An Improved Two-Phase Flow

Model of the Compression of

Paste Briquettes — Elkem

1 Foreword

As a supplementary problem for the 1998 European Study Group with In-
dustry, ELKEM ASA wished to reconsider the paste briquette compression
model first proposed at the 1997 meeting. Much of the detailed modelling
involved is similar to the previous report, contained in Budd (1997), but
there are important differences in some respects which are highlighted be-
low. Some general detail has also been retained in this report so that it may
be read as a self-contained document.

2 Introduction

Continuous carbon electrodes are widely used in electric smelting furnaces.
Their purpose is to conduct the large currents required by the smelting pro-
cess to the centre of the furnace. Inevitably, the electrodes are gradually
consumed under the extreme heat of the furnace, at a rate of around 0.5 — 1
m/day. A great deal of effort has gone into finding efficient and practical
ways of recharging the electrodes. A discussion of some typical industrial
configurations and some related references are given in Fitt & Howell (1998).

Here we are concerned with a proposed new technology that involves
adding “briquettes” to the top of the electrode, rather than large, unwieldy
sections. The briquettes in question are small bricks (typically around 10 x
6 x 4 cm) of a material normally referred to as “paste”, which comprises
small particles of calcined anthracite bound together by a mixture of tar
and pitch. For the purposes of this paper, paste is assumed to behave as
a Newtonian liquid, albeit with a strongly temperature-dependent viscosity.
At room temperature, the briquettes are solid; they soften and flow as the
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temperature increases up to about 200-250°C. As the temperature is further
increased, the anthracite particles begin to react and bind — a process known
as “baking” that results in the viscosity beginning to rise again. At around
400°C the viscosity of the paste increases rapidly and it becomes solid at
500°C.

The idea of the new process is as follows. As the briquettes propagate
slowly down the electrode, they heat up and begin to flow. The air is gradu-
ally squeezed out by the weight of the briquettes above. As the temperature
increases further down the electrode, the compressed paste/air mixture bakes
and a solid “self-baking” electrode is formed.

Vital to the success of the process is that the baked electrode should be
both mechanically strong and a good electrical conductor. These properties
are closely related to the amount of air that is left in the electrode when
it bakes, and a clear understanding of the way in which air is expelled is
required so that optimal process conditions can be determined. To gain such
understanding, Elkem have devised the experiment shown schematically in
figure 1. A cylinder of radius a is filled with briquettes up to a height L, and
the top is loaded with a mass M. The piston and sides of the container are
perforated in such a way that air can escape but paste cannot. The cylinder
is then heated up to a constant temperature of about 100°C, and over a
period of 5-6 hours the position of the top of the piston is monitored.

In Budd (1997), a two-phase flow model was proposed for the flow of
the paste/air mixture. In Fitt & Howell (1998) the model was applied to
both the experiment and a simplified electrode configuration, and some en-
couraging results were obtained. However, it was observed that the model
tended to predict rather more rapid expulsion of air than was observed in
the experiment. In this paper we propose a refined model that (7) relaxes a
simplifying assumption made in Budd (1997). and (i) gives somewhat bet-
ter agreement with experimental results. In section 3 we present the general
two-phase model that might be solved numerically in a realistic electrode
geometry. In section 4 we use a one-dimensional version of the model to
simulate the experiment.

3 Two-phase flow model

We begin this section by outlining the basic two-phase flow model for the
paste/air mixture derived in Budd (1997). We denote the air and paste
phases by the suffices 1 and 2 respectively. The relevant dimensional pa-
rameters for each phase are the density (p;), dynamic viscosity (u;), specific
heat (cp;) and thermal conductivity (k;), whilst the velocity, pressure and
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Figure 1: Experimental device for measurement of air expulsion from com-
pressed briquettes



temperature in phase 7 are denoted by u;, p; and T; respectively. Finally,
a denotes the volume fraction of paste (and thus 1 — o denotes the volume
fraction of air).

