Simplified methods of assessing the impact of grid frequency
dynamics upon generating plants
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1 The problem

The frequency of the national electricity grid is affected by fluctuations in supply and demand,
and so continually “judders” in an essentially unpredictable fashion around 50 Hz. At present such
perturbations do not seemingly affect Nuclear Electric as most of their plant is run at more or
less constant load, but they would like to be able to offer the national grid a mode of operation
in which they “followed” the grid frequency: i.e., as the frequency rose above or fell below 50 Hz,
the plant’s output would be adjusted so as to tend to restore the frequency to 50 Hz. The aim is
to maintain grid frequency within 0-2 Hz of its notional value. Such a mode of operation, however,
would cause a certain amount of damage to plant components owing to the consequent continual
changes in temperature and pressure within them.

Nuclear Electric currently have complex computational models of how plants will behave under
these conditions, which allows them to compute plant data (e.g., reactor temperatures) from given
grid frequency data. One approach to damage assessment would require several years’-worth of
real grid data to be fed into this model and the corresponding damage computed (via “cycle
distributions” created by their damage experts). The results of this analysis would demonstrate
one of three possibilities: the damage may be acceptable under all reasonable operating conditions;
or it may be acceptable except in the case of an exceptional abrupt change in grid frequency (caused
by power transmission liné failure, or another power station suddenly going off-line, for instance),
in which case some kind of backup supply (e.g., gas boilers) would be required; or it may simply
be unacceptable.

However, their current model runs in approximately real time, making it inappropriate for such
a large amount of data: our problem was to suggest alternative approaches. Specifically, we were
asked the following questions:

e Can component damage be reliably estimated directly from cycle distributions of grid fre-

quency? i.e., are there maps from frequency cycle distributions to plant parameter cycle
distributions?

e Can a simple model of plant dynamics be used to assess the potential for such maps?

e What methods can be used to select representative samples of grid frequency behaviour?
What weightings should be applied to the selections?

e Is it possible to construct a “cycle transform” (Fourier transform) which will capture thg
essential features of grid frequency and which can then be inverted to generate simulated
frequency transients?

We did not consider this last question, other than to say “probably not”.

We were supplied with data of the actual grid frequency measurements for the evening of
29/7/95, and the corresponding plant responses (obtained using Nuclear Electric’s current compu-
tational model). A simplified nonlinear mathematical model of the plant was also provided.

Two main approaches were considered: statistical prediction (see section 2) and analytical
modelling via a reduction of the simplified plant model (see section 3).



2 Statistics
(1) Cycles

Damage potential is currently assessed at Nuclear Electric using a pre-written code to calculate a
‘cycle histogram’. This was run at the Study Group (see figure 1). Some thought was given to the
possibility of relating the resulting cycle spectrum in a crude way to the power spectrum, although
no specific suggestions were made.
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Figure 1: Histogram of the amplitudes of so-called ‘“H’-cycles for the supplied data (log-linear).

(i1) Power spectra

The power spectrum of the raw grid frequency data is shown in figure 2. It has a long tail. On the
other hand, figure 3 is the corresponding power spectrum of the inlet gas temperature (computed
from the supplied plant data). There is a sharp cut-off at the noise floor, suggestive that the plant
acts as a linear filter on the grid frequency. We come back to this below.

(iii) Phase portraits

The degree of linearity can be gauged to some extent by plotting phase portraits of the model out-
puts. In figure 4 we show a number of these, representing plots relating grid frequency w, circulator
gas outlet temperature T3, channel gas outlet temperature T3, reheater steam exit temperature
Tr, superheater steam exit temperature Ts, and reactor thermal power Qp. Tt can be seen that
there is, for example, good linear correlation between w and @ g, with some scatter. When such a
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Figure 2: Power spectrum of grid frequency (natural log-linear).

plot is viewed in time (i.e., the points are added in sequence), there is apparent cycling about the
linear trend, which suggests that the small scale scatter is due to nonlinear deterministic effects (as
opposed to, for example, an AR model, where the sequence would appear more random in space).

