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A standard TV image is transmitted as a series of horizontal lines. To reduce
band-width effects in transmission, half of a picture is transmitted in each
frame, i. e., information is only given about the picture on alternate lines, a
process called interlacing. A difficulty with this process is that other images
(for example computer images) do not have alternate lines omitted. Thus it is
desirable to be able to interpolate an existing TV image to obtain information
on the image between alternate lines; this is the de-interlacing process.

Interpolation is a well known procedure covered in many numerical anal-
ysis textbooks, however special features of the TV image require a special
approach to the interpolation process. Firstly, a standard monochrome TV
image contains a very large amount of information, typically 576 x 720 pixels,
which have gray scales varying between -128 and 128. Thus any interpola-
tion procedure needs to be fast. Secondly, the procedure should be effective
at resolving features with large changes in gray scale - for example a light
object placed in a dark background. A problem with many interpolation
procedures is that because of a low resolution caused by a low density of
sampling points, sharp features can be interpolated by a staircase function
causing considerable image distortion.
The objective of this study was to find an interpolation procedure which was
fast and resolved edges well. There is a literature on several such methods;
for example, the use of wavelets, radial basis functions and neural nets to in-
terpolate images. However, for the purpose of the study group we restricted



our attention to the use of cubic Volterra filters which had already been used
with some success by Snell and Wilcox. The result of the work is a decom-
position of a nonlinear Volterra filter into a product of linear filters for which
the coefficients can be optimised efficiently for a given set of training data.
Such decompositions had a much smaller RMS error than the comparable
linear filters and almost as small an RMS error as the optimal Volterra filter.
Although the filters were optimised for a one dimensional aperture, it was
also shown how they could be extended to fully two dimensional apertures.

Suppose that (Xi) is a (large) set of values of gray scale at the pixels i =
1, ... , N and that (ri) is the desired interpolant. Each value of ri will be
made up by combining N values of Xi which are arranged in an aperture.
The basic Volterra filter is a cubic map from (Xi) to (ri) given by

N-l N-l

ri = L aj Xi-j + L bjk Xi-j Xi-k

j=O j,k=O

N-l

+ L Cjkf Xi-j Xi-k Xi-f·

j,k,f=O

Here N is the number of terms in the aperture and also the order of the
filter, which comprises linear, quadratic and cubic sections. The complexity
of this filter, (i. e., the total number of operations needed to calculate each r i)
increases in proportion to N3, and this can be very high for large N. Thus,
although the Volterra filter can be effective in giving improved image quality,
it is costly to implement. We note that by exploiting symmetry (for example
replacing a sum over all values of j, k, l by a sum over 0 ::; j ::;k ::; l the cost
of implementation can be reduced although it is still proportional to N3.
Observe, however, that ri is a linear function of the coefficients aj, bjk, Cjkl'

Thus, if ri and Xi are both known, for example in a set of training data,
then the coefficients can be estimated easily by minimising the RMS error
between the predicted and observed interpolants or, equivalently, by solving
the normal equations for the resulting over determined system relating Xi to
ri' Thus, although implementing an efficient Volterra filter is hard, finding
an optimal Volterra filter is comparatively easy.

We considered two procedures for reducing the cost of implementing the filter
in (1):



1. Decomposing the Volterra filter into the product of linear filters, opti-
mising these designs using the training data and testing them against
further data;

2. Considering constraints on the coefficient desirable for the detection of
features such as edges and hence reducing the number of terms which
need to be calculated.

3 Linear Decompositions of Volterra Filters

3.1 One-dimensional apertures
The work in this section was motivated by the papers [1]'[2] on MMD (Multi-
Memory Decompositions) decompositions of Volterra filters.

Initially we consider the data from the pixels to be a one-dimensional data
set, for example taking an aperture to be N pixels arranged in a vertical line,
(xd, producing a one-dimensional interpolant (Ti)' This is not strictly the
case for two-dimensional apertures, nor does it consider the effects of the
boundary of the image. We return to this in the following subsection.

