Void elimination in screen printed thick film dielectric pastes

Du Pont Electronics

1 The Industrial Process

Figure 1 summarises the geometry of the wet screen printing process. A semi-rigid rub-
ber squeegee pushes the paste through the woven wire mesh and onto the substrate and
conductors below. Typical dimensions are indicated on the Figure. The pastes used are
concentrated dispersions of particles with mean diameter 3 um and maximum diameter
15 pm, and are rheologically complicated. Typically they are shear-thinning, display a
critical yield stress (below which they do not flow) of o, ~ 300 Pa, have density p ~ 103
kg/m? and surface tension 7 ~ 40 mN/m. Holes in the applied paste layer can be classified
as follows.

e A via is a large two-dimensional channel created intentionally by “blanking out”
areas of the mesh. These are observed to close up partially after printing, which is
undesirable unless it can be controlled precisely.

e A void is a large two-dimensional hole created accidentally near the leading edge of
a conductor. These can usually be eliminated by adjusting the printing process and
so were not considered further.

e A pinhole is a small approximately circular hole in the layer of radius R ~ 20 um
which extends right through to the substrate. Pinholes can persist as the layer dries
and are the main cause of concern to DuPont.

e A crater similar to a pinhole except that it does not extend right through the layer
to the substrate. Typically craters close up as the layer dries.

o A bubble. Typically these are caused by accidental air entrapment during the printing
process. Bubbles are not a major concern to DuPont and so were not considered
further.

Many small holes are inevitably formed in the paste layer as it is squeezed through the
mesh, but most (approximately 90 %) quickly close. An important physical observation
is that those holes which survive as pinholes originate, as shown in Figure 1, about two
mesh diameters (typically L = 100 gm) upstream of the leading edge of the conductor.

Using the typical values quoted above the non-dimensional Bond number pgL?/y =
2.5 x 1073 (where L = 100 um is the typical horizontal lengthscale of the flow) is small
and so gravity effects may be neglected. This agrees with practical experience as the
orientation of the coated components during drying makes no significant difference to the
final product.
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Figure 1: Geometry of the screen printing process (not to scale!)

2 The Problem

The problem is to understand the mechanisms for the formation and evolution of defects
in wet screen printed layers. The primary objective is to know how best to alter the
properties of the paste (rather than the geometry of the screen printing process itself) in
order to eliminate the defects. With these goals in mind the work done during the Study
Group reported here was as follows; to describe a simple model for the closure of craters,
a model for the partial closure of vias, a possible mechanism for the formation of pinholes
and finally a more detailed consideration of the screen printing process.

3 A model for the closure of craters

A typical crater is shown in Figure 2(a). The closure of craters can easily be explained
in terms of mean surface tension effects. At the bottom of the crater both principal
curvatures are of the same sign and hence surface tension acts to close it. However, they
may be held open as a result of the presence of the critical yield stress. For the idealised
hemispherical crater with radius R shown in Figure 2(b) the force due to mean surface
tension will be comparable to the yield stress if

2y N

R
which would imply that R ~ 50 um. However typically R = 10-25 um and so, in agreement
with observation, all craters are expected to close.
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Figure 2: (a) A typical crater (b) An idealised crater
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Figure 3: The edge of a via
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Figure 4: Mathematical model for the motion of the edge of a via

4 A model for the partial closure of vias

As shown in Figure 3, the edges of vias are observed to flow inwards after printing by
L ~ 150 pum. We suggest that this behaviour is essentially a wetting problem, with the
motion of the contact line driven by the variation of the dynamic contact angle. However,
the motion usually stops before the static contact angle is reached, indicating that yield
stress also plays a role.

