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Executive Summary

The main objective of the project was to obtain aubed
mathematical methods to guarantee the verificatian a required
level of data integrity is maintained in long-terstorage. The
secondary objective was to provide methods foretveduation of
data loss and recovery. Additionally, we have pied the
following initial constraints for the problem: anlitation of
additional storage space, a minimal threshold fesireéd level of
data integrity and a defined probability of a sexgit corruption.

With regard to the main objective, the study gréogused on the
exploration methods based on hash values. It has belicated
that in the case of tight constraints, suggeste®WPW, it is not
possible to provide any method based only on tisé kalues. This
observation stems from the fact that the high podiba of bit
corruption leads to unacceptably large number okém hashes,
which in turn stands in contradiction with the lation for
additional storage space.

However, having loosened the initial constraintsdme extent, the
study group has proposed two methods that use th@yhash
values. The first method, based on a simple schemelata

subdivision in disjoint subsets, has been provided benchmark
for other methods discussed in this report. Theors¢cmethod
(“hypercube” method), introduced as a type of thdew class of
clever-subdivision methods, is built on the conceptrewriting

data-stream into a n-dimensional hypercube anduleding hash
values for some particular (overlapping) sectiohthe cube.

We have obtained interesting results by combinimaghhvalue
methods with error-correction techniques. The psego
framework, based on the BCH codes, appears to pewaising
properties, hence further research in this field sigongly
recommended.

As a part of the report we have also presentedifesitof secret
sharing methods for the benefit of novel distrildutéata-storage
scenarios. We have provided an overview of someresting
aspects of secret sharing techniques and sevemhpias of
possible applications.
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1.1
(1.1.1)

(1.1.2)

(1.1.3)

(1.1.4)

(1.1.5)

(1.1.6)

1.2
(1.2.1)

Introduction

Problem description

The increase in the amount of data, both creatddstored electronically, entails the
necessity to construct various data storage systentise view of different requested
storage periods, we divide systems into:

» short-term — storage period not longer than 3 years

¢ medium-term — storage period between 3 and 10 years

* long-term — storage period longer than 10 yearswiith a specified end-date,

* unlimited — storage period longer than 10 years wa specified end-date.

The unlimited storage is sometimes called “eternad”’this case we have to pay
special attention to the integrity of the storegitdi content. For this reason, various
digital marking techniques are used, so that e¥en a long time one should be able
to verify the integrity of stored data.

The main objective is to use advanced mathematioathods, especially
cryptographic techniques applied in the processligital marking of the content.
These techniques ought to guarantee verificatiosh iategrity of the long-term-
stored digital content.

Proposed methods should take into account mainly:

» different kinds (classes) of stored content, e.gltucal heritage, court
documentation, accounting documentation etc.,

 limitations of database size,

» anticipated frequency of access to stored resources

Another very important aspect of the problem cdes® finding the limits on

applications of advanced mathematical methods, cespe those based on
cryptographic techniques and checking their apbiiitg in the evaluation of data
losses (e.g. due to the "corrosion" of media) a6 agein a potential data recovery.
Original data is marked as data in tirt,, while data that might be corrupted

(because of “corrosion”) as data in tiit; 2

Special attention should be paid to:
» Systems and schemes of coding, which allow for teatien and correction of
write errors
« Cryptographic techniques, such as:
¢ public-key and asymmetric encryption,
¢ secret sharing methods,
¢ secure multiparty computations.

Problem breakdown

A few assumptions and constrains have been progmséie PWPW Representative

when discussing the problem:

e T -amount of stored data

* R-amount of additional disk space we can use, deroto provide proof of data
correctness we assume tha 0.1T

* r- bit error rate (BER), we assume tlritis about 0.01, i.e. at time of testing
integrity of data, 1% of all bits is corrupted.

5
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(1.2.2)

(1.2.3)

(1.2.4)

(1.2.5)

(1.2.6)

(1.2.7)

* @- accuracy of given proof of correctness, we asstimat g is about 0.01, that is

T-Tr-Tg

our proof should show that at lei of data is correct.

* t,- time of storing the original data
* t, - time of testing the integrity of data

The problem lies in finding such a method that banused to determine at time
t,, with given accuracy, the ratio of the correctagatored at timit, to the all data

available. Furthermore, it is expected that thehoetallows assessing whether data
is false.