When implementing a Volterra filter certain symmetry restrictions can
be applied. For example if we transform Xi to -Xi we would expect Ti to
transform to -Ti. In Appendix 1 we show that this means that quadratic
terms in the filter should be excluded and hence we consider decomposing a
linear plus cubic volterra filter of the form

N-l N-l

Ti = L aj Xi-j + L Cjkl Xi-j Xi-k Xi-I'

j=O j,k,I=O

Now, consider a set of linear filter banks of the form shown in Figure 1.
Here we have
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_ 4
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Observe that ri is a cubic function of Xi so this filter is a special example of
a Volterra filter. This architecture can be easily implemented in MATLAB.

The filter architecture is characterised by the orders N A, N B , N C, N of
the linear filters and by the resulting vectors of coefficients h 1, h2, .•. , h6 of
the filter banks. Simple counting arguments show that



Furthermore, we observe that for a filter described by the vectors

hI h2 h3 h4 and h5, , ,

the same output will be given by a filter described by the vectors

A1h\ A2h2, A3h3, A4h4 and Ash5,

provided that AIA2A3A4AS = 1. Hence, we can (without significant loss of
generality) take

For perfect resolution of constants, (i. e., if Xi = C for all i then we should
also have ri = C) this implies that

N-lLh~= 1.
j=O

We found it useful not to impose (6) and (7) but rather to monitor these
conditions as a measure of the accuracy of the solution.

which is much smaller than N3 when N is large. Thus if such filters can be
optimised and behave similarly to a Volterra filter, they offer a significant
speed up in terms of cost.

To determine the optimal such filter requires the calculation of the coef-
ficients of the vectors hI, ... , h6 for which there are

degrees of freedom. We do this as follows. Given the filter as implemented
we set



To ensure symmetry of the Volterra filter (and also to reduce the cost of
implementing the filter by exploiting symmetry) we then set

1
Cjkl = 6 (djkl + djlk + dkjl + dklj + dlkj + dljk) .

The values of the coefficients h are then optimised by comparing the inter-
polants against a set of training data, in which the values of Xi are given
together with the correct interpolant, ~. Suppose that the calculated values
of the interpolants for a given set of values for the coefficients h are given by
ri then

N-I N-I

ri = L hJXi-j + L Cjkl Xi-j Xi-l Xi-k'

j=O j,k,l=O

Z= [ht ... ,h~_I'O, ... ,O,coOO,COOI, ... ,CN-I,N-I,N-I]T, (13)

where the zero elements correspond to the unused quadratic terms in the
filter and

where M is a (large) matrix with the same number of rows as the number of
interpolated data points and is such that the i-th row has the form

To minimise the RMS error between the predicted and the actual inter-
polants we seek to minimise

where R is the vector of actual interpolants. That is, we aim to minimize
the function

Observe that, whereas M and R are large, the matrix MT M and the vector
MTR are relatively small.

Our procedure to calculate the vectors hI, ... , h6 is then as follows:



1. For hI, h2, ... , h6 calculate Cjkl using (10) and (11);

2. Form the vector z in (13);

This is an unconstrained nonlinear minimisation process.
It was initially implemented using the MATLAB minimisation routine.

This worked, but took a considerable time to find the minimum (typically
about 20 minutes). Subsequently, it was implemented using the NAG rou-
tine E04JAF and then took only a few seconds to find the minimum. A
FORTRAN code to implement this algorithm is given in Appendix 2. To
test for the problem of finding false minima, the routine was started from a
variety of initial guesses for the vectors hi. I In practice, it was found that
setting all initial values of hi to zero, apart from those in (5), resulted in
good convergence of the minimization. The algorithm was implemented for
the set of training data labeled girl with an aperture of 4 vertical pixels so
that N = 4. In this case there are ten possible architectures (i. e., there are
10 vmys of choosing N A, N B, NC so that N A + N B + NC = 6). For each
case we calculated the optimal set of filter coefficients the amount of work
per calculation of each Ti, and the resulting RMS error. The results were as
follows:

NA NB NC Workload RMS error
1 1 4 16 18.4
1 2 3 17 17.3
1 3 2 18 16.9
1 4 1 19 17.4
2 1 3 18 17.3
2 2 2 19 16.9
2 3 1 20 17.3
3 2 1 21 17.1
3 1 2 20 16.5
4 1 1 22 16.8

1It is worth noting that a feature of the MMD decomposition is that several different
vectors of coefficients can combine to give almost identical Volterra filters. For example,
interchanging hI and h2 does not change the resulting Volterra filter.



