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Executive Summary 
The main objective of the project was to obtain advanced 
mathematical methods to guarantee the verification that a required 
level of data integrity is maintained in long-term storage. The 
secondary objective was to provide methods for the evaluation of 
data loss and recovery. Additionally, we have provided the 
following initial constraints for the problem: a limitation of 
additional storage space, a minimal threshold for desired level of 
data integrity and a defined probability of a single-bit corruption. 

With regard to the main objective, the study group focused on the 
exploration methods based on hash values. It has been indicated 
that in the case of tight constraints, suggested by PWPW, it is not 
possible to provide any method based only on the hash values. This 
observation stems from the fact that the high probability of bit 
corruption leads to unacceptably large number of broken hashes, 
which in turn stands in contradiction with the limitation for 
additional storage space. 

However, having loosened the initial constraints to some extent, the 
study group has proposed two methods that use only the hash 
values. The first method, based on a simple scheme of data 
subdivision in disjoint subsets, has been provided as a benchmark 
for other methods discussed in this report. The second method 
(“hypercube” method), introduced as a type of the wider class of 
clever-subdivision methods, is built on the concept of rewriting 
data-stream into a n-dimensional hypercube and calculating hash 
values for some particular (overlapping) sections of the cube.  

We have obtained interesting results by combining hash value 
methods with error-correction techniques. The proposed 
framework, based on the BCH codes, appears to have promising 
properties, hence further research in this field is strongly 
recommended. 

As a part of the report we have also presented features of secret 
sharing methods for the benefit of novel distributed data-storage 
scenarios. We have provided an overview of some interesting 
aspects of secret sharing techniques and several examples of 
possible applications.  
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1 Introduction 
1.1 Problem description 
(1.1.1) The increase in the amount of data, both created and stored electronically, entails the 

necessity to construct various data storage systems. In the view of different requested 
storage periods, we divide systems into: 
• short-term – storage period not longer than 3 years, 
• medium-term – storage period between 3 and 10 years, 
• long-term – storage period longer than 10 years, but with a specified end-date, 
• unlimited – storage period longer than 10 years with no specified end-date. 

(1.1.2) The unlimited storage is sometimes called “eternal”. In this case we have to pay 
special attention to the integrity of the stored digital content. For this reason, various 
digital marking techniques are used, so that even after a long time one should be able 
to verify the integrity of stored data. 

(1.1.3) The main objective is to use advanced mathematical methods, especially 
cryptographic techniques applied in the process of digital marking of the content. 
These techniques ought to guarantee verification and integrity of the long-term-
stored digital content. 

(1.1.4) Proposed methods should take into account mainly: 
• different kinds (classes) of stored content, e.g. cultural heritage, court 

documentation, accounting documentation etc., 
• limitations of database size, 
• anticipated frequency of access to stored resources. 

(1.1.5) Another very important aspect of the problem consists of finding the limits on 
applications of advanced mathematical methods, especially those based on 
cryptographic techniques and checking their applicability in the evaluation of data 
losses (e.g. due to the "corrosion" of media) as well as in a potential data recovery. 
Original data is marked as data in time 0t , while data that might be corrupted 

(because of “corrosion”) as data in time 1t .  

(1.1.6) Special attention should be paid to: 
• Systems and schemes of coding, which allow for a detection and correction of 

write errors 
• Cryptographic techniques, such as: 

♦ public-key and asymmetric encryption, 
♦ secret sharing methods, 
♦ secure multiparty computations. 

1.2 Problem breakdown 
(1.2.1) A few assumptions and constrains have been proposed by the PWPW Representative 

when discussing the problem: 
• T - amount of stored data 
• R - amount of additional disk space we can use, in order to provide proof of data 

correctness we assume that TR 1.0≈  
• r - bit error rate (BER), we assume that r  is about 0.01, i.e. at time of testing 

integrity of data, 1% of all bits is corrupted. 
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• g - accuracy of given proof of correctness, we assume that g  is about 0.01, that is 

our proof should show that at least 
T

TgTrT −−
of data is correct.  

• 0t - time of storing the original data 

• 1t - time of testing the integrity of data 

(1.2.2) The problem lies in finding such a method that can be used to determine at time 

1t , with given accuracy, the ratio of the correct data, stored at time 0t to the all data 

available. Furthermore, it is expected that the method allows assessing whether data 
is false. 

