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Executive Summary

In seismic wave inversion, seismic waves are sent into the ground and
then observed at many receiving points with the aim of producing high-
resolution images of the geological underground details. The challenge
presented by Saudi Aramco is to solve the inverse problem for multiple
point sources on the full elastic wave equation, taking into account all
frequencies for the best resolution.

The state-of-the-art methods use optimisation to find the seismic prop-
erties of the rocks, such that when used as the coefficients of the equa-
tions of a model, the measurements are reproduced as closely as possible.
This process requires regularisation if one is to avoid instability. The
approach can produce a realistic image but does not account for uncer-
tainty arising, in general, from the existence of many different patterns
of properties that also reproduce the measurements.

In the Study Group a formulation of the problem was developed, based
upon the principles of Bayesian statistics. First the state-of-the-art opti-
misation method was shown to be a special case of the Bayesian formula-
tion. This result immediately provides insight into the most appropriate
regularisation methods. Then a practical implementation of a sequen-
tial sampling algorithm, using forms of the Ensemble Kalman Filter,
was devised and explored.
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1 Introduction

Saudi Aramco is an oil company responsible for the discovery and recovery of hy-
drocarbons from geological formations. The principal method for the exploration
of oil is the seismic survey.

Seismic acquisition involves sending acoustic energy into the subsurface and
analysing the echoes. This is an inverse problem on the acoustic or even the full
elastic wave equation. Data are gathered from many independent experiments, as a
sound source is activated in a sequence of shots as it is moved over the land or sea
surface. The results are preprocessed using a wide range of techniques designed to
correct for topographical features and noise. A complete review of these techniques
can be found in [12].

Figure 1: A schematic cross-section of a complex geological pattern and a seismic shot.

After preprocessing, and in a traditional workflow, the main inversion step is
known as migration. The amount of data, and the size of the system under in-
vestigation are both very large. Until recently this precluded the use of simple
numerical techniques for solving the forward model, as used for example for the
fluid flow forward problem when performing oil reservoir simulation. Instead a
range of semi-analytical approximations are used in routine applications. The ap-
proximations vary in accuracy, complexity and applicability. The simplest methods
are known as time migration, using the Born approximation obtained from linearisa-
tion about a simple background spatial distribution of elastic properties. The Born
approximation is solved using Fourier methods. For a detailed explanation of the
mathematical theory see [2]. In recent years more sophisticated and more accurate
methods known as depth migration based on high-frequency ray-tracing methods
have been developed. However, with the continuing rapid increases in computing
resources, it is now becoming possible to use full finite difference or pseudo-spectral
approximations. The resolution requirements are very demanding and it can take
many millions of computing hours to obtain a single inversion, but the prospects
that full inversion provides make this a valuable topic for further research.
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The results are usually presented in the time domain which, to a first approxima-
tion, removes the effects of any layer cake background model. Users of the inverted
results are able to apply their own time-to-depth conversions as more data becomes
available, or as the seismic data is combined with other data. The time-to-depth
conversion is performed using alternative layer cake models of the sound speed and
rock density. Note that depth processed seismic results using depth migration are
often displayed in the time domain by applying a depth-to-time conversion.

After migration, and display in the time domain, the observations are equivalent
to a numerical experiment that measures the response that would be observed in
an ideal experiment where the sound waves are assumed to propagate in vertical,
straight lines, and that any reflectors that are encountered are locally horizontal.
The resulting calculations are then displayed as seismograms of the virtual experi-
ment.

At the Study Group, Tong Fei of Saudi Aramco explained how full wave form
inversion (FWI), as the rigorous solution of the inverse problem for wave propa-
gation is known, holds out the prospect of improved quality of the seismic images
enabling the recovery of oil from geological formations with greater reliability than
more traditional approaches.

