authors

Małgorzata Bladoszewska (University of Warsaw)

Tomasz Brożek (Warsaw School of Information Technology)

Michał Zając (University of Warsaw)

Contributors

Lucyna Cieślik (Polish Academy of Sciences)

Maria Donten-Bury (University of Warsaw)

Kamil Kulesza (Polish Academy of Science)

John Ockendon (University of Oxford)

Łukasz Stettner (Polish Academy of Sciences)

Piotr Wojdyłło (Polish Academy of Sciences)

Wladimir Zubkow (University of Oxford)

ESGI77 was jointly organised by

System Research Institute of the Polish Academy of Sciences

Institute of Mathematics of the Polish Academy of Sciences

Oxford Centre for Collaborative Applied Mathematics

and it was supported by

Sygnity S.A.

Industrial Development Agency Joint Stock Company

under the honorary patronage of

The British Embassy in Poland

PROVIDING INTEGRITY OF LONG-TERM STORAGE ESGI77

3

Executive Summary
The main objective of the project was to obtain advanced
mathematical methods to guarantee the verification that a required
level of data integrity is maintained in long-term storage. The
secondary objective was to provide methods for the evaluation of
data loss and recovery. Additionally, we have provided the
following initial constraints for the problem: a limitation of
additional storage space, a minimal threshold for desired level of
data integrity and a defined probability of a single-bit corruption.

With regard to the main objective, the study group focused on the
exploration methods based on hash values. It has been indicated
that in the case of tight constraints, suggested by PWPW, it is not
possible to provide any method based only on the hash values. This
observation stems from the fact that the high probability of bit
corruption leads to unacceptably large number of broken hashes,
which in turn stands in contradiction with the limitation for
additional storage space.

However, having loosened the initial constraints to some extent, the
study group has proposed two methods that use only the hash
values. The first method, based on a simple scheme of data
subdivision in disjoint subsets, has been provided as a benchmark
for other methods discussed in this report. The second method
(“hypercube” method), introduced as a type of the wider class of
clever-subdivision methods, is built on the concept of rewriting
data-stream into a n-dimensional hypercube and calculating hash
values for some particular (overlapping) sections of the cube.

We have obtained interesting results by combining hash value
methods with error-correction techniques. The proposed
framework, based on the BCH codes, appears to have promising
properties, hence further research in this field is strongly
recommended.

As a part of the report we have also presented features of secret
sharing methods for the benefit of novel distributed data-storage
scenarios. We have provided an overview of some interesting
aspects of secret sharing techniques and several examples of
possible applications.

PROVIDING INTEGRITY OF LONG-TERM STORAGE ESGI77

4

Table of contents
1 INTRODUCTION ... 5

1.1 PROBLEM DESCRIPTION ... 5
1.2 PROBLEM BREAKDOWN ... 5

2 HASH FUNCTIONS ... 6

2.1 BASICS .. 7
2.2 RESTRICTIONS ON USING HASH FUNCTIONS ... 7
2.3 ALTERNATIVE DIVISION METHOD ... 8
2.4 HASH CODES WITH ERROR CORRECTION ... 11

3 SECURE SECRET SHARING METHOD ... 13
3.1 BASIC CAPABILITIES .. 14
3.2 EXTENDED CAPABILITIES ... 15
3.3 COMBINING PROPERTIES .. 15
3.4 ADDITIONAL CONSIDERATIONS ... 16
3.5 OPEN QUESTIONS ... 16

4 CONCLUSION AND PROPOSALS FOR FURTHER RESEARCH . 16
4.1 HASH FUNCTIONS .. 16
4.2 SECRET SHARING METHOD .. 17
4.3 OTHER POSSIBILITIES .. 17

BIBLIOGRAPHY .. 18

5 APPENDIX... 18
5.1 HYPERCUBE MODEL .. 18

PROVIDING INTEGRITY OF LONG-TERM STORAGE ESGI77

5

1 Introduction
1.1 Problem description
(1.1.1) The increase in the amount of data, both created and stored electronically, entails the

necessity to construct various data storage systems. In the view of different requested
storage periods, we divide systems into:
• short-term – storage period not longer than 3 years,
• medium-term – storage period between 3 and 10 years,
• long-term – storage period longer than 10 years, but with a specified end-date,
• unlimited – storage period longer than 10 years with no specified end-date.

(1.1.2) The unlimited storage is sometimes called “eternal”. In this case we have to pay
special attention to the integrity of the stored digital content. For this reason, various
digital marking techniques are used, so that even after a long time one should be able
to verify the integrity of stored data.

(1.1.3) The main objective is to use advanced mathematical methods, especially
cryptographic techniques applied in the process of digital marking of the content.
These techniques ought to guarantee verification and integrity of the long-term-
stored digital content.