(1.2.3) It would be useful if the method proved that data is not corrupted above a certain 
threshold value of BER . 

(1.2.4) During the talk with the PWPW Representative we made the following assumptions 
and remarks: 
• Errors cannot be avoided. A carrier which stores our data is imperfect, so we can 

be sure that there will be errors in data over long time horizon. 
• The bit error rate, amounting up to 1% of data, is very high. For example, let us 

assume that we have a book in which every single letter is coded with 8 bits. Due 
to the error ratio, we anticipate about 1 error in every sequence of 100 bits, so in 
every sequence of 12 letters we shall expect a wrong letter. Therefore, in this 
paper we would like to present some solutions in which our initial assumptions 
were less constrained and this ratio is assumed to be smaller. 

• Stored data is organized in files and we know the type of every file, like 
document, video, audio, archive files. Nevertheless, we can treat data as 
a sequence of bits (raw data approach). 

(1.2.5) The PWPW Representative presented an idea of using hash functions so as to 
provide a proof of correctness of particular parts of data. Our work shows that the 
use of hash function only is not sufficient to complete our task, so hash functions 
with additional methods of correcting errors have been considered. We have also 
taken into account another way of dealing with hashes. It is based on the idea of 
computing a number of hashes from different divisions of data into blocks (a.k.a. 
hypercube method). 

(1.2.6) We do not have any information about physical properties of data carriers, so we 
added an assumption of uniformly distribution of errors. If further details about 
distribution are available, our methods can be calibrated to deal with it without any 
loss of usability. 

(1.2.7) Having dealt with hash functions, we focused on a solution based on secret sharing 
method. Due to time limitations, however, it could not have been completed during 
the workshop. Therefore, we have presented a helicopter view of the functionalities 
provided by secret sharing schemes. 

2 Hash functions 
The starting point for our research was a method based on hash functions. In this 
chapter we will show restrictions of using hash functions and describe the main ideas 
of extension of such approach. 
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2.1 Basics  
The terms and notation used in this section comes, unless stated otherwise, from Handbook of 
Applied Cryptography ( [1]). 

(2.1.1) The hash function is a well known cryptographic tool, widely applied in providing 
data integrity check. The idea behind its use in the discussed problem is very simple 
– we compute the value of the hash function for given data twice: at the beginning 
and at the end of the storage process. If data is changed (loss of integrity), then these 
two hash values would most likely differ, otherwise both values remain the same.  

(2.1.2) In a more formal way, we can say that hash function h  is a function from k}1,0{  to 
l}1,0{ , which has the following properties1: 

• A minor change of the input string alters the output in at least 2/l  bits.  
• Probability of finding a bit-stream of the same hash value as another given bit-

stream is negligible2.  
• Probability of finding a bit-stream of a given hash value is negligible. 

(2.1.3) In order to introduce the notation used in further sections, we shall describe the 
integrity check process in a more formal way: 
• We describe data by s and hash value by v , where )(shv =  at the beginning of 

storing period (time 0t ).  

• After storage (time 1t ) data may differ a little (e.g. due to the corrosion), so we 
describe it by 's  and the corresponding hash value by )'(' shv = . 

• If 'vv =  then the data is correct with probability almost 1, otherwise we conclude 
that data is corrupted. Unfortunately, we do not know the percentage of corrupted 
bits – even if only one bit changes, the whole block is corrupted. 

2.2 Restrictions on using hash functions 
(2.2.1) The use of hash functions in a way presented above has some limitations. We shall 

present them with the following algorithm: let us assume that we have divided data 
into k  blocks of the same length. For every block we compute the hash value at the 
beginning and at the end of the storage period. Let us say that we have detected 
l  corrupted blocks (the appropriate hash values differ). Then the ratio kl /  describes 
the upper bound of the bit-corruption ratio. 

(2.2.2) More formally, we can describe the procedure above in this way: 
• We divide a sequence of bits s into blocks ka,,a,a …21  of the same length. 

• For ki ,...,2,1=  we calculate and save the value )(i iahv = .  

• Next, we compare it with the value )'(i iahv' = , that is with the hash function 

value computed on the block after storage period. If ii vv '= , we know with 

probability almost 1, that there were no corrupted bits in the part ia . In other 

cases we have to assume that every bit might be corrupted. 

                                                 
1 Where kl < . Secure hash functions should have the length of output l >= 256 bits. 
2 That is expected time needed to obtain two bit-streams with the same has value is exponential to the length of 
output of considered function.   
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• We compute { }{ }| |ii v'vk,i=l ≠∈ :...1,2  and denote the value kl / as b . 