The FWI method currently used by Saudi Aramco, other oil companies and
many academic researchers is to formulate the inverse problem in the usual ‘min-
imum misfit with regularisation’ framework. That is, the solution of the forward
problem is re-cast as an equation that predicts the measurements if the rock prop-
erties were known. The properties are then adjusted until the predicted measure-
ments match the actual measurements. Such a process is generally ill-posed in that
there are many geometric arrangements of properties that provide a good match
(although very hard to compute) and further a small change in the values of the
measurements or the details of the forward model can give rise to a large change in
the properties that provide the match. For this reason additional terms have to be
added to the misfit function to remove the instability. However, such a process does
not remove the non-uniqueness. Saudi Aramco were using the method of first order
Tikhonov regularisation which stabilises the misfit function by adding a weighted
sum of squares of the physical properties as averaged over a grid cell.

In the Study Group the discussion turned to the application of statistical ideas
to the inverse problem. The academic participants first of all explained how to
interpret the Tikhonov approach as the negative logarithm of a prior probability
density function representing the prior geological knowledge. Then they worked on
ways of reducing the complexity of the Bayesian approach so that the uncertainty
could be properly quantified and calculations representing the full posterior density
function could be performed with a level of computation similar to that of the less
complete deterministic regularised minimum misfit approach.

The Study Group performed some simple numerical experiments which appeared
to indicate that progress might be possible. However, the problem is exceedingly
difficult and so the group concentrated on the formulation of the problem and the
groundwork needed for others to make a later proposal for further research.

The following report outlines the background knowledge required to understand
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the theory of statistical inverse problems and then formulates seismic inversion as
such a problem. It was suggested that a variant of the Ensemble Kalman Filter
would be a good starting point for further investigation of the problem.

2 Forward Problem

2.1 Continuum forward model

For completeness we state the full elastic wave equation for the vector displacement
field, known as the Navier wave equation, and then the acoustic wave equation for
a scalar field. For a background to seismic exploration see [10] and for background
and a complete explanation of the derivation of the equations see [1]. For a general
applied mathematical exposition of the theory of elastic waves in a general context
see [8].

The Navier wave equation, also known as the Lamé equation or the elasto-
dynamic equation has the form;

ρ
∂2ui
∂t2

=
∂

∂xj
(cijpq(epq)) + fi (1)

where ui is the vector displacement from a reference configuration, fi is a source,
and we are using the summation convention regarding repeated indices. The in-
finitesimal strain tensor, epq, is defined by;

epq =
1

2

(
∂up
∂xq

+
∂uq
∂xp

)
(2)

Both the strain tensor and the stress tensor are symmetric, and this, together with
a thermodynamic argument implies that

cijpq = cjipq = cijqp = cpqij (3)

In general the coefficients, cijpq are spatially varying and are usually assumed to be
independent of the displacement field. Curiously these spatially varying parameters
are called ‘elastic constants’ in the seismic literature.

In the special case that the medium is fully isotropic and the spatial scale of
variation of the elastic parameters is much smaller than the spatial scale of variation
of the displacement field, the equations reduce to;

ρ
∂2ui
∂t2

= (λ+ µ)
∂

∂xi

(
∂uj
∂xj

)
+ µ

∂2ui
∂xj2

+ fi (4)

where the parameters λ and µ are functions of the spatial co-ordinates.
By taking the divergence of the Navier equation one derives the scalar wave

equation for the dilatation ∆ =
∂uj
∂xj

,

ρ
∂2∆

∂t2
= cp

∂2∆

∂xj2
+ s (5)
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where s is the source term and cp is the speed of ‘P-waves’ such that cp = (λ+2µ)/ρ.
By taking the curl of the Navier equations one obtains a linear wave equation

for a vector field of shear waves, called ‘S-waves’, that travel with a local speed of
cs = µ/ρ. Generally the P-waves travel at a faster speed than the S-waves and
in many approaches to seismic exploration theory it is only the P-waves that are
modelled. However, in more recent literature there is a growing interest in using
the full Navier equation or even the full elasto-dynamic equations with only some
assumptions of material symmetry appropriate, for example, for a layered material.