It would be useful if the method proved that daanot corrupted above a certain
threshold value of BER .

During the talk with the PWPW Representative we endm following assumptions

and remarks:

» Errors cannot be avoided. A carrier which storesdaia is imperfect, so we can
be sure that there will be errors in data over lomg horizon.

« The bit error rate, amounting up to 1% of datayesy high. For example, let us
assume that we have a book in which every singfierles coded with 8 bits. Due
to the error ratio, we anticipate about 1 erroevery sequence of 100 bits, so in
every sequence of 12 letters we shall expect a gvietier. Therefore, in this
paper we would like to present some solutions inctviour initial assumptions
were less constrained and this ratio is assumébd smaller.

» Stored data is organized in files and we know thgetof every file, like
document, video, audio, archive files. Neverthelea® can treat data as
a sequence of bits (raw data approach).

The PWPW Representative presented an idea of usasp functions so as to
provide a proof of correctness of particular paftglata. Our work shows that the
use of hash function only is not sufficient to cdete our task, so hash functions
with additional methods of correcting errors hawer considered. We have also
taken into account another way of dealing with leasht is based on the idea of
computing a number of hashes from different divisi@f data into blocks (a.k.a.
hypercube method).

We do not have any information about physical prige of data carriers, so we
added an assumption of uniformly distribution ofoes. If further details about
distribution are available, our methods can bebcaled to deal with it without any
loss of usability.

Having dealt with hash functions, we focused omlat®n based on secret sharing
method. Due to time limitations, however, it coulot have been completed during
the workshop. Therefore, we have presented a Ipécaview of the functionalities
provided by secret sharing schemes.

Hash functions

The starting point for our research was a methagkdaon hash functions. In this
chapter we will show restrictions of using hashcfiions and describe the main ideas
of extension of such approach.
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2.1

Basics

The terms and notation used in this section coomdsss stated otherwise, fradandbook of
Applied Cryptography [1]).

(2.1.1)

(2.1.2)

(2.1.3)

2.2
(2.2.1)

(2.2.2)

The hash function is a well known cryptographicltaadely applied in providing
data integrity check. The idea behind its use endiscussed problem is very simple
— we compute the value of the hash function foegidata twice: at the beginning
and at the end of the storage process. If dathasged (loss of integrity), then these
two hash values would most likely differ, otherwisgh values remain the same.

In a more formal way, we can say that hash funchois a function from{01}* to

{01}, which has the following propertiés

* A minor change of the input string alters the otiipwat leas| /2 bits.

* Probability of finding a bit-stream of the same lhaslue as another given bit-
stream is negligibfe

» Probability of finding a bit-stream of a given hastiue is negligible.

In order to introduce the notation used in furtkections, we shall describe the

integrity check process in a more formal way:

* We describe data by and hash value by, wherev=h(s) at the beginning of
storing period (timd,).

» After storage (timet,) data may differ a little (e.g. due to the coromgj so we
describe it bys ‘and the corresponding hash valuev'= (s').

« If v=V' then the data is correct with probability almosbtherwise we conclude

that data is corrupted. Unfortunately, we do natwrhe percentage of corrupted
bits — even if only one bit changes, the whole blisccorrupted.

Restrictions on using hash functions

The use of hash functions in a way presented ahagesome limitations. We shall
present them with the following algorithm: let ussame that we have divided data
into k blocks of the same length. For every block we catephe hash value at the
beginning and at the end of the storage period.usesay that we have detected
| corrupted blocks (the appropriate hash valuegniffhen the ratid /k describes
the upper bound of the bit-corruption ratio.

More formally, we can describe the procedure abovbis way:

* We divide a sequence of bi¢sinto blocks a ,a,,...,8, of the same length.

* Fori=12,...k we calculate and save the vav, =h(a;).

* Next, we compare it with the valutv', =h(a’;), that is with the hash function
value computed on the block after storage peribdv, l=Vv',, we know with
probability almost 1, that there were no corrupbits in the parta, . In other
cases we have to assume that every bit might bapted.

Wherel < k. Secure hash functions should have the lengthuipiun | >= 256 bits.