(2.2.3) In order to determine the usefulness of hash functions we calculate the expected 
value of the ratio kl /  under constraints given in (1.1.2). Since bits are corrupted 
independently (as we have assumed above), we have the following probability that 
i-th bit is not corrupted: 

 ||)1()'( ia
ii rvvP −== . (1) 

The expected value of the kl /  reads: 

 ||

1
)1(1))'(1(

1
)( ia

i

k

i i rvvP
k

bE −−==−= ∑ =
. (2) 

As mentioned in (2.1.2), the length of hash function output is about 256 bits. Since 
the additional space for hash codes is TR 1.0= , the length of ia  for ki ,...,2,1=  

should be at least 2560 bits long. Therefore, in this case the expected value of bit 
error rate is: 

 1107.61)99.0(1)( 122560 ≈⋅−=−= −bE , (3) 

which is unacceptably high.  

(2.2.4) In conclusion, dividing data into disjoint blocks and computing a hash value for each 
of them to check the integrity of data is not particularly useful when assuming the 
constraints given in (1.2.1). Such constrains require blocks to be quite big, which 
makes the probability of block corruption equal almost 1. However, removing some 
of constrains and using smaller output blocks (e.g. 100 bits long) results in lower 
performance of the hash function. 

2.3 Alternative division method 
Introduction 

(2.3.1) In paragraph 2.2, we have discussed the scheme of dividing data into disjoint blocks 
of equal length. Naturally, this is not the only possible approach to the given 
problem: a single bit needs not to be only in one block and blocks may have different 
length. It transpires that dividing data into blocks in a clever way leads to a better 
estimation of a corruption ratio, so that the upper bound for the ratio is closer to real 
value of ratio. 

(2.3.2) Our first step to construct such a clever division was to arrange bits in a square (as in 
the Figure 1. In this case the blocks for which we calculate hash codes are composed 
as rows and columns in a square. Therefore, each bit is included in 2 blocks (1 row 
and 1 column, cf. Figure 1). 
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Figure 1 Example of arranging data in a square, 12 hash values are calculated and saved – 6 for rows 

( 6,12,11,1 ,...,, vvv ) and 6 for columns ( 6,22,21,2 ,...,, vvv ). 

(2.3.3) At first glance, it seems to make no sense to divide data into overlapping blocks –
blocks would need to be longer so as to satisfy the requirement TR 1.0= , which 
increases the probability of corrupting a hash value. Nevertheless, such an approach 
may provide a very good upper limit of errors in the data if certain assumptions are 
fulfilled. Consider the situation presented in the Figure 2. 

 
Figure 2 Visualization of the given data after storage. Blocks, for which hash value has changed, are 
highlighted. As every corrupted bit changes the hash value either for row and column, all potentially 
corrupted bits are located on the intersections of the highlighted rows and columns. 

Let 21, pp  be the percentages of corrupted hash values in respectively rows and 
columns. The percentage of corrupted hash values for all blocks equals 

2
21 pp

ph

+=  (4) 

However, the upper bound of corrupted bits is generally smaller and reads: 

21 ppb ⋅= . (5) 

In the case presented in the Figure 2 083.0,167.0,417.0 ≥== rbph . 

Generalization – the hypercube method 

(2.3.4) A generalization of the method presented in (2.3.2) can be obtained by arranging data 
in a d -dimensional hypercube (cf. Figure 3 for 3-dimensional case). 
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Figure 3 3-dimensional hypercube consisting of 64 cells (grey). Every cell represents 1 bit of data. 

Block is a subset of bits forming a section (red, green). In this case there are 48163 =⋅  blocks. 

In this general case, if the percentages of corrupted hash values in dimensions 
d,...,2,1  equal d2 p,,p,p ...1  respectively, then we have the following upper bound of 

bit error rate: 
1

21 ...− ⋅⋅⋅= d
dpppb . (6) 

Calculations and optimization for hypercube method 

(2.3.5) It was our aim to find such parameters of the hypercube that the obtained upper 
bound of corrupted bits is the best (the lowest). At the same time, we optimized the 
number of dimensions d  and the size (number of cells) S  of the hypercube (detailed 
calculations are presented in the Appendix). We decided to divide the data into parts, 
each consisting of S  bits and make a hypercube for each of them separately. 