(1.1.4) Proposed methods should take into account mainly:
• different kinds (classes) of stored content, e.g. cultural heritage, court

documentation, accounting documentation etc.,
• limitations of database size,
• anticipated frequency of access to stored resources.

(1.1.5) Another very important aspect of the problem consists of finding the limits on
applications of advanced mathematical methods, especially those based on
cryptographic techniques and checking their applicability in the evaluation of data
losses (e.g. due to the "corrosion" of media) as well as in a potential data recovery.
Original data is marked as data in time 0t , while data that might be corrupted

(because of “corrosion”) as data in time 1t .

(1.1.6) Special attention should be paid to:
• Systems and schemes of coding, which allow for a detection and correction of

write errors
• Cryptographic techniques, such as:

♦ public-key and asymmetric encryption,
♦ secret sharing methods,
♦ secure multiparty computations.

1.2 Problem breakdown
(1.2.1) A few assumptions and constrains have been proposed by the PWPW Representative

when discussing the problem:
• T - amount of stored data
• R - amount of additional disk space we can use, in order to provide proof of data

correctness we assume that TR 1.0≈
• r - bit error rate (BER), we assume that r is about 0.01, i.e. at time of testing

integrity of data, 1% of all bits is corrupted.

PROVIDING INTEGRITY OF LONG-TERM STORAGE ESGI77

6

• g - accuracy of given proof of correctness, we assume that g is about 0.01, that is

our proof should show that at least
T

TgTrT −−
of data is correct.

• 0t - time of storing the original data

• 1t - time of testing the integrity of data

(1.2.2) The problem lies in finding such a method that can be used to determine at time

1t , with given accuracy, the ratio of the correct data, stored at time 0t to the all data

available. Furthermore, it is expected that the method allows assessing whether data
is false.

(1.2.3) It would be useful if the method proved that data is not corrupted above a certain
threshold value of BER .

(1.2.4) During the talk with the PWPW Representative we made the following assumptions
and remarks:
• Errors cannot be avoided. A carrier which stores our data is imperfect, so we can

be sure that there will be errors in data over long time horizon.
• The bit error rate, amounting up to 1% of data, is very high. For example, let us

assume that we have a book in which every single letter is coded with 8 bits. Due
to the error ratio, we anticipate about 1 error in every sequence of 100 bits, so in
every sequence of 12 letters we shall expect a wrong letter. Therefore, in this
paper we would like to present some solutions in which our initial assumptions
were less constrained and this ratio is assumed to be smaller.

• Stored data is organized in files and we know the type of every file, like
document, video, audio, archive files. Nevertheless, we can treat data as
a sequence of bits (raw data approach).

(1.2.5) The PWPW Representative presented an idea of using hash functions so as to
provide a proof of correctness of particular parts of data. Our work shows that the
use of hash function only is not sufficient to complete our task, so hash functions
with additional methods of correcting errors have been considered. We have also
taken into account another way of dealing with hashes. It is based on the idea of
computing a number of hashes from different divisions of data into blocks (a.k.a.
hypercube method).

(1.2.6) We do not have any information about physical properties of data carriers, so we
added an assumption of uniformly distribution of errors. If further details about
distribution are available, our methods can be calibrated to deal with it without any
loss of usability.

(1.2.7) Having dealt with hash functions, we focused on a solution based on secret sharing
method. Due to time limitations, however, it could not have been completed during
the workshop. Therefore, we have presented a helicopter view of the functionalities
provided by secret sharing schemes.

2 Hash functions
The starting point for our research was a method based on hash functions. In this
chapter we will show restrictions of using hash functions and describe the main ideas
of extension of such approach.

PROVIDING INTEGRITY OF LONG-TERM STORAGE ESGI77

7

2.1 Basics
The terms and notation used in this section comes, unless stated otherwise, from Handbook of
Applied Cryptography ([1]).

(2.1.1) The hash function is a well known cryptographic tool, widely applied in providing
data integrity check. The idea behind its use in the discussed problem is very simple
– we compute the value of the hash function for given data twice: at the beginning
and at the end of the storage process. If data is changed (loss of integrity), then these
two hash values would most likely differ, otherwise both values remain the same.

(2.1.2) In a more formal way, we can say that hash function h is a function from k}1,0{ to
l}1,0{ , which has the following properties1:

• A minor change of the input string alters the output in at least 2/l bits.
• Probability of finding a bit-stream of the same hash value as another given bit-

stream is negligible2.
• Probability of finding a bit-stream of a given hash value is negligible.

(2.1.3) In order to introduce the notation used in further sections, we shall describe the
integrity check process in a more formal way:
• We describe data by s and hash value by v , where)(shv = at the beginning of

storing period (time 0t).

• After storage (time 1t) data may differ a little (e.g. due to the corrosion), so we
describe it by 's and the corresponding hash value by)'(' shv = .