2 That is expected time needed to obtain two bitastrs with the same has value is exponential téetigth of
output of considered function.
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(2.2.3)

(2.2.4)

2.3

(2.3.1)

(2.3.2)

« We compute = [i0{1,2,.k}:v, #v'}| and denote the valu¢k ash.

In order to determine the usefulness of hash fanstiwe calculate the expected
value of the ratiol /k under constraints given in (1.1.2). Since bits eorrupted
independently (as we have assumed above), we havilitowing probability that
i-th bit is not corrupted:

P(v, =v;)=@-r)". (1)
The expected value of tHék reads:

E() =5 T, - P(y =) =1-@-n)". 2)

As mentioned in (2.1.2), the length of hash functowutput is about 256 bits. Since
the additional space for hash codesRs 0.IT, the length ofa, for i =12,...k

should be at least 2560 bits long. Therefore, ia tase the expected value of bit
error rate is:

E(b) =1- (099**=1-6700"=1, (3)
which is unacceptably high.

In conclusion, dividing data into disjoint blocksdacomputing a hash value for each
of them to check the integrity of data is not pautarly useful when assuming the
constraints given in (1.2.1). Such constrains megbiocks to be quite big, which

makes the probability of block corruption equal aéinl. However, removing some
of constrains and using smaller output blocks (&@f bits long) results in lower

performance of the hash function.

Alternative division method
Introduction

In paragraph 2.2, we have discussed the schemieiding) data into disjoint blocks
of equal length. Naturally, this is not the onlyspible approach to the given
problem: a single bit needs not to be only in oleelband blocks may have different
length. It transpires that dividing data into bledk a clever way leads to a better
estimation of a corruption ratio, so that the ugpaund for the ratio is closer to real
value of ratio.

Ouir first step to construct such a clever divisiaas to arrange bits in a square (as in
theFigure 1. In this case the blocks for which we calculatetheodes are composed
as rows and columns in a square. Therefore, eddh inicluded in 2 blocks (1 row
and 1 column, cfrigure 1).
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(2.3.3) At first glance, it seems to make no sense to divddta into overlapping blocks —
blocks would need to be longer so as to satisfyrdguiremenR = 0.IT , which
increases the probability of corrupting a hash @aNevertheless, such an approach
may provide a very good upper limit of errors ie thata if certain assumptions are
fulfilled. Consider the situation presented in Eigure 2.

Figure 2 Visualization of the given data after storage.d&k for which hash value has changed, are
highlighted. As every corrupted bit changes thenhadue either for row and column, all potentially
corrupted bits are located on the intersectiorth@highlighted rows and columns.

Let p,,p, be the percentages of corrupted hash values pec#sely rows and
columns. The percentage of corrupted hash valuedlfblocks equals

_bht*tp
= 4
Pr > (4)
However, the upper bound of corrupted bits is gahesmaller and reads:
b=p, [p,. (5)

In the case presented in the Figur@,2= 0417,b= 0167,r = 0083

Generalization — the hypercube method

(2.3.4) A generalization of the method presented in (2.8a2) be obtained by arranging data
in a d -dimensional hypercube (dfigure 3 for 3-dimensional case).
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(2.3.5)

(2.3.6)

(2.3.7)

(2.3.8)

Figure 3 3-dimensional hypercube consisting of 64 celleyyrEvery cell represents 1 bit of data.
Block is a subset of bits forming a section (reeeg). In this case there ¢3[16= 48 blocks.

In this general case, if the percentages of coedigtash values in dimensions
12,...d equa pn,p,...p4 respectively, then we have the following upperrzbof

bit error rate:
b= p, P, Ll.0py - (6)

Calculations and optimization for hypercube method

It was our aim to find such parameters of the hgplee that the obtained upper
bound of corrupted bits is the best (the lowest)th® same time, we optimized the
number of dimensiond and the size (humber of cellS) of the hypercube (detailed
calculations are presented in the Appendix). Wedaekcto divide the data into parts,
each consisting o6 bits and make a hypercube for each of them sepgrat

For the purpose of calculating the expected valtiebp we assumed that the
distribution of errors in the data is uniform antslare corrupted.