(2.3.6) For the purpose of calculating the expected value of b , we assumed that the 
distribution of errors in the data is uniform and bits are corrupted. 

(2.3.7) We calculated that this method does not work for initial constraints: 
TRr 1.0,01.0 ==  and 256-bit-long hash codes. The reason for this discovery is 

analogous to the one described in Section 2.2: for large blocks the probability of 
corrupting its hash value is very high. Therefore, we decided to change some of our 
assumptions. Firstly, we chose 0001.0=r . Secondly, we decided to use 100-bit-long 
hash codes. 

Results 

(2.3.8) For the assumptions made in 2.3.7, the optimal dimension of a hypercube is equal to 
 2 and each part consists of 6104⋅  bits (see Appendix). In this method the expected 
value of the upper bound of corrupted bits is smaller than 0.058. We would like to 
emphasize that dividing data into disjoint blocks of bits (method described in 2.2.1) 
under the same assumptions would give the expected upper bound of corrupted bits 
equal to 0.095. The hypercube method lowers the upper bound of errors more than 

6.1  times. 
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Remarks & further research 

(2.3.9) As indicated in (2.3.6), we assumed uniform distribution of errors in data. We 
suspect that this method may work very badly for a specific distribution of errors. 
However, we believe that this problem is manageable. 

(2.3.10) The method is based on arranging data in a hypercube and calculating hash values 
for sections. Generally, there might be other acceptable ways of dividing data into 
blocks, giving lower expected value of b  under the same assumptions. Firstly, we 
can arrange data in a hypercube and calculate hash values for other subsets of bits, 
for example hyper-planes. Secondly, we can abandon the idea of the hypercube and 
invent a completely different division. 

(2.3.11) This method does not give a satisfying upper bound of corrupted bits for 01.0=r , 
which makes it useless in some real-world applications. On the other hand, if we had 
a method of measuring the level of the integrity of the data based on dividing data 
into blocks, we might improve the expected value of b  by dividing data e.g. in a way 
presented in 2.3.4. We recommend it as a supporting tool. 

2.4 Hash codes with error correction 
Introduction  

(2.4.1) The major limitation of the hash functions in solving the problem is a very high 
probability of hash value corruption for long blocks. As mentioned before, the 
analysis of the hash values enables us only to say whether there are any corrupted 
bits in a block. To calculate the upper bound, we have to assume that all bits from the 
block marked as corrupted may have changed. If we recognized which blocks are 
corrupted “only a bit” and which are more corrupted, then we would be able to 
measure the level of the integrity of data more precisely. 

(2.4.2) For the purpose of such recognition, we decided to use error correcting codes. 
Generally, error correcting codes are bits added to original data (or part of data), with 
the aim of correcting a predetermined number of errors. In our problem, we use them 
in the following way (example in the Figure 4): 

1. We divide data into blocks and calculate hash values for each of them. 

2. We add codes correcting up to d  errors to each block. 

3. After storage we correct errors using error correcting codes. 

4. After correction we compare saved and new hash values. If there are more than 
d  errors in a particular block, then stored and calculated hash values differ. 
Otherwise, they will remain the same. Based on the information of how many 
hash values are changed, we can calculate the upper limit of corrupted bits. 
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Figure 4 Exemplary visualisation of the proposed method. There are 4 blocks of 5 bits each. We add  
codes correcting 1 error (grey). Some errors occur in data after storage (3.) (red). We use codes to 
correct them. Finally, we calculate hash values again. If a number of errors in a block was bigger than 
1 (like in a second block), then not all errors were corrected and the hash value is changed. 

(2.4.3) In order to grasp the significance of this method, consider a situation presented in the 
Figure 4. After the storage there are 4 errors: 2 in original data and 2 in the added 
bits. If we used method presented in 2.2, two blocks would be corrupted. Since we 
use error correcting codes, we can recognize that in the fourth block only 1 bit has 
changed. Moreover, we can correct this error, which is an added value of the method. 

Furthermore, the errors which occur in added bits are also corrected. It means that we 
do not need to deal with them additionally. 

Theory 

(2.4.4) During our research we focused only on the BCH error correcting codes. We would 
like to quote the theorem, which enabled us to make some calculations. 

We will use the following terms: 
• word – sequence of bits; 
• coded word – a word which we would like to correct; 
• control symbols – additional symbols (bits) used to correct errors in a coded word; 
• coding word – a coded word with control symbols. 