• If 'vv = then the data is correct with probability almost 1, otherwise we conclude
that data is corrupted. Unfortunately, we do not know the percentage of corrupted
bits – even if only one bit changes, the whole block is corrupted.

2.2 Restrictions on using hash functions
(2.2.1) The use of hash functions in a way presented above has some limitations. We shall

present them with the following algorithm: let us assume that we have divided data
into k blocks of the same length. For every block we compute the hash value at the
beginning and at the end of the storage period. Let us say that we have detected
l corrupted blocks (the appropriate hash values differ). Then the ratio kl / describes
the upper bound of the bit-corruption ratio.

(2.2.2) More formally, we can describe the procedure above in this way:
• We divide a sequence of bits s into blocks ka,,a,a …21 of the same length.

• For ki ,...,2,1= we calculate and save the value)(i iahv = .

• Next, we compare it with the value)'(i iahv' = , that is with the hash function

value computed on the block after storage period. If ii vv '= , we know with

probability almost 1, that there were no corrupted bits in the part ia . In other

cases we have to assume that every bit might be corrupted.

1 Where kl < . Secure hash functions should have the length of output l >= 256 bits.
2 That is expected time needed to obtain two bit-streams with the same has value is exponential to the length of
output of considered function.

PROVIDING INTEGRITY OF LONG-TERM STORAGE ESGI77

8

• We compute { }{ }| |ii v'vk,i=l ≠∈ :...1,2 and denote the value kl / as b .

(2.2.3) In order to determine the usefulness of hash functions we calculate the expected
value of the ratio kl / under constraints given in (1.1.2). Since bits are corrupted
independently (as we have assumed above), we have the following probability that
i-th bit is not corrupted:

 ||)1()'(ia
ii rvvP −== . (1)

The expected value of the kl / reads:

 ||

1
)1(1))'(1(

1
)(ia

i

k

i i rvvP
k

bE −−==−= ∑ =
. (2)

As mentioned in (2.1.2), the length of hash function output is about 256 bits. Since
the additional space for hash codes is TR 1.0= , the length of ia for ki ,...,2,1=

should be at least 2560 bits long. Therefore, in this case the expected value of bit
error rate is:

 1107.61)99.0(1)(122560 ≈⋅−=−= −bE , (3)

which is unacceptably high.

(2.2.4) In conclusion, dividing data into disjoint blocks and computing a hash value for each
of them to check the integrity of data is not particularly useful when assuming the
constraints given in (1.2.1). Such constrains require blocks to be quite big, which
makes the probability of block corruption equal almost 1. However, removing some
of constrains and using smaller output blocks (e.g. 100 bits long) results in lower
performance of the hash function.

2.3 Alternative division method
Introduction

(2.3.1) In paragraph 2.2, we have discussed the scheme of dividing data into disjoint blocks
of equal length. Naturally, this is not the only possible approach to the given
problem: a single bit needs not to be only in one block and blocks may have different
length. It transpires that dividing data into blocks in a clever way leads to a better
estimation of a corruption ratio, so that the upper bound for the ratio is closer to real
value of ratio.

(2.3.2) Our first step to construct such a clever division was to arrange bits in a square (as in
the Figure 1. In this case the blocks for which we calculate hash codes are composed
as rows and columns in a square. Therefore, each bit is included in 2 blocks (1 row
and 1 column, cf. Figure 1).

PROVIDING INTEGRITY OF LONG-TERM STORAGE ESGI77

9

Figure 1 Example of arranging data in a square, 12 hash values are calculated and saved – 6 for rows

(6,12,11,1 ,...,, vvv) and 6 for columns (6,22,21,2 ,...,, vvv).

(2.3.3) At first glance, it seems to make no sense to divide data into overlapping blocks –
blocks would need to be longer so as to satisfy the requirement TR 1.0= , which
increases the probability of corrupting a hash value. Nevertheless, such an approach
may provide a very good upper limit of errors in the data if certain assumptions are
fulfilled. Consider the situation presented in the Figure 2.

Figure 2 Visualization of the given data after storage. Blocks, for which hash value has changed, are
highlighted. As every corrupted bit changes the hash value either for row and column, all potentially
corrupted bits are located on the intersections of the highlighted rows and columns.

Let 21, pp be the percentages of corrupted hash values in respectively rows and
columns. The percentage of corrupted hash values for all blocks equals

2
21 pp

ph

+= (4)

However, the upper bound of corrupted bits is generally smaller and reads:

21 ppb ⋅= . (5)

In the case presented in the Figure 2 083.0,167.0,417.0 ≥== rbph .

Generalization – the hypercube method

(2.3.4) A generalization of the method presented in (2.3.2) can be obtained by arranging data
in a d -dimensional hypercube (cf. Figure 3 for 3-dimensional case).