We propose a simple mathematical model for the motion of the edge of a via based
on classical lubrication theory (and hence appropriate if the profile is sufficiently slender).
As shown in Figure 4 the flow consists of a yielded region (¢ > o0.) near the substrate
with upper boundary y = A(z,t) and an unyielded region (¢ < o.) near the surface of the
paste y = H(z,t). In the yielded region the classical lubrication approximation yields the
familiar equations

Pr = piyy, py=0, uz+v,=0 (1)

for the pressure p and velocity (u,v) and so
u= —ﬂ'(y2 - 2hy), (2)

satisfying ¥ =0 on y = 0 and uy, = 0 on y = h. Hence the flux in the yielded region,

h h3
Pz
= dy=-——=. 3
Q= [ udy=-77 3)
The unyielded layer moves locally as rigid block with speed?
h2p,
=T 2’ (4)

!Clearly this speed is not constant! the difficulty arises from a conflict between the “thin-film” limit
and the limiting process leading to the Bingham model and could be overcome by a more careful analysis.
However, for the purposes of this simple model we simply ignore it!



and so

Q= [ wty=-(r - L. ©)
Conservation of mass requires that
H +Q:=0 (6)
where I
Q=Q:1+Q:2= 2; (g—H), (7)

and the normal stress condition yields p = —yH,,. If h > 0 then the requirement that
the stress takes its critical value at the yield line gives

(H-h)pr=0. on y=h (8)

However, if h = 0 then the whole of the layer is unyielded all the way across and the
stress on y = 0 will, in general, be less than the yield stress. Hence the model satisfies the
“complementarity” conditions

h>0, (H=h)p:—o0.<0, h[(H - h)ps ~ oc] = 0. 9

To close the problem we need to address the flow in the vicinity of the moving contact line
z = L(t). In order to avoid a detailed discussion we adopt the semi-empirical Tanner’s
Law (see L.H. Tanner J. Phys D 12 pp1473-1484 (1979) for example)
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where ¢g is the static value of ¢ and K is an empirically-determined constant.

Rather than attempt a full numerical treatment of this problem we just consider the
possible steady solutions. In equilibrium @ = 0 and so either p, = 0 or o = 0. In the
former case the profile is parabolic and independent of o, while in the latter case the layer
is unyielded all the way across and the conditions given in equation (9) imply that
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If h = 0 everywhere (in which case the entire layer is unyielded) and if the inequality (11)
is an equality then H satisfies the third order differential equation
Oc

—.'yH'

Hpr = (12)

We expect the solution of equation (12) to be an upper bound on the final spread of the
via. If Hy is the height of the via at z = 0 then equation (12) means that the appropriate
scale for L, denoted by [L], is given by Ho/[L]® = o./vH, and so

(L] = (“’Hg ) " (13)

Oc

For the typical values quoted above [L] = 95um. Scaling z with [L] and y with Hp
equation (12) becomes (in non-dimensional variables)
1

H:::m: = "'I_I (14)
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Figure 5: Numerically calculated solution of equation (14)

subject to the boundary conditions H(0) = 1, H;(0) = 0 and H,.(0) = 0. Figure 5 shows
the result of solving equation (14) numerically.? In particular this calculation shows that
H =0 at z = 1.778, and so our final prediction for the maximum extent of the spread of
a via is )
2\ 3
L=1.778 (1?) = 168 um, (15)
c
in excellent agreement with the observed value of approximately 150 um. The expression
for [L] shows that this value is relatively insensitive to changes in the values of v and o,
and that reducing Hy (the height of the via) may be the only practical way to control
the size of the spread. Clearly experiments aimed at verifying equation (15) would be
worthwhile. '

5 Pinholes

5.1 Basic Considerations

As Figure 6 shows, unlike craters, the principal curvatures of a pinhole are always of
different sign and hence non-trivial equilibrium shapes (described by the classical Laplace-
Young equation) are possible. Taylor & Michael [J. Fluid Mech. 58, 625-639 (1973)]
showed that for all values of the static contact angle 0 < ¢ < 7 the thickness of the layer
h is monotonically increasing function of hole radius R satisfying h — 0 as R — 0 and
h — h. = 2(v/pg)/?sin(¢/2) as R — oo, and so there is a unique hole with radius R and
contact angle ¢ in every layer of thickness h less than the critical value h.. However, by
considering the energy of these equilibrium solutions Taylor & Michael showed them to be
unconditionally unstable. These calculations include the effects of gravity; in the absence
of gravity the thickness of the layer grows without bound far from the hole, but the main
conclusion of unconditional instability remains unaltered.