3.1 The general equations

Using order-of-magnitude arguments (see Fitt & Howell (1998) for details),
the most general two-phase flow equations may be simplified to the following.
First we have flow equations for the paste

o + V.(CYUQ) = O, (1)
aVp, = V. (am [Vuz + Vug] — pagak + D, (2)
whilst for the air
-+ V. ((1 - a)u;) =0, (3)
(1-a)Vp, =-D. (4)

The flow of the two phases is coupled through the interactive drag term D.
The leading-order heat-flow equations are

(pchgaTz)t + V (pQCPQCYTQ'U..Q) = V (kQOZVTg) y (5)

0=V.(k(l-a)VT}). (6)

Notice that the only coupling between (5), (6) and (1-4) is through the
viscosity ug, which we shall assume henceforth to be a known function of 75.

To close the system (1-6) a constitutive equation for D and a relation-
ship between p; and p, are required. In both Budd (1997) and Fitt & Howell
(1998), the simplest closure assumption p; = p, was employed. The closure
problem for two-phase flow is difficult, and this relationship is frequently em-
ployed. It is known, however, that in many cases it may lead to analytical and
numerical difficulties and to unrealistic predictions. In the following subsec-
tion we therefore examine ways in which this frequently-used approximation
might be improved.

3.2 The relation between the pressures

We begin by examining two particularly simple geometries in which the slow-
flow equations may readily be solved. Consider first a shrinking cylinder of
radius a(t) containing air at pressure p; in a viscous liquid at pressure p,. p;
is assumed to be constant (the pores have not yet closed and so any increase
in gas pressure is instantly relieved by flow) whilst p, is notionally the “liquid
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pressure” (the pressure in the liquid on a microscopic scale but far away from
the cylinder). Assuming that u; = uge, where e, is a unit vector in the radial
direction, in the viscous fluid conservation of mass gives

(rugr)r = 0.

Since u = @ at r = a we therefore have uy = aa/r. The Stokes flow equation

° (ruz)
TUo)r U
Dor = lir [ 2l —3]

T r2

and thus ps, = 0 and p; is a function of time alone. Balancing the normal
stresses on r = a gives

—p1 = —P2 + 2ppUo,

and thus .
2 Ha@

P = — 7
D2 D1 a7 ()

relating the pressure difference to the rate at which the cylinder shrinks.
Now consider the same problem for a sphere of radius a(t). Again, the
Stokes equations may be solved exactly, revealing that

4[1,20,

P2—pr=——_— (8)

In either case we may relate a to the effective volume fraction of paste by
considering a ‘control volume’ of paste and air that is small compared to the
experimental dimensions, but large compared to an air-filled pore. We find
that
1-a { a? (cylinder),

a a®> (sphere),

9)

The constant of proportionality (which will in any case not appear in expres-
sions for the pressure difference) depending upon the geometrical details of
exactly how the air-filled void is contained in an elementary region of viscous
fluid.

In general, therefore, we expect the pressure difference across the paste/air
interface to be of the form

k/JQOZ

pa—p1= a(l—a)’ (10)

where the constant k£ depends on the local morphology of the interface; as
shown above, in the case of a cylinder k¥ = 1 while for a sphere k£ = 4/3.

These two examples suggest that &k should not vary too much as the interface
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evolves. Henceforth we adopt (10) as a constitutive relation between p1 and
D2, and assume that k remains constant (and known) during any experiment.
Notice that the relation used by Fitt & Howell (1998) is recovered by setting
k=0.

3.3 The two flow regimes

It remains to determine the drag term D. The situation depends crucially
on whether the air phase is in “Regime I”, where the pores are largely
mutually connected, or “Regime IT” where air is dispersed through the paste
in isolated packets. Evidently when the briquettes are solid regime I applies;
as they soften and begin to flow, the general picture is of a network of pores
that slowly fill with melting paste. As long as the pores remain open (i.e.,
regime [ still applies), an order-of-magnitude argument (see Fitt & Howell
(1998) for full details) shows that D ~ 0. It follows that p, ~ const. = 0
(without loss of generality) and so we obtain the system

Qg + V.(CY'UIQ) = 0, (11)
aVp, = V. (app [Vup + Vul]) - pagak, (12)
with kU
_ Rl V.U
D2 = 1—a 3 (13)

and an associated energy equation
(pchgaTQ)t -+ V. (p2Cp2aT2u2) = V. (kgO{VTz) . (14)

At some stage during the flow, the pores close off to form separate and
unconnected packets or bubbles, whereupon regime II applies. We assume
that this occurs at a given value of ¢, say a@ = a,.. Once we are in regime II
the air cannot flow so o must remain at this critical value. However, since
the air phase is now dispersed rather than continuous, the assumption that
p1 is constant is no longer justified, and in general we have the system

a = a, (15)

V.uy =0, (16)

Vp, = a,V. (ug [Vu2 + Vug]) - pagack, (17)
(P20p2T), + V. (pacpeTous) = V. (kyVTh) (18)

where p, is no longer known a priori.