(2.4.5) Below we shall present the theorem of the BCH codes (proof in [2]):  

For each +Zmd, ∈ , 
m

<d
m 22 −

 there exists such a BCH code that all following 

statements are true: 
• Coding words are 12 −m  long. 
• This code corrects d  errors in a coding word. 
• The number of control symbols is md ⋅ .  

This means that the length of a coded word is 12 −− dmm  . 
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(2.4.6) One of the most important conclusions of this theorem is that we do not need a lot of 
additional space for control symbols. If the size of a block is A , we need 
approximately Ad log⋅  of additional space to correct d  errors. 

Results 

(2.4.7) We were interested whether we overcame the major limitation of using hash 
functions, so we calculated the probability of corrupting hash value. It transpired that 
using error correcting codes combined with hash functions would give satisfying 
upper bound of corrupted bits for 5.0≈r . 

We made calculations for different values of r  and R  and tried to choose the best 
parameters dm,  for them. We assumed that we know the BCH code correcting 

d  errors in the 12 −m  bits long coding word. We decided to use 100-bit-long hash 
codes. Results are presented in the Table 1. 

 
Table 1. Probability of corrupting hash code depending on the values of Rrdm ,,, . 

m  d  r  R  Probability of corrupting hash code 

16 600 1% T185.0  < 0.1% 

16 357 0.5% T1.0  < 0.01% 

17 678 0.53% T1.0  < 0.7% 

16 357 0.53% T1.0  < 0.4% 

15 187 0.53% T1.0  < 0.5% 

14 96 0.53% T1.0  < 1.6% 

 

Remarks & further research 

(2.4.8) For the purpose of calculations we assumed that the distribution of errors in the data 
is uniform (like in the paragraph 2.3). Once more information of error distribution is 
available (e.g. the specific storage hardware is selected), obtained results can be 
adapted accordingly, possibly with improved performance. 

(2.4.9) The main advantage of this method is that it not only measures the level of the 
integrity of stored data, but also improves it. It can also be combined with error codes 
that are already used by PWPW with the aim of enhancing performance.  

(2.4.10) We would like to emphasize that the theorem (2.4.5) guarantees only the existence of 
the BCH code satisfying some requirements. We do not know whether effective 
algorithms of constructing such a code or coding and decoding words exist. 
Moreover, it cannot be ruled out that there are some other error correcting codes 
which might be more useful in a real world application. This area is open for further 
study. 

3 Secure Secret Sharing Method 
Having investigated hash functions, we shall now check a different approach. Apart 
from ordinary verification of the integrity of long-term-stored digital content, it 
might provide some additional features, namely: 
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• extended capabilities in: verification of the integrity, recovery of corrupted bits, 
design of the access structure to the stored digital content; 

• an opportunity to optimize the PWPW’s requirements concerning storage.  

All the features listed above and many others can be provided by secret sharing 
protocols. In cryptography, Secure Secret Sharing (SSS) scheme [4] is understood as 
a method of the distribution of a secret among a group of participants, all of them 
having their own share in the secret. The secret can be reconstructed only when 
authorized participants combine their shares.  

3.1 Basic capabilities 
(3.1.1) By using Secret Sharing Schemes one can store data distributed in some insecure 

locations in a secure3 way ([3]).  

(3.1.2) Threshold secret sharing. A threshold is a minimal number of participants which have 
to co-operate to reconstruct the secret. A scheme, where at least t  out of n  players is 
necessary to reveal the secret is described as a ),( nt  threshold scheme. It allows 
placing securely 1−t  shares outside secure locations (e.g. own trusted systems), say, 
literally distribute 1−t  shares over the Internet. 

(3.1.3) Schemes for which we can provide verification of the integrity of secrets are called 
Verifiable Secret Sharing (VSS).  

(3.1.4) A proper design of the access structure improves the functionality of secret sharing. 
• One of the simplest access structures was presented above – every set of at least 

t  out of n  participants is allowed to reconstruct the secret. 
• More advanced structures can be implemented as follows: 

♦ },...,{ 1 nPPP =  is a set of participants taking part in sharing. 

♦ Every family R  of subsets of P  can be an access structure. 
• We can provide different levels of access for different participants. For example, 

the main participant (PWPW) has more rights than a trusted outsider (e.g. 
governmental institutions), which in turn has more rights than a not trusted 
participant (e.g. ones using shares from the Internet).  