We calculated that this method does not work foitialn constraints:
r=001 R=01T and 256-bit-long hash codes. The reason for tigsosery is
analogous to the one described in Section 2.21ai@e blocks the probability of
corrupting its hash value is very high. Therefave, decided to change some of our
assumptions. Firstly, we chose= 0. 00@&econdly, we decided to use 100-bit-long
hash codes.

Results

For the assumptions made in 2.3.7, the optimal déoa of a hypercube is equal to

2 and each part consists 4f10° bits (see Appendix). In this method the expected
value of the upper bound of corrupted bits is semathan 0.058. We would like to
emphasize that dividing data into disjoint blockdis (method described in 2.2.1)
under the same assumptions would give the expegtpdr bound of corrupted bits
equal to 0.095. The hypercube method lowers themppund of errors more than
16 times.

10
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(2.3.9)

Remarks & further research

As indicated in (2.3.6), we assumed uniform disfiin of errors in data. We
suspect that this method may work very badly fapacific distribution of errors.
However, we believe that this problem is manageable

(2.3.10) The method is based on arranging data in a hyperanld calculating hash values

for sections. Generally, there might be other atat#p ways of dividing data into
blocks, giving lower expected value bf under the same assumptions. Firstly, we
can arrange data in a hypercube and calculate \redshs for other subsets of bits,
for example hyper-planes. Secondly, we can abatid®mndea of the hypercube and
invent a completely different division.

(2.3.11) This method does not give a satisfying upper boaindorrupted bits for = 001

2.4

(2.4.1)

(2.4.2)

which makes it useless in some real-world applceti On the other hand, if we had
a method of measuring the level of the integritytred data based on dividing data
into blocks, we might improve the expected valud dfy dividing data e.g. in a way
presented in 2.3.4. We recommend it as a suppduig

Hash codes with error correction
Introduction

The major limitation of the hash functions in salyithe problem is a very high
probability of hash value corruption for long bleckAs mentioned before, the
analysis of the hash values enables us only tomether there are any corrupted
bits in a block. To calculate the upper bound, aeehto assume that all bits from the
block marked as corrupted may have changed. Ifegegnized which blocks are
corrupted “only a bit” and which are more corruptéiden we would be able to
measure the level of the integrity of data moreisedy.

For the purpose of such recognition, we decidedide error correcting codes.
Generally, error correcting codes are bits addeatigpnal data (or part of data), with
the aim of correcting a predetermined number adrerrin our problem, we use them
in the following way (example in theigure 4):

1. We divide data into blocks and calculate hash wafaeeach of them.
2. We add codes correcting up doerrors to each block.

3. After storage we correct errors using error comgetodes.

4

After correction we compare saved and new hashegalidi there are more than
d errors in a particular block, then stored and wated hash values differ.
Otherwise, they will remain the same. Based onitfmation of how many

hash values are changed, we can calculate the Lipypteof corrupted bits.

11
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(2.4.3)

(2.4.4)

(2.4.5)

1. 01'1\1'00101010'11'10'1100
P / \ N\

2. | I [ | | l

3. [ HE T EEN Nl | =
error correction
4. | I [ | | I |

Figure 4 Exemplary visualisation of the proposed methocer&hare 4 blocks of 5 bits each. We add
codes correcting 1 error (grey). Some errors oatutata after storage (3.) (red). We use codes to
correct them. Finally, we calculate hash valuesradgbha number of errors in a block was biggentha

1 (like in a second block), then not all errors eveorrected and the hash value is changed.

In order to grasp the significance of this methmahsider a situation presented in the
Figure 4. After the storage there are 4 errors: 2 in odgoiata and 2 in the added
bits. If we used method presented in 2.2, two oskuld be corrupted. Since we
use error correcting codes, we can recognize th#ta fourth block only 1 bit has
changed. Moreover, we can correct this error, wis@m added value of the method.

Furthermore, the errors which occur in added bitsadso corrected. It means that we
do not need to deal with them additionally.

Theory

During our research we focused only on the BCHreraorecting codes. We would
like to quote the theorem, which enabled us to nsakee calculations.

We will use the following terms:

» word — sequence of bits;

» coded word — a word which we would like to correct;

» control symbols — additional symbols (bits) useddaect errors in a coded word;
» coding word — a coded word with control symbols.