Within our two-phase framework, there is no way to predict «.: it must
be found from either experiments or by direct numerical simulation of the
transition between regimes I and II. To simplify matters we neglect the details
of the transition and simply switch abruptly from regime I to regime II when
a reaches a., treating a, as a known paste property.

4 Analysis of the experiment

4.1 The one-dimensional model

We now examine the governing equations (11)-(18) for one-dimensional flow
where all variables depend only upon z, the vertical distance from the base
of the cylinder, and time. For simplicity the subscript 2 will be dropped from
the variables referring to the paste. A detailed description of the experiment
is given in Fitt & Howell (1998). Here we simply examine how the one-
dimensional analysis carried out there is affected by the new relationship
(13) between p; and p,. We use the same nondimensionalisation as Fitt &
Howell (1998), namely

Mg . MgL

_ _ 2ma? oo -
 2malpg

w, t= Mg t, po = pizofs

where p150 is a representative paste dynamic viscosity. Dropping the tildes
for convenience, the non-dimensional versions of (11)-(13) (the governing
equations for regime I) become

s+ (aw), =0, ap, = 2u20w,), — 2¢%a, (19)
where k
HoW,
= — . 2
p=-7T— (20)

Here the dimensionless parameter g* is the ratio of the weight of the bri-
quettes to that of M:
. ma’pL
M
In the experiments carried out thus far g* is fairly small (around 0.3), and
Fitt & Howell (1998) obtained a good approximation by considering the limit
g* — 0. This limit will be investigated in section 4.2.
Note that the equations (19) and (20) apply only in regime I, that is only
for @ < a.. When a reaches o, we simply have

. (21)

a=o0, w=0. (22)



The boundary conditions are

=2
w=Ss
w=20 z =0,

(23)

where the position of the moving piston is denoted by » = s(t), and the
initial conditions are

a=wmy, s=1 att=0. (24)

The viscosity u, is assumed to be a known function of temperature T,
which in general must be found from a coupled heat-transfer problem. How-
ever, if the heating is assumed to be uniform in space, then e will be a
function only of ¢. This simplifies matters considerably since the transfor-
mation

. . t dt’

w = po(t)w, t e (25)
yields the same problem with uy; = 1. We therefore concentrate on the
isothermal case ps = 1 for the moment, safe in the knowledge that tempera-
ture variations that are independent of z may be included later by rescaling
time appropriately.

The problem defined by (19)-(24) must, in general, be solved numerically,
and a stratagem for doing this is outlined in the appendix. We note however,
that there are some limits in which analytical progress may be made: these
are now discussed.

4.2 The limit ¢* — 0

If we assume that the briquettes are much lighter than the mass M and there-
fore set g* = 0, then on physical grounds and by inspection of the equations
(19) we deduce that o is spatially uniform and depends only upon time. Set-
ting pp = 1 for simplicity (see above remarks) the velocity is therefore given
by

az

w=——,
ol

whereupon the second equation of (19) gives that p is a function of time alone.
Eliminating the pressure between (20) and the first boundary condition of
(23) now gives an ordinary differential equation for a. Solving this, we obtain
an implicit equation for a(t),

k ].—ao
t=a—ap+ =1
« a0+20g<1_a), (26)
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Figure 2: The free boundary s(t) versus ¢ for k£ = 0,0.5,1,1.5. Here g* =0,
oo = 0.5 and o, = 0.9.

while the free boundary s(t) being given simply by

s=2 (27)
o)
The solution (26) predicts (as would be expected) a monotonic increase
of a, with

—at/k

a~1l-—e as t — oo.