PROVIDING INTEGRITY OF LONG-TERM STORAGE ESGI77

10

Figure 3 3-dimensional hypercube consisting of 64 cells (grey). Every cell represents 1 bit of data.

Block is a subset of bits forming a section (red, green). In this case there are 48163 =⋅ blocks.

In this general case, if the percentages of corrupted hash values in dimensions
d,...,2,1 equal d2 p,,p,p ...1 respectively, then we have the following upper bound of

bit error rate:
1

21 ...− ⋅⋅⋅= d
dpppb . (6)

Calculations and optimization for hypercube method

(2.3.5) It was our aim to find such parameters of the hypercube that the obtained upper
bound of corrupted bits is the best (the lowest). At the same time, we optimized the
number of dimensions d and the size (number of cells) S of the hypercube (detailed
calculations are presented in the Appendix). We decided to divide the data into parts,
each consisting of S bits and make a hypercube for each of them separately.

(2.3.6) For the purpose of calculating the expected value of b , we assumed that the
distribution of errors in the data is uniform and bits are corrupted.

(2.3.7) We calculated that this method does not work for initial constraints:
TRr 1.0,01.0 == and 256-bit-long hash codes. The reason for this discovery is

analogous to the one described in Section 2.2: for large blocks the probability of
corrupting its hash value is very high. Therefore, we decided to change some of our
assumptions. Firstly, we chose 0001.0=r . Secondly, we decided to use 100-bit-long
hash codes.

Results

(2.3.8) For the assumptions made in 2.3.7, the optimal dimension of a hypercube is equal to
 2 and each part consists of 6104⋅ bits (see Appendix). In this method the expected
value of the upper bound of corrupted bits is smaller than 0.058. We would like to
emphasize that dividing data into disjoint blocks of bits (method described in 2.2.1)
under the same assumptions would give the expected upper bound of corrupted bits
equal to 0.095. The hypercube method lowers the upper bound of errors more than

6.1 times.

PROVIDING INTEGRITY OF LONG-TERM STORAGE ESGI77

11

Remarks & further research

(2.3.9) As indicated in (2.3.6), we assumed uniform distribution of errors in data. We
suspect that this method may work very badly for a specific distribution of errors.
However, we believe that this problem is manageable.

(2.3.10) The method is based on arranging data in a hypercube and calculating hash values
for sections. Generally, there might be other acceptable ways of dividing data into
blocks, giving lower expected value of b under the same assumptions. Firstly, we
can arrange data in a hypercube and calculate hash values for other subsets of bits,
for example hyper-planes. Secondly, we can abandon the idea of the hypercube and
invent a completely different division.

(2.3.11) This method does not give a satisfying upper bound of corrupted bits for 01.0=r ,
which makes it useless in some real-world applications. On the other hand, if we had
a method of measuring the level of the integrity of the data based on dividing data
into blocks, we might improve the expected value of b by dividing data e.g. in a way
presented in 2.3.4. We recommend it as a supporting tool.

2.4 Hash codes with error correction
Introduction

(2.4.1) The major limitation of the hash functions in solving the problem is a very high
probability of hash value corruption for long blocks. As mentioned before, the
analysis of the hash values enables us only to say whether there are any corrupted
bits in a block. To calculate the upper bound, we have to assume that all bits from the
block marked as corrupted may have changed. If we recognized which blocks are
corrupted “only a bit” and which are more corrupted, then we would be able to
measure the level of the integrity of data more precisely.

(2.4.2) For the purpose of such recognition, we decided to use error correcting codes.
Generally, error correcting codes are bits added to original data (or part of data), with
the aim of correcting a predetermined number of errors. In our problem, we use them
in the following way (example in the Figure 4):

1. We divide data into blocks and calculate hash values for each of them.

2. We add codes correcting up to d errors to each block.

3. After storage we correct errors using error correcting codes.

4. After correction we compare saved and new hash values. If there are more than
d errors in a particular block, then stored and calculated hash values differ.
Otherwise, they will remain the same. Based on the information of how many
hash values are changed, we can calculate the upper limit of corrupted bits.

PROVIDING INTEGRITY OF LONG-TERM STORAGE ESGI77

12

Figure 4 Exemplary visualisation of the proposed method. There are 4 blocks of 5 bits each. We add
codes correcting 1 error (grey). Some errors occur in data after storage (3.) (red). We use codes to
correct them. Finally, we calculate hash values again. If a number of errors in a block was bigger than
1 (like in a second block), then not all errors were corrected and the hash value is changed.

(2.4.3) In order to grasp the significance of this method, consider a situation presented in the
Figure 4. After the storage there are 4 errors: 2 in original data and 2 in the added
bits. If we used method presented in 2.2, two blocks would be corrupted. Since we
use error correcting codes, we can recognize that in the fourth block only 1 bit has
changed. Moreover, we can correct this error, which is an added value of the method.

Furthermore, the errors which occur in added bits are also corrected. It means that we
do not need to deal with them additionally.