Below we shall present the theorem of the BCH cdpesof in [2]):
2" -2
m

For eachdmdJZ, , d<

there exists such a BCH code that all following

statements are true:

e Coding words ar2™ -1 long.

« This code correctsl errors in a coding word.
e The number of control symbols d [in.

This means that the length of a coded woi2™ —dm-1 .

12
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(2.4.6)

(2.4.7)

(2.4.8)

(2.4.9)

One of the most important conclusions of this teeors that we do not need a lot of
additional space for control symbols. If the sizk @ block is A, we need
approximatelyd [log A of additional space to corredt errors.

Results

We were interested whether we overcame the majuitaliion of using hash
functions, so we calculated the probability of opting hash value. It transpired that
using error correcting codes combined with haskctions would give satisfying
upper bound of corrupted bits for= 05

We made calculations for different valuesrofand R and tried to choose the best
parametersm,d for them. We assumed that we know the BCH codeecting

d errors in the2™ -1 bits long coding word. We decided to use 100-titgl hash
codes. Results are presented inTakle 1

Table 1. Probability of corrupting hash code depenithg on the values ofm,d, r, R.

m | d r R Probability of corrupting hash code
16 | 600 1% 01851 <0.1%
16 | 357| 0.5% 01T <0.01%
17 | 678] 0.53%| O0O.1IT <0.7%
16 | 357 0.53%| O0O.1IT <0.4%
15 | 187| 0.53%| O0.1IT <0.5%
14| 96| 0.53% O0O.IT <1.6%

Remarks & further research

For the purpose of calculations we assumed thatligigbution of errors in the data
is uniform (like in the paragraph 2.3). Once mar®imation of error distribution is
available (e.g. the specific storage hardware Iscted), obtained results can be
adapted accordingly, possibly with improved perfante.

The main advantage of this method is that it ndy aneasures the level of the
integrity of stored data, but also improves icdh also be combined with error codes
that are already used by PWPW with the aim of ecingrperformance.

(2.4.10) We would like to emphasize that the theorem (2.gugrantees only the existence of

the BCH code satisfying some requirements. We doknow whether effective

algorithms of constructing such a code or coding alecoding words exist.

Moreover, it cannot be ruled out that there are esather error correcting codes
which might be more useful in a real world appligat This area is open for further
study.

Secure Secret Sharing Method

Having investigated hash functions, we shall nowcgha different approach. Apart
from ordinary verification of the integrity of loAgrm-stored digital content, it
might provide some additional features, namely:

13
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3.1
(3.1.1)

(3.1.2)

(3.1.3)

(3.1.4)

» extended capabilities in: verification of the intiég recovery of corrupted bits,
design of the access structure to the stored taptaent;
e an opportunity to optimize the PWPW'’s requiremeraiscerning storage.

All the features listed above and many others campiwvided by secret sharing
protocols. In cryptography, Secure Secret Shai8®S) scheme [4] is understood as
a method of the distribution of a secret amongaugrof participants, all of them
having their own share in the secret. The secretbz reconstructed only when
authorized participants combine their shares.

Basic capabilities

By using Secret Sharing Schemes one can storedistéuted in some insecure
locations in a secutevay ([3]).

Threshold secret sharing. A threshold is a minimathber of participants which have
to co-operate to reconstruct the secret. A scharhere at least out of n players is
necessary to reveal the secret is described (t,n). threshold scheme. It allows

placing securel't —1 shares outside secure locations (e.g. own trisstet@ms), say,
literally distributet —1 shares over the Internet.

Schemes for which we can provide verification of thtegrity of secrets are called
Verifiable Secret Sharing (VSS).

A proper design of the access structure improveduhctionality of secret sharing.

* One of the simplest access structures was presabtace — every set of at least
t out of n participants is allowed to reconstruct the secret.

* More advanced structures can be implemented asnsl|
¢+ P={P,...,R} is a set of participants taking part in sharing.

¢ Every family R of subsets cP can be an access structure.

» We can provide different levels of access for défe participants. For example,
the main participant (PWPW) has more rights thamrusted outsider (e.qg.
governmental institutions), which in turn has maoights than a not trusted
participant (e.g. ones using shares from the letgrn

Example 1 @eneralised access structure) Our task is to guarantee verification of the
integrity of long-term-stored digital content. Fexample, let us consider recordings
of speeches of famous politicians. One can didiiba secret among some
governmental institutions and set the condition enndhich the secret can be
revealed, e.g. at least 5 institutions from 5 défe ministries have to collaborate in
order to reconstruct the secret and so on.