2.2 Discrete forward model

The standard and most straightforward method for solving the various wave equa-
tions is to use a finite difference method. Saudi Aramco have been using very
high order methods, as high as 12-th or 14-th order. We will not describe the de-
tails of this, as this was not discussed during the Study Group and is not key to
understanding the inverse problem.

Let us suppose that time is discretised into discrete times tn, with n = 0, 1, ...
and such that the response is observed at each tn and the shots occur at sporadic
times, with many time steps in between. When solving the discretised wave equation
there might well be many subsidiary time steps, for reasons of numerical stability or
accuracy, in between the observation times. The measurements themselves might
be averaged or interpolated so that the model discrete time, the observation times,
and the times at which shots are fired are co-ordinated.

Thus let us model the state of the sub-surface by a finite vector of values, ψt.
The components of ψt might be Fourier amplitudes or the values at grid points or
averages over grid cells. The properties, also represented by Fourier amplitudes or
grid point values, are a finite vector of values m.

At each observation time step, the causal nature of the underlying wave equa-
tions implies that Earth’s seismic state at t+1 is a known function gt of the state at
time-t. This function is computed via the numerical solution of the wave equation,
and can be written as:

ψt+1 = gt(ψt,m) (6)

As the initial dynamical state of Earth, just before the first shot is known, the state
at time-1 is given by ψ1 = g1(ψ0,m). We note that ψ0 is a known quantity as Earth
is stationary before the first shot, as indeed it will be just before each shot (unless
the shots were made so rapidly that the reverberations from the previous shot have
not yet dissipated).

The measurements at the receivers are modelled in a fairly general case by the
expression:

dt = h(ψt) + ζt (7)

where ζt is Gaussian noise with variance σ. It is quite common to assume that the
noise is Gaussian as this is thought to be a generally good model, and simplifies
subsequent calculations. However, if this is not a good model one can transform
the variables so that the noise can be Gaussian and one can even assume that all
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measurement operators are linear if extra variables are introduced. (For details see
the paper [13].)

It then follows that the measurements are modelled by the equation:

dt = Gt(m) + ζt (8)

where Gt is a function obtained by induction using the function gt. For exam-
ple G2(m) = g2 (g1(ψ0,m))). The last equation shows that we can consider the
predictions of the measurements as known functions of the properties m.

The different positions of each of the shots are modelled implicitly in the form
of the model function gt. Note that shots are not fired at all times, indeed only at a
very small number of times. Also in practice, just before the shot is made one can
assume that Earth is stationary, so that the dynamic parameters are always known
at the time just before the shot, but because Earth’s material properties are not
known the state of Earth is not known during the time after the shot when Earth is
reverberating with the seismic waves. The only information that is known for sure
is the set of values of the measurements.

3 Minimum Misfit Formulation of the Inverse Prob-

lem

To formulate the inverse problem as an optimisation problem, one first forms the
data vector Dn = {d1, ..., dn}. One can then form the function

C(m) =
1

2

∑
n

(dn −Gn(m))TWd(dn −Gn(m)) +
1

2
ε(m−mp)

TWm(m−mp) (9)

where Wd = δi,j/σ
2 is the inverse correlation matrix of the (white) Gaussian mea-

surement noise and Wm the inverse correlation matrix for the regularisation terms.
It is, apparently, quite usual to assume that Wm is the identity matrix δi,j which
gives rise to zeroth-order Tikhonov regularisation. The parameter, ε is somewhat
problematic in the regularisation framework. The standard approach for choosing
the size of ε is the ‘discrepancy principle’ whereby one chooses the parameter so
that the magnitude of the total misfit function is of the order of the magnitude
of the measurement errors. This is explained fully in the book [9]. The Bayesian
framework, however, provides clear guidance on how to choose ε.