Theory

(2.4.4) During our research we focused only on the BCH error correcting codes. We would
like to quote the theorem, which enabled us to make some calculations.

We will use the following terms:
• word – sequence of bits;
• coded word – a word which we would like to correct;
• control symbols – additional symbols (bits) used to correct errors in a coded word;
• coding word – a coded word with control symbols.

(2.4.5) Below we shall present the theorem of the BCH codes (proof in [2]):

For each +Zmd, ∈ ,
m

<d
m 22 −

 there exists such a BCH code that all following

statements are true:
• Coding words are 12 −m long.
• This code corrects d errors in a coding word.
• The number of control symbols is md ⋅ .

This means that the length of a coded word is 12 −− dmm .

PROVIDING INTEGRITY OF LONG-TERM STORAGE ESGI77

13

(2.4.6) One of the most important conclusions of this theorem is that we do not need a lot of
additional space for control symbols. If the size of a block is A , we need
approximately Ad log⋅ of additional space to correct d errors.

Results

(2.4.7) We were interested whether we overcame the major limitation of using hash
functions, so we calculated the probability of corrupting hash value. It transpired that
using error correcting codes combined with hash functions would give satisfying
upper bound of corrupted bits for 5.0≈r .

We made calculations for different values of r and R and tried to choose the best
parameters dm, for them. We assumed that we know the BCH code correcting

d errors in the 12 −m bits long coding word. We decided to use 100-bit-long hash
codes. Results are presented in the Table 1.

Table 1. Probability of corrupting hash code depending on the values of Rrdm ,,, .

m d r R Probability of corrupting hash code

16 600 1% T185.0 < 0.1%

16 357 0.5% T1.0 < 0.01%

17 678 0.53% T1.0 < 0.7%

16 357 0.53% T1.0 < 0.4%

15 187 0.53% T1.0 < 0.5%

14 96 0.53% T1.0 < 1.6%

Remarks & further research

(2.4.8) For the purpose of calculations we assumed that the distribution of errors in the data
is uniform (like in the paragraph 2.3). Once more information of error distribution is
available (e.g. the specific storage hardware is selected), obtained results can be
adapted accordingly, possibly with improved performance.

(2.4.9) The main advantage of this method is that it not only measures the level of the
integrity of stored data, but also improves it. It can also be combined with error codes
that are already used by PWPW with the aim of enhancing performance.

(2.4.10) We would like to emphasize that the theorem (2.4.5) guarantees only the existence of
the BCH code satisfying some requirements. We do not know whether effective
algorithms of constructing such a code or coding and decoding words exist.
Moreover, it cannot be ruled out that there are some other error correcting codes
which might be more useful in a real world application. This area is open for further
study.

3 Secure Secret Sharing Method
Having investigated hash functions, we shall now check a different approach. Apart
from ordinary verification of the integrity of long-term-stored digital content, it
might provide some additional features, namely:

PROVIDING INTEGRITY OF LONG-TERM STORAGE ESGI77

14

• extended capabilities in: verification of the integrity, recovery of corrupted bits,
design of the access structure to the stored digital content;

• an opportunity to optimize the PWPW’s requirements concerning storage.

All the features listed above and many others can be provided by secret sharing
protocols. In cryptography, Secure Secret Sharing (SSS) scheme [4] is understood as
a method of the distribution of a secret among a group of participants, all of them
having their own share in the secret. The secret can be reconstructed only when
authorized participants combine their shares.

3.1 Basic capabilities
(3.1.1) By using Secret Sharing Schemes one can store data distributed in some insecure

locations in a secure3 way ([3]).

(3.1.2) Threshold secret sharing. A threshold is a minimal number of participants which have
to co-operate to reconstruct the secret. A scheme, where at least t out of n players is
necessary to reveal the secret is described as a),(nt threshold scheme. It allows
placing securely 1−t shares outside secure locations (e.g. own trusted systems), say,
literally distribute 1−t shares over the Internet.

(3.1.3) Schemes for which we can provide verification of the integrity of secrets are called
Verifiable Secret Sharing (VSS).

(3.1.4) A proper design of the access structure improves the functionality of secret sharing.
• One of the simplest access structures was presented above – every set of at least

t out of n participants is allowed to reconstruct the secret.
• More advanced structures can be implemented as follows:

♦ },...,{ 1 nPPP = is a set of participants taking part in sharing.

♦ Every family R of subsets of P can be an access structure.
• We can provide different levels of access for different participants. For example,

the main participant (PWPW) has more rights than a trusted outsider (e.g.
governmental institutions), which in turn has more rights than a not trusted
participant (e.g. ones using shares from the Internet).