2Equation (14) can be reduced to a first order ordinary differential equation, but since the numerical
solution is straight forward this is not pursued here.
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Figure 6: A pinhole

An order of magnitude calculation similar to that for the closure of craters shows that
the instability persists in the presence of a yield stress of the relevant magnitude, and so
a new mechanism is required to keep a small fraction (approximately 10 %) of the holes
open. We conjecture that the reason pinholes do not close is that the pinhole is surrounded
by an annular region in which the volume fraction of solid particles is large enough for
them to have locked together to form a rigid (“Roman arch™) matrix. (This is certainly
feasible since the initial volume fraction can be as high as 25 % and locking occurs at
around 35 %.) Locking is important because it is considerably more difficult for the resin
to flow through the gaps in such a matrix than it is for the particles and resin to move
together: this is because in the latter case it is only necessary to shear the fluid in the
gaps while in the former resin must be driven through the gaps. It is therefore plausible
that a pinhole surrounded by a locked matrix may close so slowly as to remain open until
firing takes place.

5.2 A possible mechanism for the formation of pinholes

Pinholes form about 300 um upstream of the raised strip of conductor, and are well corre-
lated with the mesh spacing. The purpose of this section is to answer the two questions:

e How do pinholes form?

e Why do they form where they do?

(a) Squeeze film model for formation

We conjecture that pinholes form at the intersection of two mesh wires, where the mesh is
closest to the substrate. The sequence of events as the squeegee passes may be as follows.

1. As the mesh is pressed towards the substrate, the particles suspended in the resin
are displaced approximately radially away from the point of closest approach. There
are two reasons for this: (i) they are in a pressure gradient, from high at the point
of closest approach to low further away; thus there is a pressure drop across each
particle and hence an outward force, and (ii) if particles are squeezed close to the
wire there is an even higher local pressure which pushes them out (like a squeezed
pip).

There is therefore a relatively clear area immediately around the point of closest
approach, surrounded by a ‘ring’ where the density of particles is higher than initially



(recall from the discussion on the persistence of pinholes that a solid volume fraction
of 35% is enough to lock into a rigid matrix, through which the fluid cannot easily
flow).

2. The mesh is lifted. Because slow flow is time-reversible, there must be something
to prevent the particles from returning into the clear area. A possible mechanism
is cavitation: if the fluid cavitates at about 1 bar below ambient pressure, then the
cavity may grow as shown in Figure 7, to leave a pinhole. Although we have not
carried out detailed computations, the minimum pressure is

Pm ~ O(Dps/s?)

where D is the mesh wire diameter, s(t) the separation between the mesh and the
substrate, and pu is the viscosity. Here

$ ~ squeegee speed x mesh slope

but is modified by the competition between the tension in the mesh and the pressure
(these forces have magnitude of tension x wire curvature and Dp,, respectively).

This proposed mechanism predicts that pinholing should be more common if:
e The paste cavitates easily (or a constituent of the solvent vaporises easily);

e The mesh tension is low (so the minimum separation is small and pressures are
large);

e The squeegee moves too fast (increasing $);

e The paste viscosity is too high.

(b) Pinhole location

In terms of the paste thickness and especially the step height, the 300 um horizontal offset
of pinholes is large, and one would not normally expect to feel the influence of the step
as far upstream as this. A possible mechanism that singles out this location is as follows.
The idea is that pinholes form where the minimum mesh-substrate separation is smaller
than average. As shown in Figure 8, as the squeegee moves across the step, unusually high
pressures are generated in the converging channel at the step edge. The relatively stiff
mesh wires act as cantilevers, being pushed up at the step edge where pressures are high,
and so down behind the squeegee, a distance upstream that depends on the squeegee’s
radius of curvature and on the resistance of the mesh wires to bending. It is not yet clear
whether the former or the latter controls the squeegee position.