This ceases to be valid when « reaches a,, from which point o remains fixed
at that value. Notice that, with o spatially uniform, the transition from
regime I to regime II takes place simultaneously everywhere.

In figure 2 we plot the free boundary s(t) for several values of k, setting
ap = 0.5, o = 0.9. Notice that increasing k broadly has the effect of slowing
down the process, particularly towards the end of the experiment. " This
is encouraging since the solution with £ = 0 was found by Fitt & Howell
(1998) to predict rather more rapid compression than had been observed in
experiments.

4.3 The case k=0

The main point of this study is to consider cases where k # 0. A closed-form
solution is available, however, for general g* when k£ = 0, and is of use for
numerical validation purposes. The details of the solution in this special case



may be found in Fitt & Howell (1998); here we just quote the relevant results.
(Once again, we set u, = 1 without loss of generality.)

So long as regime I applies throughout the paste/air mixture, the void
fraction and piston height are given by

o = [ap(l+ g*t) + t]e 9", (28)
1 (10(1 + g*t) +1
=-—1 . 2
s gt og( ap+1 (29)

The velocity w may also be determined if desired. This solution ceases to be
valid when « reaches a.. This occurs first at 2 = 0, ¢t = t., where

b= Q. —
c— 1+ 0g” .
For ¢ > . there is a second free boundary z = [(t) such that Regime I applies

in z > | and Regime IT in 2z < I. The solutions for «, s and [ when ¢ < 2z <s
are now

- 1 * t_ c *
o = o, exp (ao ac+ (1 + apg*)t — g zt) | (30)
Qe
14+ a0 a.— o 1 ( lo )
§= — + lo , 31
a.g* o.g*t g*t & g+ 1 ( )
1 Nt — ¢
| (L4 a0g")(t = t) )

a.g*t
and again w may be determined if desired.

The whole process stops when [ = s, so that a = a, everywhere. This
occurs at time ¢ = t; where

ty = a. — ay.

It is worth noticing that ¢; is independent of g*. This is because ¢; denotes
the time for the mixture right at the top of the cylinder (which feels only
the weight of M and not of any paste) to be crushed down to a fraction Q.
This is further evidence that the important characteristics of the process are
captured by the ¢g* — 0 limit.

4.4 Numerical solution

We now turn to the most general case where neither of k or g* is non-zero. For
full details of the numerical procedure that was used, the reader is referred
to the appendix. In all the computations to follow we use the sample values
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Figure 3: Paste volume fraction o versus z for increasing ¢ (timestep between
plots = 0.05). Here k = 0, ¢* = 1, ag = 0.5, a, = 0.9, so that {y = 0.4,
t. ~ 0.2667. In each case, the solid line is computed numerically, whilst the
dashed line is the exact solution.

ag = 0.5, a, = 0.9. First the numerical scheme was tested by computing
a(z,t) for k = 0, g* = 1, for which we have the exact solution (28, 30). In
figure 3 « is plotted against 2 for increasing values of ¢ (with increment 0.05
time units). In each case the computed solution is represented by a solid line,
whilst a dashed line is used for the exact solution — in this plot they are
almost completely indistinguishable. Notice the stagnant zone with o = o,
that appears near z = 0 for ¢t > t. ~ 0.2667. The whole process finishes with
a = o, everywhere at t =ty = 0.4.

In figure 4 we show the corresponding plot with ¢* =1, k = 1. Qualita-
tively, the evolution of « is similar to (though rather slower than) the case
when k = 0: the time ¢; at which the process finishes is increased by a factor
of about three.

In figure 5 the effect of varying k is examined by plotting the two free
boundaries s(t) and /(t) against ¢ with g* fixed at 1 for various values of k. As
before, the exact solution for k = 0 is shown as a dashed line; the accuracy of
the numerical scheme is confirmed by the fact that the exact and numerical
solutions are again indistinguishable. The most important conclusion that
can be drawn from figure 5 is that the time taken for the air to be expelled
varies quite dramatically with k. This strongly suggests that whilst the £ =0
solution used for comparison purposes in Fitt & Howell (1998) is qualitatively
correct, it is unlikely to give good quantitative agreement with experimental
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Figure 4: Paste volume fraction o versus z for increasing ¢ (timestep between
plots = 0.1). Here k =1, g* = 1, ap = 0.5, a, = 0.9, so tLat ty ~ 1.2,
t. ~ 0.76.