Example 1 (generalised access structure) Our task is to guarantee verification of the
integrity of long-term-stored digital content. For example, let us consider recordings
of speeches of famous politicians. One can distribute a secret among some
governmental institutions and set the condition under which the secret can be
revealed, e.g. at least 5 institutions from 5 different ministries have to collaborate in
order to reconstruct the secret and so on.

By using additional participants with different levels of privileges we can minimise
the probability of leaking or losing the data.

3 In the secret sharing, there are at least two notions of security: information-theoretical and computational
security. There are significant differences between the two types, yet, it is rather beyond the scope of this paper.
In order to simplify further discussion without losing its generality, we will simply discuss secure or perfectly
secure secret sharing schemes.

PROVIDING INTEGRITY OF LONG-TERM STORAGE ESGI77

15

3.2 Extended capabilities
(3.2.1) Now extended capabilities of secret sharing schemes shall be presented.

(3.2.2) Pre-positioned secret sharing. A pre-positioned secret sharing is an example of an
access structure where all data requested to reconstruct the secret is known except for
a single crucial share which has to be given later. For example, the PWPW can
distribute the whole data over the Internet by a pre-positioned secret sharing scheme
with a short, crucial share kept locally. Let us explore a difference between secret
sharing and simple encryption of data in this model. The advantages will be clear
once more extended capabilities are outlined.

Example 2 (scheme with an activating share) Let us assume that we have
a situation described in the Example 1 – data is stored locally on the servers of
PWPW and in a few places all over the world – in the United States, China, Russia
etc. By means of a pre-positioned scheme foreign institutions can partake in given
shares (a share made out of a share is called a subshare) beyond unauthorised
participants who cannot reconstruct institutional shares until foreign and trusted
parties cooperate, because their shares are crucial.

(3.2.3) Proactive Secret Sharing (PSS) has the following features:
• One can change (periodically renew) participants' shares in a secret without

revealing or changing it.
• One can recover corrupted shares (these shares correspond to dishonest

participants). In our case – we can periodically check the consistency of shares
and recover corrupted ones. Another reason to use pro-active secret sharing is the
fact that if we find a corrupted share during the verification process (by e.g. VSS
scheme), we can easily replace a broken share with a correct one. So there is
a simple way to “maintain” integrity of shares periodically, which implies
integrity of data.

(3.2.4) Multi-secret shares have the following features:
• A scheme where any subset of set of participants shares another secret is

available.
• It seems that a single share can be used in a few secrets, optimizing storage space.

Example 3 (multi-secret scheme) In the presented case we can use a multi-secret
scheme. We do not need to create a separate shares and secrets for all files. We can
make just a single sharing scheme with such a property that different subsets of
foreign institutions can reconstruct speeches of different politicians and all speeches
reconstructed in this way make up a collection.

3.3 Combining properties
(3.3.1) One of the most desired properties of secret sharing schemes is its flexibility in

combining functionalities described above. Further research is required to describe
which properties can be combined with each other.

(3.3.2) In our case – we might conduct research aimed at developing a scheme which is e.g.
• perfectly secure, pro-active, integrity-providing and activated by a share from the

PWPW.
• a multi-secret scheme where any subset of participants has its own secret that

cannot be revealed without the share from the PWPW.

PROVIDING INTEGRITY OF LONG-TERM STORAGE ESGI77

16

(3.3.3) A scheme with combined properties is not necessarily a textbook material available
right away, but has to be carefully engineered instead. Hence, some additional work
might be required before implementation.

3.4 Additional Considerations
(3.4.1) Reconstructing original data from shares might occasionally need some

computational effort and data may not always be available in real-time. Still, task
complexity is polynomial in time, yet, usually feasible in practice.

(3.4.2) It seems that once a perfectly secure secret sharing scheme is applied its users should
be protected against future developments in cryptoanalysis, which would affect the
cryptography based on computational complexity (e.g. most of the employed public-
key cryptosystems like RSA).

3.5 Open questions
(3.5.1) As described above, the secret sharing schemes provide many tools to deal with the

PWPW problem. Still, there are some open questions that definitely need further
investigation:
• Which verification techniques are optimal in solving the problem of corrupted

shares and data in the case of digital content of the PWPW interest? One should
remember that by using secret sharing scheme, we can provide some verification
based on secure multi-party computations.

• Further effort should be expended to design an optimal access structure for
particular types of stored files.

• Various types of files have different data that is crucial to their consistency. It
seems that we do not necessarily need to protect the whole data, but only some
crucial parts. It is worth considering which fragments are really important for each
type of files. If we made this classification, we would be able to protect crucial
parts only by means of secret sharing.

4 Conclusion and proposals for further research
4.1 Hash functions
(4.1.1) Let us recall the method proposed in section 2.2. We divided data into disjoint blocks

of the same length and compared two hash values for each of them – the first value
was computed before the storage, the second – after it. This method was not
considered as a good way of dealing with the given problem. The probability that in
any block of data for which we compute the value of hash function will remain the
same after some time is negligible.