Example 1 (generalised access structure) Our task is to guarantee verification of the 
integrity of long-term-stored digital content. For example, let us consider recordings 
of speeches of famous politicians. One can distribute a secret among some 
governmental institutions and set the condition under which the secret can be 
revealed, e.g. at least 5 institutions from 5 different ministries have to collaborate in 
order to reconstruct the secret and so on. 

By using additional participants with different levels of privileges we can minimise 
the probability of leaking or losing the data. 

 

                                                 
3 In the secret sharing, there are at least two notions of security: information-theoretical and computational 
security. There are significant differences between the two types, yet, it is rather beyond the scope of this paper. 
In order to simplify further discussion without losing its generality, we will simply discuss secure or perfectly 
secure secret sharing schemes. 
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3.2 Extended capabilities 
(3.2.1) Now extended capabilities of secret sharing schemes shall be presented.  

(3.2.2) Pre-positioned secret sharing. A pre-positioned secret sharing is an example of an 
access structure where all data requested to reconstruct the secret is known except for 
a single crucial share which has to be given later. For example, the PWPW can 
distribute the whole data over the Internet by a pre-positioned secret sharing scheme 
with a short, crucial share kept locally. Let us explore a difference between secret 
sharing and simple encryption of data in this model. The advantages will be clear 
once more extended capabilities are outlined.  

Example 2 (scheme with an activating share) Let us assume that we have 
a situation described in the Example 1 – data is stored locally on the servers of 
PWPW and in a few places all over the world – in the United States, China, Russia 
etc. By means of a pre-positioned scheme foreign institutions can partake in given 
shares (a share made out of a share is called a subshare) beyond unauthorised 
participants who cannot reconstruct institutional shares until foreign and trusted 
parties cooperate, because their shares are crucial. 

(3.2.3) Proactive Secret Sharing (PSS) has the following features: 
• One can change (periodically renew) participants' shares in a secret without 

revealing or changing it. 
• One can recover corrupted shares (these shares correspond to dishonest 

participants). In our case – we can periodically check the consistency of shares 
and recover corrupted ones. Another reason to use pro-active secret sharing is the 
fact that if we find a corrupted share during the verification process (by e.g. VSS 
scheme), we can easily replace a broken share with a correct one. So there is 
a simple way to “maintain” integrity of shares periodically, which implies 
integrity of data. 

(3.2.4) Multi-secret shares have the following features: 
• A scheme where any subset of set of participants shares another secret is 

available. 
• It seems that a single share can be used in a few secrets, optimizing storage space. 

Example 3 (multi-secret scheme) In the presented case we can use a multi-secret 
scheme. We do not need to create a separate shares and secrets for all files. We can 
make just a single sharing scheme with such a property that different subsets of 
foreign institutions can reconstruct speeches of different politicians and all speeches 
reconstructed in this way make up a collection. 

3.3 Combining properties 
(3.3.1) One of the most desired properties of secret sharing schemes is its flexibility in 

combining functionalities described above. Further research is required to describe 
which properties can be combined with each other. 

(3.3.2) In our case – we might conduct research aimed at developing a scheme which is e.g.  
• perfectly secure, pro-active, integrity-providing and activated by a share from the 

PWPW. 
• a multi-secret scheme where any subset of participants has its own secret that 

cannot be revealed without the share from the PWPW. 



PROVIDING INTEGRITY OF LONG-TERM STORAGE ESGI77 

16 

 

(3.3.3) A scheme with combined properties is not necessarily a textbook material available 
right away, but has to be carefully engineered instead. Hence, some additional work 
might be required before implementation. 

3.4 Additional Considerations 
(3.4.1) Reconstructing original data from shares might occasionally need some 

computational effort and data may not always be available in real-time. Still, task 
complexity is polynomial in time, yet, usually feasible in practice.  

(3.4.2) It seems that once a perfectly secure secret sharing scheme is applied its users should 
be protected against future developments in cryptoanalysis, which would affect the 
cryptography based on computational complexity (e.g. most of the employed public-
key cryptosystems like RSA). 

3.5 Open questions 
(3.5.1) As described above, the secret sharing schemes provide many tools to deal with the 

PWPW problem. Still, there are some open questions that definitely need further 
investigation: 
• Which verification techniques are optimal in solving the problem of corrupted 

shares and data in the case of digital content of the PWPW interest? One should 
remember that by using secret sharing scheme, we can provide some verification 
based on secure multi-party computations. 