By using additional participants with different &ds of privileges we can minimise
the probability of leaking or losing the data.

% In the secret sharing, there are at least twoonstiof security: information-theoretical and conatianal
security. There are significant differences betweentwo types, yet, it is rather beyond the soofpthis paper.
In order to simplify further discussion without ing its generality, we will simply discuss secureperfectly
secure secret sharing schemes.

14



PROVIDING INTEGRITY OF LONG-TERM STORAGE ESGI77

3.2
(3.2.1)
(3.2.2)

(3.2.3)

(3.2.4)

3.3
(3.3.1)

(3.3.2)

Extended capabilities
Now extended capabilities of secret sharing scheshak be presented.

Pre-positioned secret sharing. A pre-positionedetesharing is an example of an

access structure where all data requested to reaonthe secret is known except for
a single crucial share which has to be given Idter. example, the PWPW can

distribute the whole data over the Internet by egositioned secret sharing scheme
with a short, crucial share kept locally. Let uplexe a difference between secret
sharing and simple encryption of data in this modéle advantages will be clear

once more extended capabilities are outlined.

Example 2 6cheme with an activating share) Let us assume that we have
a situation described in the Example 1 — data asedt locally on the servers of
PWPW and in a few places all over the world — ia thited States, China, Russia
etc. By means of a pre-positioned scheme foreigtitinions can partake in given
shares (a share made out of a share is calledsaa@) beyond unauthorised
participants who cannot reconstruct institutionahres until foreign and trusted
parties cooperate, because their shares are crucial

Proactive Secret Sharing (PSS) has the followiagufes:

* One can change (periodically renew) participantsiress in a secret without
revealing or changing it.

e One can recover corrupted shares (these sharegspond to dishonest
participants). In our case — we can periodicallgaththe consistency of shares
and recover corrupted ones. Another reason to tsagtive secret sharing is the
fact that if we find a corrupted share during tleeification process (by e.g. VSS
scheme), we can easily replace a broken share avithrrect one. So there is
asimple way to “maintain” integrity of shares pelically, which implies
integrity of data.

Multi-secret shares have the following features:

* A scheme where any subset of set of participantgeshanother secret is
available.

* |t seems that a single share can be used in adengts, optimizing storage space.

Example 3 (nulti-secret scheme) In the presented case we can use a multi-secret
scheme. We do not need to create a separate simatesecrets for all files. We can
make just a single sharing scheme with such a prnpplat different subsets of
foreign institutions can reconstruct speeches férmint politicians and all speeches
reconstructed in this way make up a collection.

Combining properties

One of the most desired properties of secret sipasohemes is its flexibility in
combining functionalities described above. Furttesearch is required to describe
which properties can be combined with each other.

In our case — we might conduct research aimedwaioiging a scheme which is e.g.
« perfectly secure, pro-active, integrity-providingdaactivated by a share from the
PWPW.

* a multi-secret scheme where any subset of partitsphas its own secret that
cannot be revealed without the share from the PWPW.

15
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(3.3.3)

3.4
(3.4.1)

(3.4.2)

3.5
(3.5.1)

4.1
(4.1.1)

(4.1.2)

(4.1.3)

(4.1.4)

A scheme with combined properties is not necegsartiextbook material available
right away, but has to be carefully engineeredeimst Hence, some additional work
might be required before implementation.

Additional Considerations

Reconstructing original data from shares might simally need some
computational effort and data may not always bdlabe in real-time. Still, task
complexity is polynomial in time, yet, usually féale in practice.

It seems that once a perfectly secure secret ghatimeme is applied its users should
be protected against future developments in cryyatiyais, which would affect the
cryptography based on computational complexity. (ewgst of the employed public-
key cryptosystems like RSA).

Open questions

As described above, the secret sharing schemesdprmany tools to deal with the
PWPW problem. Still, there are some open questtbas definitely need further
investigation:

« Which verification techniques are optimal in sotyithe problem of corrupted
shares and data in the case of digital contenbh@PWPW interest? One should
remember that by using secret sharing scheme, wercaide some verification
based on secure multi-party computations.