Figure 5: Height of paste s(t) and free boundary [(t) (dividing regimes I and
IT) versus t for g* =1, ag = 0.5, o, = 0.9 and k = 0,0.5,1. The dashed line
shows the exact solution for k = 0.
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Figure 6: Height of paste s(t) versus t for ap = 0.5, &, = 0.9, k = 1 and
g* = 0,0.5,1. The dashed line shows the exact solution for g* = 0.

observations.

It is interesting to compare the effect of varying k with that of varying
g*. In figure 6, we plot s(t) versus t, keeping k fixed at 1 and varying g*.
Once again, the known exact solution (for g* = 0) is plotted as a dashed
line and is virtually indistinguishable from the numerics. We see from the
figure that although the details of the evolution of & may depend on g* to
a certain extent, the broad characteristics of the air expulsion process, and
in particular the behaviour of s (which is all that can be measured in the
experiment), are almost independent of g*. This is another reason to believe
that the g* = 0 limit is a relevant and useful approximation in practice.

5 Revised comparison with experiment

To compare with the experiment we must solve the heat-transfer problem
and include variations of viscosity with temperature. As noted in section 4,
if the heating is uniform and the cylinder is insulated top and bottom, then
the temperature (averaged across the cross section), and hence the effective
viscosity pg, can be assumed to depend only on ¢. The resulting problem for
T, was solved in Fitt & Howell (1998); we simply quote the necessary results
here. The initial paste temperature and oven temperature are denoted by Tj
and Ty respectively. On the boundary of the cylinder a Newtonian heating
law of the form
Ty, = h(Ty — Ty),
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is assumed, where i < 0 is a heat-transfer coefficient that depends on the
type of convection present in the oven. Under these assumptions, the cross-
sectionally-averaged temperature is given, in dimensional variables by

* 4a?h? n2kyt
<Ty>=T;+(Ty—T _ ~ Tk , 33
=T+ G- 1) 3 e e (A2 )

where 7, (k= 0,1,2.....) are the zeroes of
nJi(n) + haJy(n) = 0.

A relationship is also needed between the paste viscosity and the tem-
perature. Unfortunately, the details of this relation for the paste used in the
experiment are at present proprietary information. However, using the (in-
complete) data available, Fitt & Howell (1998) proposed the Arrhenius-type
law

pa = 0.80081 x 1078 exp (%’% :

T
as a reasonable approximation in the temperature range of interest, where
t2 is measured in Pa s and the temperature in Kelvin.

For given h and thermal parameters, y; may now be regarded as a known
function of time using (34) and (33). Of course, if further information be-
comes available (34) may need to be changed.

To carry out a complete comparison with experiment, the relevant dimen-
sional parameters of the paste need to be determined. Again, our information
about paste properties is far from complete, but the values shown in table 1
seem to be fairly realistic. It is worth commenting on the reliability of the
data; the paste density, cylinder radius, cylinder height, applied load and
gravitational acceleration are all either known or come from direct exper-
imental measurements and can therefore be relied upon as being accurate
data. The initial and critical paste volume fractions are inferred from the
experimental results. The initial and oven temperatures may contain some
inaccuracies, but are thought to be close to the truth. The thermal conductiv-
ity and specific heat of the paste are less reliable (in reality these parameters
are probably functions of temperature anyway) but over the temperature
ranges considered are probably not too much in error. The heat transfer
coefficient h is highly speculative.

To compare with the experimental data (we have data for two experiments
carried out under identical conditions; experimental points are shown using
symbols) we consider three distinct cases:

(i) A full solution of the problem discussed in previous sections with
g* =0.34 and k£ = 1. (This value for g* is the correct one for the experiment.