• Further effort should be expended to design an optimal access structure for 
particular types of stored files. 

• Various types of files have different data that is crucial to their consistency. It 
seems that we do not necessarily need to protect the whole data, but only some 
crucial parts. It is worth considering which fragments are really important for each 
type of files. If we made this classification, we would be able to protect crucial 
parts only by means of secret sharing. 

4 Conclusion and proposals for further research 
4.1 Hash functions 
(4.1.1) Let us recall the method proposed in section 2.2. We divided data into disjoint blocks 

of the same length and compared two hash values for each of them – the first value 
was computed before the storage, the second – after it. This method was not 
considered as a good way of dealing with the given problem. The probability that in 
any block of data for which we compute the value of hash function will remain the 
same after some time is negligible.  

(4.1.2) With some additional assumptions, like limited data size and smaller bit error rate, 
we have shown that dividing data into blocks in a clever way may improve the 
estimation of corrupted bits ratio. However, due to its limitations, this method should 
be applied only as a supporting tool. 

(4.1.3) Hash functions combined with error correction methods may provide very good error 
estimation. Under given constraints concerning the bit error rate and the maximal 
amount of additional data, there is a probability of 0.0001 that not every error in 
a single code word will be corrected.  

(4.1.4) One of the most convenient cases, for which we can prove that the upper bound of 
the number of corrupted bits is small, is when errors are uniformly distributed. 
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Nevertheless, we believe that errors occur rather in blocks, in particular parts of 
carrier of data etc., but not uniformly. The question is – can we reorganize the bits to 
make the distribution of errors uniform?  

4.2 Secret sharing method 
(4.2.1) Secret sharing method is an alternative way of thinking about data storing. It 

provides a number of new functionalities which allow storing of data divided among 
some local (trusted) participants and some untrusted parties (like public FTP servers 
or in general ‘the Internet’) in a secure way. 

(4.2.2) Different participants taking part in data sharing can enjoy a different level of 
privileges in data access and recovery. It is important to determine how many levels 
of privileges should be designed and how many participants should be on each level. 
It seems that almost any access structure can be implemented by using the secret 
sharing.  

(4.2.3) In many secret sharing methods we assume that shares stored locally (trusted 
participants) are at least of the size of secret. It is worth investigating whether it is 
possible to deliver a method which would be both: secure and space-saving (i.e. local 
shares are smaller than a secret). We believe that such schemes can be obtained. 

(4.2.4) An important property of secret sharing schemes is verifiability of shares. It is 
especially crucial in our problem, in which we deal with corrupted data, as 
verification protocols can play a role of correcting codes. It is worth exploring which 
of them would be optimal in our problem. 

(4.2.5) Different secret sharing schemes have various properties. We have described 
properties of schemes which are: pro-active (we can periodically change participants’ 
shares), pre-positioned (there is a crucial share without which a secret cannot be 
revealed), multi-secret (a few different secrets are shared) or verifiable (we can 
determine which shares were corrupted and reveal a secret without them). The 
question is: which of the mentioned properties can be combined?  

4.3 Other possibilities 
(4.3.1) In this section, we will outline an additional approach, which was discussed after the 

77th ESGI, nevertheless it is worth further research. There are check-digit schemes 
that allow determining whether a bit-stream was corrupted over a certain threshold, 
say, 1% of bits were changed. Should this be a case, the check-digit scheme provides 
information that corruption has occurred.  Usually the threshold can be set 
individually for a particular application. Furthermore, since the main task of the 
scheme is error detection not error correction, usually less additional information is 
stored (shorter checksum) than in error correction codes. In general, the length of the 
checksum can even decreased further, should statistical reasoning be introduced, for 
instance it is allowed that in a small number of cases scheme sensitivity is different 
from the set threshold (not necessarily lower). In such a situation, it is even possible 
to decrease the ration of checksum’s size to the size of information stored with the 
increasing volume of information. A good example of such construction is graph 
coloring based on the check-digit scheme described in [5]. It is recommended to 
research applications of check-digit schemes with the characteristics outlined above 
for the purpose of the problem presented by PWPW and to revaluate results already 
obtained for hash functions as well as to investigate a joined use of check-digit 
schemes with secret sharing methods. 
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5 Appendix  
5.1 Hypercube model 

Introduction 

(5.1.1) In this paragraph we will present detailed calculations for the specific clever division 
based on a hypercube (the respective idea and visualization are presented in 
paragraph 2.3).  