* Further effort should be expended to design annmtiaccess structure for
particular types of stored files.

« Various types of files have different data thatciscial to their consistency. It
seems that we do not necessarily need to protecwhole data, but only some
crucial parts. It is worth considering which fragmeeare really important for each
type of files. If we made this classification, wewld be able to protect crucial
parts only by means of secret sharing.

Conclusion and proposals for further research

Hash functions

Let us recall the method proposed in section 22 diWided data into disjoint blocks
of the same length and compared two hash valuesafdt of them — the first value
was computed before the storage, the second — wftdihis method was not
considered as a good way of dealing with the giweblem. The probability that in
any block of data for which we compute the valuéghash function will remain the
same after some time is negligible.

With some additional assumptions, like limited dsitze and smaller bit error rate,
we have shown that dividing data into blocks inlever way may improve the
estimation of corrupted bits ratio. However, dugsdimitations, this method should
be applied only as a supporting tool.

Hash functions combined with error correction mdghmay provide very good error
estimation. Under given constraints concerning liheerror rate and the maximal
amount of additional data, there is a probability0®001 that not every error in
a single code word will be corrected.

One of the most convenient cases, for which weprame that the upper bound of
the number of corrupted bits is small, is when rsrrare uniformly distributed.
16
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4.2
(4.2.1)

(4.2.2)

(4.2.3)

(4.2.4)

(4.2.5)

4.3
(4.3.1)

Nevertheless, we believe that errors occur ratheblocks, in particular parts of
carrier of data etc., but not uniformly. The quastis — can we reorganize the bits to
make the distribution of errors uniform?

Secret sharing method

Secret sharing method is an alternative way ofkthgn about data storing. It
provides a number of new functionalities which wallstoring of data divided among
some local (trusted) participants and some untiuséaties (like public FTP servers
or in general ‘the Internet’) in a secure way.

Different participants taking part in data shariogn enjoy a different level of
privileges in data access and recovery. It is ingyarto determine how many levels
of privileges should be designed and how many @pants should be on each level.
It seems that almost any access structure can pkenmented by using the secret
sharing.

In many secret sharing methods we assume that ssistoeed locally (trusted
participants) are at least of the size of sectas Worth investigating whether it is
possible to deliver a method which would be bo#ituse and space-saving (i.e. local
shares are smaller than a secret). We believestitht schemes can be obtained.

An important property of secret sharing schemesesfiability of shares. It is
especially crucial in our problem, in which we deaith corrupted data, as
verification protocols can play a role of corregticodes. It is worth exploring which
of them would be optimal in our problem.

Different secret sharing schemes have various piiepe We have described
properties of schemes which are: pro-active (wepaaiodically change participants’
shares), pre-positioned (there is a crucial shateowt which a secret cannot be
revealed), multi-secret (a few different secrets shared) or verifiable (we can
determine which shares were corrupted and revesécaet without them). The
question is: which of the mentioned properties lbarcombined?

Other possibilities

In this section, we will outline an additional apach, which was discussed after the
77" ESGI, nevertheless it is worth further researdher& are check-digit schemes
that allow determining whether a bit-stream waguated over a certain threshold,
say, 1% of bits were changed. Should this be g thseheck-digit scheme provides
information that corruption has occurred. Usualhe threshold can be set
individually for a particular application. Furtheone, since the main task of the
scheme is error detection not error correctionalligless additional information is
stored (shorter checksum) than in error correatmates. In general, the length of the
checksum can even decreased further, should statistasoning be introduced, for
instance it is allowed that in a small number ddesascheme sensitivity is different
from the set threshold (not necessarily lower)such a situation, it is even possible
to decrease the ration of checksum’s size to the af information stored with the
increasing volume of information. A good examplesoich construction is graph
coloring based on the check-digit scheme describel®]. It is recommended to
research applications of check-digit schemes withaharacteristics outlined above
for the purpose of the problem presented by PWPWtanevaluate results already
obtained for hash functions as well as to investiga joined use of check-digit
schemes with secret sharing methods.
17
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Appendix
Hypercube model

Introduction

In this paragraph we will present detailed caldata for the specific clever division
based on a hypercube (the respective idea and lizetien are presented in
paragraph 2.3).