(34)
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Property Symbol Approximate Value Units

Density 02 1570 Kgm™
Specific heat Cp2 900 JKg 1K™
Thermal conductivity k; 2.5 Wm™!K™!
Cylinder radius a 8.5 cm
Cylinder height - L 30 cm
Applied load M 31 Kg
Gravitational acceleration g 10 ms™?
Initial temperature Ty 20 °C
Oven temperature Ty 100 °C
Heat-transfer coefficient h ~ =1 m™!
Initial paste fraction %) 0.45 —
Critical paste fraction Qe 0.91 —

Table 1: Estimated dimensional parameter values for the Elkem experiment

As far as k is concerned, we conjecture that k cannot exceed the value of 4/3
that it assumes in the case of spherical voids. k = 1 therefore seems to be
a reasonable guess.) To effect this comparison, the non-dimensional piston
height s is calculated as a function of ¢ using a simple MATHEMATICA
programme to perform the calculations outlined in the appendix. Time is
then rescaled according to

_ Mg gt dt
— 2ma? Jo p(t)’

*

(35)

the necessary calculations being carried out using a simple FORTRAN code.
(Although a different MATHEMATICA calculation must be carried out for
each different value of k, the viscosity/temperature law conveniently changes
the results for a given k only through (35).)

(ii) The case when k = 1 but g* = 0, so that the solution (26) and (27)
may be used. (For evaluation of these predictions, the easiest way to proceed
is to solve (26) for given k and g, producing a value of s for each required
t. Time is then rescaled as in (i) above to give s and hence the effective
density). '

(iii) The model previously proposed in Fitt & Howell (1998) which cor-
responds to ¢* = 0.34 and k£ = 0.

Figure 7 shows these results for a non-dimensional heat transfer coefficient
ah = —0.05 (and thus h = —0.588/m). The times ¢, and t; were found to
be 7624 and 8231 seconds respectively. Temperature and dynamic viscosity
(scaled by 107%) are shown in the bottom portion of the figure. We note
that for the new model the predicted density rise is slower, and in general
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the agreement with experiment is poorer than for the original model. Also,
(as expected) the calculations for g* = 0 give very similar results to those for
g* = 0.34. For this set of comparisons however, the heat transfer coefficient is
rather small; indeed we note that by the time the experiment has effectively
finished the temperature has risen from the initial 20°C to only about 50°C.

Figure 8 shows results for a non-dimensional heat transfer coefficient ah =
—0.15 (and thus h = —1.76/m). The times ¢, and t; were found to be 4358
and 4631 seconds respectively. Again, temperature and dynamic viscosity
(scaled by 107®) are shown in the bottom portion of the figure. In this case,
by the time the experiment has effectively finished the temperature has risen
from the initial 20°C to about 80°C, which seems to be more realistic. Now
the new model seems to agree better with the data, though in the late stages
of the process it still predicts effective density rises that are too rapid. Again,
the calculations for g* = 0 give very similar results to those for g* = 0.34.
We note also that for this case the viscosity seems to decrease very rapidly.
It is almost certainly possible to greatly improve the quality of the model
predictions by changing the viscosity law (34). Since this amounts merely to
guesswork, however, we have not done so here.

Overall, we conclude that the computations give results rather as ex-
pected; the old (k = 0) model predicts effective density rises that are too
quick unless the heat transfer coefficient is chosen to be rather low. The
results when k£ =1 but g* is taken to be zero are in all cases very similar to
those when the correct value of g* is used.

It must be emphasized that the results depend crucially on the viscos-
ity /temperature relationship that is used, and in the computations above this
is based largely on informed guesswork. If the model is ever to be properly
validated, then the specification of an accurate x vs. T law is vital.

6 Conclusions

In this paper, we have presented a two-phase model for the flow of the
paste/air mixture in the Elkem experiment. The model is a generalisation
of that proposed in Budd (1997), and seems to have the potential to give
markedly improved agreement with experimental results. It is therefore rea-
sonable to expect that it could be used as the basis of a predictive model of
realistic electrode configurations. Such a model would have to include cou-
pled electrostatic and thermal calculations in two or three spatial dimensions,
and would clearly have to be solved numerically. However, great simplifica-
tion is achieved by using an averaged two-phase approach rather than direct
numerical simulation of each of the phases and the complicated interface
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Figure 7: Comparison (ah = —0.05) between the old and the new model,
(top), temperature (K) and viscosity 1.107%Pa S (bottom)
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between them.