(4.1.2) With some additional assumptions, like limited data size and smaller bit error rate,
we have shown that dividing data into blocks in a clever way may improve the
estimation of corrupted bits ratio. However, due to its limitations, this method should
be applied only as a supporting tool.

(4.1.3) Hash functions combined with error correction methods may provide very good error
estimation. Under given constraints concerning the bit error rate and the maximal
amount of additional data, there is a probability of 0.0001 that not every error in
a single code word will be corrected.

(4.1.4) One of the most convenient cases, for which we can prove that the upper bound of
the number of corrupted bits is small, is when errors are uniformly distributed.

PROVIDING INTEGRITY OF LONG-TERM STORAGE ESGI77

17

Nevertheless, we believe that errors occur rather in blocks, in particular parts of
carrier of data etc., but not uniformly. The question is – can we reorganize the bits to
make the distribution of errors uniform?

4.2 Secret sharing method
(4.2.1) Secret sharing method is an alternative way of thinking about data storing. It

provides a number of new functionalities which allow storing of data divided among
some local (trusted) participants and some untrusted parties (like public FTP servers
or in general ‘the Internet’) in a secure way.

(4.2.2) Different participants taking part in data sharing can enjoy a different level of
privileges in data access and recovery. It is important to determine how many levels
of privileges should be designed and how many participants should be on each level.
It seems that almost any access structure can be implemented by using the secret
sharing.

(4.2.3) In many secret sharing methods we assume that shares stored locally (trusted
participants) are at least of the size of secret. It is worth investigating whether it is
possible to deliver a method which would be both: secure and space-saving (i.e. local
shares are smaller than a secret). We believe that such schemes can be obtained.

(4.2.4) An important property of secret sharing schemes is verifiability of shares. It is
especially crucial in our problem, in which we deal with corrupted data, as
verification protocols can play a role of correcting codes. It is worth exploring which
of them would be optimal in our problem.

(4.2.5) Different secret sharing schemes have various properties. We have described
properties of schemes which are: pro-active (we can periodically change participants’
shares), pre-positioned (there is a crucial share without which a secret cannot be
revealed), multi-secret (a few different secrets are shared) or verifiable (we can
determine which shares were corrupted and reveal a secret without them). The
question is: which of the mentioned properties can be combined?

4.3 Other possibilities
(4.3.1) In this section, we will outline an additional approach, which was discussed after the

77th ESGI, nevertheless it is worth further research. There are check-digit schemes
that allow determining whether a bit-stream was corrupted over a certain threshold,
say, 1% of bits were changed. Should this be a case, the check-digit scheme provides
information that corruption has occurred. Usually the threshold can be set
individually for a particular application. Furthermore, since the main task of the
scheme is error detection not error correction, usually less additional information is
stored (shorter checksum) than in error correction codes. In general, the length of the
checksum can even decreased further, should statistical reasoning be introduced, for
instance it is allowed that in a small number of cases scheme sensitivity is different
from the set threshold (not necessarily lower). In such a situation, it is even possible
to decrease the ration of checksum’s size to the size of information stored with the
increasing volume of information. A good example of such construction is graph
coloring based on the check-digit scheme described in [5]. It is recommended to
research applications of check-digit schemes with the characteristics outlined above
for the purpose of the problem presented by PWPW and to revaluate results already
obtained for hash functions as well as to investigate a joined use of check-digit
schemes with secret sharing methods.

PROVIDING INTEGRITY OF LONG-TERM STORAGE ESGI77

18

Bibliography
[1] Alfred J. Menzes, Paul van Oorschot, Scott A. Vanstone, Handbook of Applied
Cryptography, http://www.cacr.math.uwaterloo.ca/hac/ (link active: 2010/10/17)

[2] Witold Lipski, Wiktor Marek. Analiza kombinatoryczna. Biblioteka
Matematyczna PWN, Warszawa 1986.

[3] Ronald Cramer, Ivan Damgård, Jesper Buus Nielsen, Multiparty Computation,
an Introduction, Contemporary Cryptology (Catalano/ Cramer/ Damgaard/
DiCrescenzo/ Pointcheval/ Takagi), Advanced Courses in Mathematics CRM
Barcelona, Birkhauser, 2005.

[4] Adi Shamir, How to share a secret, Communications of the ACM 22 (11), pages
612–613, 1979

[5] Kamil Kulesza, Zbigniew Kotulski, On a Check-Digit Method Based On Graph
Coloring, Proceeding of IEEE International Conference on “Computer as a Tool”,
EUROCON 2007, Warsaw, September 9-12, pp. 214 - 217, IEEE eXpolre.

5 Appendix
5.1 Hypercube model

Introduction

(5.1.1) In this paragraph we will present detailed calculations for the specific clever division
based on a hypercube (the respective idea and visualization are presented in
paragraph 2.3).