Specification

We will use the following notation: the dimensiohhypercubeH is d. Every bit
(cell) hasd coordinates X% ,% ,% ,..X, ). The size of data&S=10', so the side

t
length of hypercube i10¢ .

t
A sectionin H is a set oft0¢ cells such the(d —1) of their coordinates are the

same. Sections are parallel to axes. Section phtalli -th axis and meeting point
(x1 X ,..,Xd) is defined below:

5 (x o e )= (% % Xy JOH 1(% = 31) 00, = X2 ) O... -
e 0, = X ) O,y = Xiea ) O...0(X, = Xa)

Dependences

Before stating anything about the hypercube methegl,shall discuss the main
dependences between different values describingrtbihnod, such as: additional

spaceR to remember hash values, the size of datal0', the dimension of the
hypercubed and so on.
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(5.1.5)

(5.1.6)

(5.1.7)

Firstly, we will calculate how much of additiongdage is necessary to remember the
hash values. Every cell is id sections and there al0 cells. Every section
consists 010"? cells. As a result, the total amount of sectiorH is:

; g
489 _ ymoe . 8)
10¢
Since we use 100 bits long hash values, we nedtadd space equal to:
-1
R=d[0 ¢

It is also necessary to know the maximal amourdradrs in data, if there is a given
amount of wrong hash codes. Suppose there kireerrors in hash codes.
Let(k, .k, ,...k; ) be the number of wrong hash codes in the firsprse, ... ancd -th

direction respectively. The following upper bourfceoors in the data would be:

<d- ky Tk, 0.0k,

T 9)
Moreover, it is easy to show that:
k, Ik, [0..[k, < (gjd : 10)
It means that if there a k: wrong hash codes:
(kjdd_l
b S—dlct . 1)

The last thing we need is the maximal amount ofngrbash codes, if there are
| corrupted bits. Every bit may corrud hash codes, so the maximal amount of
corrupted hash codes is

| e . (12)
Optimization

Suppose that after storage there 10™* errors in the data (in other words:
r =0.0001). Due to (12), we know that these bits are coedtt mosd [10™* hash

codes. With the information that at mcd [10™ hash codes are wrong, we may
calculate (from equation #11) that:
d

(dmd”]d_l
d
b< . 13)

1c

We would like to know that not all of the bits ar@rupted p< )}, sot and d must
satisfy the inequality:
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(5.1.8)

(5.1.9)

d
t—4 \ , .
[dio jd‘1<10t (14)
t<4d. (15)

Obviously, the lowet, the more precise we might be.

As R=0.1T =10'", we can create additional inequality foandd

td _1+2
doo 4 <107 (16)
d(log,,d+3)<t. a7)
Sot andd must satisfy:
d(log,,d+3) <t < 4d. (18)

For t < 40 suchd can be found. As indicated before, the lo\tethe more precise
we are. We decided to choose
t = d(log,,d+3). @9

We would like to find the value af which would make our prediction more precise.

The first step was to fincd, such that interv(d(log,,d+ 3),4d) is as big as
possible. We defined function
g9(d)= d(1-log,,d) (20)

and found its maximum, which is approx. 3.7. Thenchecked values (d such as
2,3,4,5and calculated that prediction is the most presisend = 2.

(5.1.10) We decided to prove that prediction is the mostiseewherd = 2

* Cased=2
t = 2(log,,2+ 3) = 6.6 1)
2
(10°°*)21 = 10°? — the possible number of errors.
2
18:6 = 00398< 4%- the maximal ratio of corrupted data.

* Other casesd # 2).
We calculated that the possible percentage of ptedudata is equal to
t-4d
1091 22)
We would like it to be as small as possible. Wecwlalted that ford > 1 this
function increases, so the optimund = 2.

(5.1.11) We would like to emphasize, thbt<  0@hly if r =0.0001 We calculated (using

computer), that ifE(r) =0. 000land bits corrupt independently with probability
0.0001, thenE(b) < 0058
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(5.1.12) Note that dividing data in exclusive blocks of bit®uld give a worse expected
upper bound of corrupted bits, equal to 0.095.
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