The model has a particularly novel feature that could make any non-
trivial numerical calculations quite challenging, namely the switch between
regime I and regime II. In the simple one-dimensional calculations carried
out in section 4, this does present too much difficulty since the region of
regime II could easily be located at the bottom of the cylinder. In a more
general configuration, however, isolated pockets of regime II might appear
and then convect around with the surrounding flow. Although this could
lead to challenging computational problems, it could also give rise to some
very interesting results.

The difference between the model presented here and that proposed in
Budd (1997) centres on the notorious “equal pressures” assumption. This
arises from the fact that the equations of two-phase flow in their most general
form are underdetermined, so that some kind of closure assumption is needed
to reduce the number of unknowns. In the absence of any evidence to the
contrary, it has become common practice to do so by setting the phasic
pressures equal to each other. Although for inertia-dominated flows this can
lead to ill-posed problems (see Fitt (1996)), for slow-flow problems like that
considered here, it has been found in the past to give reasonable results. In
any case, in order to get a closed system of equations one has to assume
something.

In this paper, we have followed an alternative route. By considering
some simple sub-problems in which the interface between the two phases can
be tracked exactly, we derived a constitutive relation (10) between the inter-
phase pressure difference and the rate of air expulsion. This introduces a new
constitutive parameter k, which may be regarded as an effective bulk viscosity
of the mixture — the classical model with equal pressures is recovered if
k = 0. In this light, we might regard the purpose of the Elkem experiment
as being to determine the value of k for the paste/air mixture, so that the
model can then be applied to a real electrode.

This alternative to the equal-pressures assumption and the modelling
carried out here may well be applicable to many other two-phase industrial
process.

Finally, we stress once again the need for realistic viscosity/temperature
data. In the absence of such information, the model is merely a mathemat-
ical invention; if sound data were available then it could become a valuable
working model.
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Appendix: Numerical solution of the
free-boundary problems

Before solving the free-boundary problem (19-24) numerically, it is conve-
nient to recast it in Lagrangian form. Having set us = 1 (see remarks in

section 4.1), we define Lagrangian variables £ and 7 by

= (2, 1) d’
g= [(AE0E
0 Qp

so that the chain rules relating Eulerian and Lagrangian frames are

0 a 0 0 0 we 0

0z ag0E Bt O  ag OE

From (19) we obtain
w, = —%’
o'

and « satisfies the hyperbolic equation

k k(20— 1
(2+ l—a) Qgr + (L) aga; +2g%ap = 0.

a(l — a)?

The boundary and initial conditions for (39) are

k
<2+1_a>a7_2 on =1,

a=q onT=0.
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We integrate (39) with respect to £, using the integrating factor

I:(2+ k )(2(1—a)+k>ﬁ, (19)

l1—« o
to obtain
k k
1/2(1— AR 2(1 — k\ 2+F
€ o « et

Our method is simply to timestep forward, updating « using (43). At any
time, a can be plotted against z using

Y
2(E,7) = /O T (44)

As in section 4.3, we define t. to be the time at which « first reaches its
critical value a,. This occurs at the bottom of the cylinder £ = 0 and so ¢,
is the solution of

a(0,t.) = a.. (45)

Also, we define t; to be the time at which the whole process stops with

o = o, everywhere. As in section 4.3, this is independent of g*, and is given
by

k 1—‘040
tf—ac—a0+—2—log(1_ac). (46)

For T between t, and t; there is a region, say 0 < £ < A(7), in which
a = o, and there is no flow. However, because of the “top-down” nature
of the integration carried out above, the solution for  obtained from (43)
remains valid for £ > A. In practice we simply use (43) to evaluate « for
0 < 7 < ty; the difference between 7 < ¢, and 7 > ¢, only arises in the
reversion from (£, 7) to (2,t). The general solution procedure is as follows.

1. Evaluate t; from (46).

2. Use (43) to find a(§,7) for 0 < 7 < ty.

3. Find t, by solving (45).

4. For 7 < t,, a = a(£,7) and z is given by (44).
5. For 7 > t.:

(a) Find A(7) such that a(A(7),7) = a.. (Note that A(t.) =0.)
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(b) For 0 <& < A (ie., 0 < 2 < apA/a), o = .
(¢) For £ > A\, a=a(&,7) and

. a()/\+/5 aodfl
A

a a(l', )
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