(iv) Other methodologies

Lack of time, or lack of code, prevented much exploration of other techniques. Here we outline a
possible scenario for future work; the small scale model described in section 3 can be used as a
benchmark against which different methods of data analysis can be tested. We term this process
“nonlincar modclling™. One strategy is as follows. Given the grid frequency data w(t), we chioose
a suitable phase space embedding, say in R9& as

Q; = (w(t,'),w(t,' —A),. . w(ty - (dg — I)A)),

where A is the lag and dg is the embedding dimension. Typical choices of dg and A will have
dp A = 200s (the longest response time), and A = 10s (the shortest response time), though there
is flexibility in the choice. The time series {w(t;)} is now represented by the embedded trajectory
{€2;}. This trajectory is nonlinearly filtered by using singular value decomposition to compute the
singular spectrum, o; > o2 > ... > o4,.. We filter by projecting the vectors on to the singular
vectors with o; > 4, where § typically represents the noise floor. As a result, we obtain a filtered
trajectory {€2!}, where each Q2 is the sum of k multiples of the k retained singular vectors. A
typical value might be k = 6, for example.



-10

Il 1 1 1 1 1 1 1

1000 2000 3000 4000 5000 6000 7000 8000 9000

Figure 3: Power spectrum of inlet gas terineratvee comr e o e

Finally, we build a nonlinear model by seeking a map F : R* — R such that
FQ) =1

where T is the observable (e.g., a plant temperature) which we hope to predict. Typical examples
of such nonlinear models use radial basis functions, or local (in phase space) linear predictors, to
estimate F'.

We may use the simple model of section 3 as a laboratory control for this method in the
following way. Use the simple model to generate (given w) the observable 7. Build a nonlinear
predictor (exactly as deseribed above) to predict T from w. Now we can estimate the value of the
predictor by computing 7" for a different w using the model, and comparing with the estimates
from the predictor. In this way, we can gain a measure of the reliability of the nonlinear predictor
for the particular data that we are considering.

3 Analytical models

3.1 The plant

Nuclear Electric provided a simplified mathematical model of a plant and its control system. This
model involved a dozen or so plant parameters, including several control loops. The plant divides
naturally into two sections: the reactor and boiler in one section, and the turbines and reheater
in the other. Feedback comes in the form of the grid frequency, measured at the turbine shaft in



0.990 1.000 0.995 1.005 ‘ 0.98 1.02
4 T . L D s =
C 1. ’ oo
1 : ¥ R AR AT SR .., WRES . 5
. - - R J ¥ * Lo i
A "Btﬁ’ -, dﬁ\ 5% o 3 % Tay o
w . (A S ORI MERT
i i - :- - s 1P i s ’t . . |
oo 1‘9, s . : . 2 fi" . . \-’? ..: 5 f;' o §
'1 - 1 ‘s % 2 o
7 PR [ e N -‘{
Bl g Wil L J 5 ':f. !
S . . ; o S e S A,
| ey v - ,‘@ , R et
4 'K_ ). ) :,(,“é"c- L‘\ (({”""W, ’:; " ‘.
1 ) b ,'}l' ,:ﬁ!' ;f&_-.}{
4 ) B =\ 5 &
=4 "—h' - [ - o - ..
O! N & z N
o . L o
] \ s I3 i i ,o_
St . s . o s .3 LR L OOt e 0N TN
L SBTE “$eiir i“,’{‘t g S
I o B I - g
I X Fedig e * X g™ o 3% * 4" Yoy 51 s ' vy J o
ot || AR AR || sERE || S
e N ok ' e L e el e ~ e o
v i . % s e e l .:'/.1 ’ F %
Sy www Ce ™ Cas o —H i .’"{}’ ,;( ’\:'}: .J
— . i . . - = . Y .- < . e ;
TR peh s | R
3 ~ . i ST 3L tR | 3 AR 7 T*.' ‘-
RS - 2 A T MEA e ! » ' an s o
") B § 1y RN Y 2 : : * i . %,
°1 SRR I l 5Bt | . Cile.s - |
. P “ s .. 1=
T e TR - e e CNAaa T2
0 ¢~‘ - reil s oM s S
A : L 2RSS T R Y]
R o Wgin R e A ’ ts SAARH T
AT || e et P VAR
NS e YA o, Y o .. : g
. . . &
g ,,’; R . G e, . PR o . . ..1l~
iy DR - . ”"-. S -' L’}.. . -—.-.w‘-'...’: .2 .\ ;,Q,':’gi- ]
.J,. D e 0‘_.3- . :&‘:'{fo“? = f'ima . -,—:‘zq‘;’-f;_‘f‘: Qb
oy N . o, Wa® >y . o o P
© "; y L R N ('y;,.j‘ - {3%.... e “v\.’; ‘3.". e
o 4 N oy e .. oe Nt o C WV e
o - - . I. .
0.997 1.000 1.003 0.993 1.001 ————"""70.990 1.000

nghre 4: Phase portraits relating grid frequency and plant parameters.

the second section, which is used to control the governor regulating the boiler pressure in the first
section.