6 A more detailed consideration of the screen printing pro-
cess

Anecdotal evidence suggests that paste is squeezed through the mesh as jets, concentrated
close to the squeegee tip. Can we account for this, as a preliminary to exploring the obser-
vation that pinholes occur typically at 300-500 pm from a 12 pm step? The dimensions of
the mesh (wire diameter, b = 53 um; mesh spacing, a = 125 pm) give thickness = 2b, cell
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Figure 7: Mechanism for the formation of a cavity: (a) the descending mesh wire pushes
particles away, creating high pressure at the point marked with a star (%), (b) at closest
approach, (c) a cavity forms as the wire is lifted off
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Figure 8: The cantilever mechanism

volume = 2a%b =V, of which the open pore volume =~ 2a2b{1 — 1ra=1b(1 + a~26?)}/?} =
Vp, = 0.64V.. However, a wet paste thickness of ~ 90um is laid down, while only
2~ 0.64 x 106 = 68 um is held within each pore.

Questions that arise include the following. What determines how much of the necessary
additional = 22 um of paste thickness passes under the squeegee tip either (a) between the
mesh and the substrate, or (b) between the squeegee tip and the mesh? If a significant
thickness exists in (b), what controls this thickness? In any case, what determines the
rate at which paste is sucked through as the mesh lifts off? The paste extruded ahead of
the squeegee as a jet must then be squeezed axially until the jets coalesce to form a film.
How does this process control the layer thickness in (a); could this process be influenced
by a 12 um step at approximately 3 mesh spacings distant? If so, could gaps (bubbles)
provide initiation sites for pinholes during the mesh lift-off?

Figure 9 summarises the paste jet extrusion geometry and a (conjectural) process of
paste jet coalescence. Two aspects of this problem and some suggestions for further work
are discussed below.

6.1 Paste jet extrusion

A jet extrusion model for a shear-thinning fluid, with general relation g = u(S) between
viscosity and maximum shear rate S was developed. This postulates an equivalent ax-
isymmetric pore with radius R = R(z) and relates the value of the shear stress o on the
wall, denoted by oy, to volume flux @ and R through the equation

Q _ M(ay)
2R3 203

where Al(aw):/ wa")'F(a) do (16)
0

in which S = F(o) is the inverse of the function ¢ = Su(S). Assuming that the model
applies for z; < z < 23, then the pressure difference across the mesh, Ap, is given by

Ap = (%) : /lez [M(aw)]% dz. (17)
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Figure 9: Details of the screen printing process
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For both power law and piecewise linear viscosity laws this model displays a threshold effect
in which @ increases rapidly over a relatively small increase in Ap. Analogous calculations
for experimentally valid viscosity laws should confirm that extrusion is concentrated close
to the squeegee tip.

6.2 Paste jet coalescence

A model for pressure build-up beneath the mesh involving paste jets which are first com-
pressed axially, then coalesce to form a film was also proposed. The jet broadening
again exhibits a threshold effect - so predicting considerable ‘back-pressure’ to inhibit
flow through the mesh. Any subsequent high pressure build-up under the squeegee tip
would require 3-dimensional computation for a jet constrained by symmetry at the walls
of a rectangular cell. This pressure distribution indicates the possibility that bubbles
might be trapped, particularly near the substrate surface.

6.3 Further work

Possible extensions required are the analysis of paste suction through the mesh as it “lifts
off”, with [slope| < 0.01. Here, below the mesh the paste will be essentially at rest,
probably under negative pressure. We can model this by taking p to vary (gradually)
with z (and t). The resulting (small?) pressure difference Ap (varying with = and t) will
suck the paste (slowly) through the mesh. As the mesh lifts off, with centreline height
Z = Z(z,t), neglect of horizontal flow (not desired) gives

0z
Q = aza-. (18)
Also, J
Q= -rR (z) =t (19)

where z = z;(t) denotes the upper surface of the pore. Since Ap is also related to the
mesh geometry by ,

ap=TSZ, (20)
a mechanism exists for rapid increase in @ if the mesh develops localised large curvature
when the squeegee is forced to rise to mount a 12 um step. Since rapid increase in @ will
then suddenly reduce z; locally, this could momentarily induce rapid lift-off. It might be
possible to coordinate this mechanism with the idea of pinhole formation by cavity growth
from bubbles left at the substrate surface.

Finally, we observe that this description suggests that bubbles exist elsewhere at the
paste/substrate interface but without subsequent formation of pinholes. An experimental
confirmation of this suggestion (perhaps by deposition onto a glass substrate) would be
very interesting!
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