Specification

(5.1.2) We will use the following notation: the dimension of hypercube H is d . Every bit
(cell) has d coordinates (d32 x,,x,x,x ...1). The size of data tS 10= , so the side

length of hypercube is d

t

10 .

(5.1.3) A section in H is a set of d

t

10 cells such that)(d 1− of their coordinates are the
same. Sections are parallel to axes. Section parallel to i -th axis and meeting point

()dx,,x,x ...21 is defined below:

() ()












∧∧∧∧

∧∧∈

−−)x=(x)x=(x)x=(x

)x=(x)x=(xHx,,x,x
=x,,x,xS

dd+i+iii

d
di

.......

...:...
...

1111

221121
21 (7)

Dependences

(5.1.4) Before stating anything about the hypercube method, we shall discuss the main
dependences between different values describing the method, such as: additional
space R to remember hash values, the size of data tS 10= , the dimension of the
hypercube d and so on.

PROVIDING INTEGRITY OF LONG-TERM STORAGE ESGI77

19

(5.1.5) Firstly, we will calculate how much of additional space is necessary to remember the
hash values. Every cell is in d sections and there are t10 cells. Every section
consists of dt /10 cells. As a result, the total amount of sections in H is:

d

d
t

d

t

t

d
d 1

10

10

10 −
⋅

⋅=⋅
. (8)

Since we use 100 bits long hash values, we need additional space equal to:
2

1

10
+

−
⋅

⋅= d

d
t

dR

(5.1.6) It is also necessary to know the maximal amount of errors in data, if there is a given
amount of wrong hash codes. Suppose there are k errors in hash codes.
Let)k,,k,(k d2 ...1 be the number of wrong hash codes in the first, second, … and d -th

direction respectively. The following upper bound of errors in the data would be:

t

d
d kkk

b
10

1 ...21
− ⋅⋅⋅

≤ . (9)

Moreover, it is easy to show that:
d

d d

k
kkk 







≤⋅⋅⋅ ...21 . (10)

It means that if there are k wrong hash codes:

t

d

d

d

k

b
10

1−








≤ . (11)

The last thing we need is the maximal amount of wrong hash codes, if there are
l corrupted bits. Every bit may corrupt d hash codes, so the maximal amount of
corrupted hash codes is

dl ⋅ . (12)

Optimization

(5.1.7) Suppose that after storage there are 410 −t errors in the data (in other words:
0001.0=r). Due to (12), we know that these bits are corrupted at most 410 −⋅ td hash

codes. With the information that at most 410 −⋅ td hash codes are wrong, we may
calculate (from equation #11) that:

t

t
d

d

d

d

b
10

110 4 −







 ⋅

≤

−

. (13)

We would like to know that not all of the bits are corrupted (1≤b), so t and d must
satisfy the inequality:

PROVIDING INTEGRITY OF LONG-TERM STORAGE ESGI77

20

t
t

<d

d

d

d
10110 4 −








 ⋅ −

 (14)

4d<t . (15)

Obviously, the lower t , the more precise we might be.

(5.1.8) As 1101.0 −== tTR , we can create additional inequality for t and d

1
2

10

1

10 −
+

≤

−

⋅ t
t

d

d

d (16)

t)+dd(≤3log10 . (17)

So t and d must satisfy:

4d3log10 <t)+dd(≤ . (18)

For 40<t such d can be found. As indicated before, the lower t , the more precise
we are. We decided to choose

)+dd(=t 3log10 . (19)

(5.1.9) We would like to find the value of d which would make our prediction more precise.

The first step was to find d , such that interval d))+d(d(,43log10 is as big as

possible. We defined function
d)d(=g(d) 10log1− (20)

and found its maximum, which is approx. 3.7. Then we checked values of d such as
2,3,4,5 and calculated that prediction is the most precise when 2=d .

(5.1.10) We decided to prove that prediction is the most precise when 2=d
• Case 2=d

6.632log2 10 ≈)+(=t (21)

5.212

2
46.6 1010 =)(−− – the possible number of errors.

4%9803.0
10

10
6.6

5.2

<≈ - the maximal ratio of corrupted data.

• Other cases (2≠d).
We calculated that the possible percentage of corrupted data is equal to

1

4d

10 −
−
d

t

. (22)
We would like it to be as small as possible. We calculated that for 1>d this
function increases, so the optimum is 2=d .

(5.1.11) We would like to emphasize, that 04.0<b only if 0001.0=r . We calculated (using
computer), that if 0001.0)(=rE and bits corrupt independently with probability

0001.0 , then 058.0)(<bE

PROVIDING INTEGRITY OF LONG-TERM STORAGE ESGI77

21

(5.1.12) Note that dividing data in exclusive blocks of bits would give a worse expected
upper bound of corrupted bits, equal to 0.095.