It was clear that these two sections could effectively be decoupled; whilst a particular power
station does have an effect on the grid frequency (via its varying electrical output at the turbines),
it is only one of several such stations affecting the frequency, and so its individual effect is small.
Other suppliers and the large number of consumers will be more significant, and will act so as to
make the grid behave in a particular way regardless of this station’s actions. The grid frequency
may therefore be considered as input to the plant, unaffected by the plant’s output.

We also chose to ignore the rate-limiters which control pressure and heat output in the plant;
we assumed that these Iimiters would only be activated in extreme (or, at least, relatively unusual)
circumstances.

With these considerations, the model for the boiler section of the plant becomes self-contained
and linear, albeit with time-varying coefficients. We further approximated by linearizing these
coeflicients about their equilibrium values. Consideration of the magnitudes of the perturbations
involved indicated that this should be a very acceptable approximation in all but extreme cases;
if the grid frequency remains within the range 49-8-50-2Hz and w stays within “normal” bounds
(such as those in the sample data) we find ourselves within the linear regime.

With these considerations the entire model reduces to a third-order linear inhomogeneous sys-
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where P, Q and C are perturbation plant parameters, w = (w —wg)/wo (Wwhere wo = 50 Hz) is the
normalized frequency deviation, and all other parameters are defined by the plant design (constant
for a given design). We were supplied with suitable values for these parameters.

(More explicitly, P, @ and C are defined by

PD = (1+75A(2))Pset +p50P1
QB = ADPset/pSo + Q;
cr = AOPset/pSO +C

in terms of the variables Pp, @p and c; of Nuclear Electric’s model. The constant A in (1) is
equal to the reciprocal of the “droop”: i.e., a droop of 8% means A = 12-5.)
We write (1) in shorthand as
x = Ax + Fw. (2)
Using “typical” values for the plant parameters, we calculated the eigenvalues of A as —0-0045 and
—0-0066 £ 0-011:. (These correspond to time constants of approx. 220s and 150s respectively.)
We note the negativity of the real parts, as expected, for a stable control system.

These model eigenvalues give us an understanding of the inference drawn in section 2(ii) above:
the matrix A acts as a low-pass filter on the power spectrum of the forcing in (2), which is
proportional to w.

To check the validity of this model we used it to compute the gain in @Qp, given w. The
gain at frequency 2 is defined as the modulus squared of the second entry of the column vector
(iQI — A)~'F. A plot of the resulting function of Q (computed using Maple) is shown in figure 5.
The corresponding gain for the supplied plant data was also calculated and appears in figure 6.
The agreement in shape is excellent, both plots showing a peak at somewhat over 0-001 Hz, with
a subsequent steady decay (approximately linear on these log-log scales). There is however a dis-
agreement (even at the level of order of magnitude) between the gain values, which was accidentally
overlooked by the Study Group (where the vertical scales on the two graphs were misinterpreted).
This is probably due to a mismatch between the normalizations of @p and w used to generate the
two plots, as the plant data came from a file in which values had been renormalized. This should
be further investigated, and it may be necessary to adjust the plant parameters in the model to
obtain a good fit.

Further suggested work on this model includes solving (2) subject to forcing w = W#(t), where
W is a constant and 6 is the Heaviside step function. This could model a sudden rise or fall in the
grid frequency, caused by some drastic change in demand or supply, where W is a measure of the
size of the change. Damage could be calculated analytically in this case, and a comparison with
the output of the larger computational model would reveal the limits of the linear approximation.

It is hoped that this reduced model will prove effective enough to use on the “everyday” grid
data. It is certainly extremely cheap computationally, and so could be run effectively on huge
amounts of data. The existing large computational model could be used to fill in the gaps where
the grid frequency data is unusual in various ways and in which the reduced model’s validity is
called into question. This combination of models should allow damage analysis, on a large enough
range of data, to be carried out in reasonable time.

3.2 The grid frequency

On a short time scale the grid behaviour is dominated by changes i demand tempered by the
rotational inertia of all the turbines and generators (as well as electric motors, at least in principle)
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Figure 5: Predicted gain in @Qp for unit grid perturbation under the model (1) (log-log).

connected to the grid. The appropriate equation, in linearized form, is
Es . T]lb = ED (3)

where Es represents the generated power (as delivered to the generator rotors) and Ep is the
demand. The term 77w represents kinetic (rotational) energy being transformed to electric power
or vice versa — this term is linearized here, as the grid frequency is close to constant. If Eg and
Ep are also scaled appropriately, the constant 7; may be interpreted as a time scale: the time
it would take for the demand to totally drain the rotational energy of all the generators in the
absence of any generated power. In fact we shall let Es and Ep be the normalized deviations from
an equilibrium; so Es = Ep = 0 at a postulated equilibrium, and they would drop to —1 if all
power generation ceased.