The minimum misfit method seeks a property vector m to minimise the function
C(m) using a gradient optimisation method. Computation of the gradient requires
computation of the derivative of the misfit function C(m). In general the misfit
function does not have a unique minimum so a decision procedure or some way
of weighting the minima is required. Suppose that all of the minima are different
from one another. Then one way of providing a decision procedure is to ask for
the global minimum (that local minimum that is lower than all of the other local
minima). However, finding global minima is generally an expensive process and in
many cases infeasible. Further, if we fail to find the global minimum then numerical
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experiments (for example see the paper [3]) show that some local minima that are
lower than many other local minima are, nevertheless, worse predictors than their
higher cousins. If we add to this observation the thought that the original forward
model that we have chosen will always be imperfect in some way or other, then the
minimum misfit method can be seen to be dangerous and misleading unless there are
very good reasons to suppose otherwise. For example if the misfit function is known
to have a unique minimum and the misfit function has a large second derivative at
the minimum, then the properties at this minimum may be a reasonable estimate
of the true properties. Theoretical considerations lead to such a conclusion as the
situation corresponds to a Gaussian posterior density with a small variance.

A particularly relevant review of the minimum misfit approach to the FWI
problem can be found in reference [15].

We now outline the statistical approach which promises to alleviate these dif-
ficulties of the minimum misfit method. However we will see that new difficulties
arise.

4 Inverse Problems from the Statistical Viewpoint

4.1 The Sequential Bayesian Filtering Equations

In the statistical approach one summarises all of one’s prior knowledge - before any
seismic measurements are made - by a probability density function of the proper-
ties, π0(m). The idea of this is that any particular realisation from the prior will,
when visualised, ‘look’ like a typical geology of the type we imagine to be under
investigation. The company geologists are the primary drivers of this, and will use
their collective expertise to devise a prior that is a satisfactory representation of
their geological intuitions and is conditioned on any available data such as logs from
existing wells. Of course, in the actual company workflow previous seismic surveys
will be available and this information is important in building the best possible
prior. Note however, that the quality of a prior can be considered to be the qual-
ity, alone, of how well the prior represents the prior knowledge. The quality of the
prior knowledge of itself, can be considered a separate matter, although of equal
importance. It is useful in discussions and in writing to separate considerations of
the quality of representation of knowledge from the quality of the knowledge itself.
This is true also of the posterior density. The quality (or more clearly the accu-
racy) with which the posterior has been calculated as a consequence of the model,
the prior and the quantity and quality of the measurements is a separate matter
from the quality (accuracy) of the model, of the prior and of the relevance of the
measurements. Failure to make these distinctions is confusing and can lead us into
error. It is quite common to evaluate the quality of a forecasting or data assimila-
tion system by evaluating the posterior density with respect to the ‘truth’ in some
ideal numerical experiment. Such experiments are not useful unless a very accurate
calculation (or even an exact calculation) of the posterior density is available with
which to compare the results.

The Bayesian approach takes the view that the prior at time-0 is the starting

B–6



Full Wave Form Inversion for Seismic Data KSG 2011

point for subsequent assimilation of the data into our knowledge. The process is
quite simple. Thus assume that at time-t we have already calculated πt(ψt,m|Dt).
That is, the latest probability density function of the static properties, m and the
dynamical state ψt, conditional upon all of the measurements up to, and including
those at time-t. Then, by application of the principles of probability theory, we
can write down the joint density of the current state, the next state and the next
measurements (before they are made). This is:

π(dt+1, ψt+1,m|Dt) = πσt(dt+1 − h(ψt+1))δ(ψt+1 − g(ψt))πt(ψt,m|St) (10)

where δ(.) is the delta measure that is appropriate for a forward model without any
dynamical noise.

By integrating out the earlier dynamical state, and by normalising the equations
(that is, by using Bayes’ theorem) the posterior probability density for the states
and properties is given by the expression:

π(ψt+1,m|Dt+1) = zt+1πσ(dt+1 − h(ψt+1))

∫
δ(ψt+1 − g(ψt))πt(ψt,m|Dt)dψt (11)

where zt+1 is a normalisation constant required so that the posterior density inte-
grates to unity. We note that the great difficulty of the Bayesian approach is, in
general, in performing this high dimensional integration at each time step.