Specification 

(5.1.2) We will use the following notation: the dimension of hypercube H is d . Every bit 
(cell) has d  coordinates ( d32 x,,x,x,x ...1 ). The size of data tS 10= , so the side 

length of hypercube is d

t

10 .  

(5.1.3) A section in H  is a set of d

t

10  cells such that )(d 1−  of their coordinates are the 
same. Sections are parallel to axes. Section parallel to i -th axis and meeting point 

( )dx,,x,x ...21  is defined below: 
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21  (7) 

Dependences 

(5.1.4) Before stating anything about the hypercube method, we shall discuss the main 
dependences between different values describing the method, such as: additional 
space R  to remember hash values, the size of data tS 10= , the dimension of the 
hypercube d  and so on. 
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(5.1.5) Firstly, we will calculate how much of additional space is necessary to remember the 
hash values. Every cell is in d  sections and there are t10  cells. Every section 
consists of dt /10  cells. As a result, the total amount of sections in H  is: 

d

d
t

d

t

t

d
d 1

10

10

10 −
⋅

⋅=⋅
. (8) 

Since we use 100 bits long hash values, we need additional space equal to: 
2

1

10
+

−
⋅

⋅= d

d
t

dR  

(5.1.6) It is also necessary to know the maximal amount of errors in data, if there is a given 
amount of wrong hash codes. Suppose there are k  errors in hash codes. 
Let )k,,k,(k d2 ...1  be the number of wrong hash codes in the first, second, … and d -th 

direction respectively. The following upper bound of errors in the data would be: 
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Moreover, it is easy to show that: 
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d d
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It means that if there are k  wrong hash codes:  

t

d

d

d

k

b
10

1−



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



≤ . (11) 

The last thing we need is the maximal amount of wrong hash codes, if there are 
l corrupted bits. Every bit may corrupt d  hash codes, so the maximal amount of 
corrupted hash codes is 

dl ⋅ . (12) 

Optimization 

(5.1.7) Suppose that after storage there are 410 −t  errors in the data (in other words: 
0001.0=r ). Due to (12), we know that these bits are corrupted at most 410 −⋅ td  hash 

codes. With the information that at most 410 −⋅ td  hash codes are wrong, we may 
calculate (from equation #11) that: 

t

t
d

d

d

d

b
10

110 4 −
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
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


 ⋅

≤

−

. (13) 

We would like to know that not all of the bits are corrupted ( 1≤b ), so t  and d must 
satisfy the inequality: 
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<d
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 (14) 

4d<t  . (15) 

Obviously, the lower t , the more precise we might be. 

(5.1.8) As 1101.0 −== tTR , we can create additional inequality for t  and d   
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t)+dd( ≤3log10 . (17) 

So t  and d  must satisfy: 

4d3log10 <t)+dd( ≤ . (18) 

For 40<t  such d can be found. As indicated before, the lower t , the more precise 
we are. We decided to choose 

)+dd(=t 3log10 . (19) 

(5.1.9) We would like to find the value of d  which would make our prediction more precise. 

The first step was to find d , such that interval d))+d(d( ,43log10  is as big as 

possible. We defined function  
d)d(=g(d) 10log1−  (20) 

and found its maximum, which is approx. 3.7. Then we checked values of d  such as 
2,3,4,5 and calculated that prediction is the most precise when 2=d . 

(5.1.10) We decided to prove that prediction is the most precise when 2=d  
• Case 2=d  

6.632log2 10 ≈)+(=t  (21) 

5.212

2
46.6 1010 =)( −−  – the possible number of errors. 

4%9803.0
10

10
6.6

5.2

<≈ - the maximal ratio of corrupted data. 

• Other cases ( 2≠d ). 
We calculated that the possible percentage of corrupted data is equal to 

1

4d

10 −
−
d

t

. (22) 
We would like it to be as small as possible. We calculated that for 1>d  this 
function increases, so the optimum is 2=d . 

(5.1.11) We would like to emphasize, that 04.0<b  only if 0001.0=r . We calculated (using 
computer), that if 0001.0)( =rE  and bits corrupt independently with probability 

0001.0 , then 058.0)( <bE  
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(5.1.12) Note that dividing data in exclusive blocks of bits would give a worse expected 
upper bound of corrupted bits, equal to 0.095. 

 