We may, somewhat arbitrarily, estimate 77 ~ 8s.

We model the demand Fp as a Brownian motion. This may not be too unreasonable if the
demand is thought of as a large number of stochastically independent small consumers of power
being switched on and off at random times. However this model only makes sense on relatively
short time scales, as Brownian motion is almost surely unbounded whereas Ep is clearly bounded.

In practice the generated power Es is not constant, but is constantly regulated in an effort to
keep w &~ 0. We model this via the forced relaxation equation

TSES + Fs = ~Tw. (4)

Here 75 is a time constant characteristic of the control systems of those generating plants partici-
pating in frequency regulation: it is the time-scale over which those plants respond to an abrupt
change in grid frequency. A value of 75 &~ 10s may be considered typical. T' expresses the relative
strength of this control mechanism: a change in w equal to 1/T (the “droop”) will result in a
100% change in generated power. A droop of 4% has been suggested, corresponding to I' = 25.
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Figure 6: Gain in Qp for unit grid perturbation calculated from the supplied plant data (log-log).
The values on the vertical axis give the natural logarithm of the gain.

However, only a fraction of stations follow the grid at any time, so perhaps a proportion I' = 4 is
more appropriate.
If we eliminate E'g from the two equations (3) and (4) the equation

TST]l}}+T11b+FIU:~(ED+T5ED) (5)

results. This has to be interpreted with some caution, as the time derivative of Brownian motion
— white noise — only exists in a generalized sense.

We need a bit of notation

If y 1s a stationary stochastic process with finite variance on the real line, its autocorrelation

Ry (") = Efy(t)y(t +t')]

is a function of t' alone, and its Fourier transform
o0 . I
Ste = [ Re)ar
—occ

is called the spectral density or the power spectrum of the process. The process is called ergodic if
Sy(¢) = |9()|? for almost every sample path y (where 7 is the Fourier transform of y).

In general we think of white noise as a stationary process whose autocorrelation is a delta
function. and whose spectral density is therefore o constant function. s integral, Brownian

motion, 1s not stationary, but if it were, the theory would make its power spectrum equal to a
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Figure 7: Actual power spectrum estimated from data on the evening of 29/7/95 (jagged curve)
and from the model (smooth curve).

constant times 1/¢?. In fact Brownian motion does have stationary increments, so this argument
can be made rigorous with a little more work — see, e.g., Doob (Stochastic processes pp. 434-436,
Wiley, 1953).

Formally taking Fourier transforms on both sides of (5) we get

(=7sTr9” — ity + D)i(p) = —(1 — its@) Ep(¢)
or, taking absolute values and squaring,

1+ (159)? .

Iw(s")l? = (F — TSTISDZ)z ¥ (T]§0)2 IED(¢)|2'

With the above assumption on the power spectrum of Ep, we would get a power spectrum of w
proportional to
1+ (1s9)?
(T = 7s7192)% + (119)%) 0?

In figure 7 this power spectrum is computed and overlaid on the spectrum estimated from the
observed data. Apart from the model’s resonance near 0-03 Hz, the fit looks fairly reasonable.
An explanation for the absence of an observed resonance in the data might be that different grid
followers operate with different values of 75, which might help to obscure any resonance.

(6)



3.3 A typical day

How might we select representative samples of grid frequency: i.e., can we produce some “typical
days”? The jagged curve in figure 7 shows that the power spectrum of the grid frequency (for the
night in question) divides fairly cleanly into two regions: up to around a frequency ¢ = 0-05Hz, a
region approximately proportional to ¢~%6, and beyond that a region proportional to ¢=2. The
work in section 3.2 shows that the second region results substantially from Brownian motion; the
main qualitative difference between different days of the year is therefore likely to be in the first
region. We might expect different gradients (instead of —0-6) and different amplitudes depending
on the season and the time of day. The Study Group’s suggestion is to compute the power spectra
from the grid data for a large number of days and smooth off (or even cut off completely) the =2
regions. From these, extreme examples should be taken, as well as suitably averaged selections,
for each significant time of day, week and year. The selected spectra could then be converted back
to “representative” time series for w.
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