Thus, from the prior at t = 0, a sequential application of equation(11) enables
us, in principle to compute the posterior density functions at each time.

4.2 The Bayesian Smoothing Equation

From the iterated form of the forward model we can write down the posterior density
of the static properties alone by the expression:

π(m|Dt) = ZtΠnπσ(dn −Gn(m)))π0(m) (12)

where the product Πn ranges from n = 1 to n = t. This is known as the ‘smoothing
equation’ as the pdf of the properties depends upon all of the measurements. We
note that the pdf in this formula is identical to the marginal pdf that would be ob-
tained from the filtering equations of the previous section once we have marginalised
the posterior density by integrating out the dynamical state. It is noted that the fil-
tering equations are known as such, because the marginal density of the dynamical
state at any particular time does not depend upon observations at later times.

A natural method of summarising this joint posterior probability density is to
seek the properties, m that maximise the value of π(m|Dt). This is equivalent to
taking the negative logarithm and seeking the minimum. Thus taking the logarithm
of equation(12) gives the expression;

C(m) = − log π(m|Dt) = − logZt +
∑
n

1

2σ2
(dn −Gt(m))2 − log π0(m) (13)

We can see from the last equation, that except for the constant, this is the
same form as the equation for the minimum misfit method. By taking the prior
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to be the exponential of minus the regularisation term we have shown that the
regularisation is equivalent to a particular prior probability density. In the book of
[14] the advice is given that one should always use a Monte-Carlo sampling method
to draw realisations from the prior to see if, when they are visualised, they conform
to the prior judgements of the company geologists as to the texture of the rocks
of interest. The various Tikhonov priors do not always correspond to well defined
pdf’s. However, the zeroth-order Tikhonov regularisation does correspond to such
a pdf and is the pdf for ‘white noise’. This is a noise with zero correlation length
and when visualised looks completely isotropic and like fine gravel or sand. This
may be appropriate, or on the other hand it might not be appropriate. For further
discussion of the link between Tikhonov regularisation and Gaussian priors see the
book of [14] or the article [5].

5 Practical Methods for Implementing a Bayesian

Filter

Thus there are good theoretical grounds for the view that an inverse problem is
solved once one has computed the posterior probability density. However in practice
this is just the beginning. The first problem is to represent the pdf’s in some way,
and the next problem is to perform the high dimensional integration at each time
step. The first practical problem is approached using an ensemble representation.
That is, if we have an ensemble of size R of equal weight realisations {ψrt}Rr=1 we
can recover an estimate of the pdf from the expression

π(ψt|Dt) =
1

R

∑
r

δ(ψt − ψtr) (14)

Using this expression in the filtering equations makes it easy to perform the integral;
once anyway. The next difficulty is that the weights in the subsequent expressions
are no longer the same as each other. This makes it necessary to add an extra step
in which the realisations are modified so that they are equal weight realisations.
The different ways of doing this give rise to the different varieties of filtering. Many
of the methods that have been used try to employ ideas from the Kalman Filter.
The forward model for a linear system is of the form.

ψt+1 = Atψt +Btm+ ξt (15)

where At and Bt are known matrices and ξt is a random Gaussian vector with zero
mean and known correlation structure. Further the observation model is also linear,

dt = Hψt + ζt (16)

where Ht is a known matrix.
In the case of a linear forward model with a linear observation model, with a

Gaussian prior at the initial time and with Gaussian noise, the posterior density is
always Gaussian. Thus we can compute the posterior mean and correlation matrix,

B–8



Full Wave Form Inversion for Seismic Data KSG 2011

Figure 2: An illustration of the EnKF for a two-component time dependent state.

conditioned on all of the observations up to the current time. This is the Kalman
filter. The equations are quite complicated, but the derivation follows from the
assumptions just stated. (For a particularly clear derivation, see the book [11].)

When the dimension of the state vector is very large, the Kalman filter, even
given the validity of the assumptions (which is not very usual), the algorithm is
impractical because the dimension of the various matrices used in the calculations
is too large. A recent development is the Ensemble Kalman filter, which by repre-
senting the Gaussian pdf by an ensemble, can circumvent the problem related to
the size of matrices. This is a consequence of the natural way in which the ensemble
correlation matrix is naturally factorised by the ensemble members. It can be shown
(see [4]) that the Ensemble Kalman Filter (EnKF) converges to the exact answer
for the linear and Gaussian case. This is a very significant advance and leads us
to believe that soon it will be possible to solve most large scale inverse problems
in a fairly routine manner. However it is unfortunately not a panacea, as very few
problems are linear and Gaussian. There is still a great deal of research to be done
to fulfill the promise given by the EnKF.

However, in the current state of the art, the Ensemble Kalman Filter described
in detail in [4] provides one of the most popular and successful ensemble inversion
methods. We do not give the details here, but we do record that the academic
participants at the KAUST Study Group recommended that as a first step in any
further work a form of the Ensemble Kalman Filter should be tried on the problem
of FWI. We note, that the Ensemble Kalman Filter uses some of the equations of
the Kalman filter in the update step. Thus the method is not rigorous, and does
not converge in the limit of increasing ensemble size. There are newer methods that
are convergent, and these methods are likely to supersede the EnKF. At the present
time there is a great deal of activity in the field and it is not yet possible to say
which method (or methods) will come to dominate the subject.
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In figure 2 we indicate how, at time-t a well-constructed ensemble - shown by
the blue dots - will surround the state of reality as shown by the green dot. When
the forward model updates the posterior at time-t to the prior at time-(t + 1) we
see that if the forward model is adequate it will, once again surround the state of
reality. Then we see that, in the case where the measurements do actually carry
some new information, that the variance of the posterior ensemble (shown by the
orange dots) is smaller than the variance of the prior ensemble. We note that over
many time steps, as a result of natural and computational fluctuations, sometimes
the real state is in the tails of the prior. However, in general, if the posterior density
at time-t is always very different from the prior at time-t at many different times
then we must suspect that the forward model needs to be improved. This is how
model validation can be built into the Bayesian framework in a natural way.

6 Conclusions

At the Study Group, once it was realised that the FWI seismic inversion problem
could be formulated as a sequential filtering problem, in the natural way that the
actual seismic data gathering process suggests, the participants were very keen to
try the idea. A one dimensional scalar wave equation was used in a simple example.
Using code provided by Chaiwoot Boonyasiriwat (KAUST) the forward problem
was solved. Also the code from Chaiwoot was able to solve the inverse problem
using a minimum misfit approach. Then using a version of the Ensemble Kalman
filter provided by Xiaodong Luo (KAUST) the inverse problem was solved. At the
time of the Study Group, when we presented in the final plenary session, we had
not fully analysed our results, and the presentation gave the impression that we
had succeeded in solving the problem using the EnKF. However, after the meeting,
with some more analysis, we realised that the results were not as decisive as we
had first thought, and it is now apparent that a more powerful, fully nonlinear
filtering method is required. Although the the minimum misfit approach was able
to retrieve a good estimate of the unobserved rock parameters in the test problem
is still remains the case that the minimum misfit method is unable to quantify the
uncertainty in the retrieved model.

After discussing the results further, we realised that the Ensemble filtering
method that we used at the time of the Study Group involved assumptions of
linearity and Gaussianity which are not valid. As mentioned in the previous sec-
tions, the standard methods of Bayesian filtering, as in the Ensemble Kalman Filter,
make essential use of assumptions of linearity in the model and Gaussianity in the
error statistics. More recent work such as that of [6] and [7] and the work [13] show
that these assumptions can be removed.

We thus recommend that more work should be done where the newer
and rigorous filtering methods are used. Perhaps, the EnKF and, of
course, the minimum misfit methods could be used as benchmarks. The
principal authors of this report are of the view that these methods are
likely to succeed. However, this is a very challenging problem, but the
rewards of a successful result will be very high.
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