For the same data the optimal linear filter ( i.e., the filter with Cj,k,i = 0
Vj, k, f) had an RMS error of 18.45 and the optimal Volterra filter (in which
the coefficients Cjkl were unconstrained), had an RMS error of 16.019.

Observe from this table, that the simplest representation of the Volterra
filter given by N A = N B = 1, or

N-I N-I

ri = LhJXi-j + LhJxLj,
j=O j=O

and called the Hammerstein filter, performs rather poorly. Indeed it is only
slightly better than the linear filter.

In contrast, the best architecture seems to be given by (N A, N B, NC) =
(3,1,2), resulting in an RMS error of 16.5-which is not too different from
that of the optimal Volterra filter. From a zero initial guess (subject to (5)),
the resulting optimal coefficients are:

hI = [1,80.5411, -58.7979];
h2 = [1, -1.2917, -0.07452];
h3 = [1, -0.1313, -0.9131];
h4 = [1];
hs = [-3.5163 X 10-7,3.6224 x 10-7];

h6 = [-0.1034,0.61278,0.5851, -0.0952].

Observe that the values of hs are small as an effect of x~ having a value of
the order of 106.

Given a different initial guess it is possible that different filter coefficients
will be obtained, but we observed that the resulting Volterra filters all had
almost identical RMS errors - indicating strongly that we have different de-
compositions of essentially the same filter.
We also optimised for the case (N A, N B, NC) = (2,2,2) which gave an
RMS error of 16.9-rather larger. In this case the optimal filter coefficients
are given by:

hI = [1, -1.172];
h2 = [1,1.604];
h3 = [1, -0.123,0.867];
h4 = [1, -0.827];
hs = [-6.024 X 10-6,6.9776 x 10-6];

h6 = [-0.089,0.593,0.581, -0.086].

Note that in both filters hf+h~ r--.J 0 and L:J=o hJ r--.J 1, agreeing with (6,7). In



neither case is the linear filter symmetric, although it does closely resemble
the 'optimal' sinc filter. This may be the effect of not correctly including the
boundary conditions in the covariance matrix.

To compare the performance of the resulting filters we try them on some
data with sharp changes, and also for smoothly varying sinusoid data. In
particular (using Matlab notation)
Xl = [100 * ones(100, 1); -100 * ones(100, 1)],
X2 = [100 * ones(100, 1); a * ones(100, 1)],
X3 = 100 * cos([O : 0.1 : 10]).
When using the (3,1,2) architecture the results are given in Figures 2, 3
and 4.

Vie see that in Figure 2 and Figure 4 the filter introduces a small delay
but otherwise reproduces the function well. In Figure 2 the filter correctly
reproduces the leading edge of the discontinuity but gives an overshoot at
the trailing edge.

The corresponding results for the (2,2,2) architecture are given in Fig-
ures 5, 6 and 7. The quality of the interpolation in these cases is clearly
poorer than in the previous figures, with greater overshoots.

Both of these filters show improvements over an optimal linear filter,
which introduces greater overshoot at the discontinuity, illustrated in Fig-
ure 8.

\Ve conclude from this that the (3,1,2) architecture performs very nearly
as well (judging on RMS error) as the optimal Volterra filter and certainly
very much better than the optimal linear filter for a four pixel vertical aper-



ture.
We now consider generalising this approach to data sets from apertures

extending both vertically and horizontally.
The filter structure described in [1],[2] (see Figure 1), acts on a stream

of scalars. That means the data is one-dimensional, which is rarely the case
when we consider television images, or rather the only apertures we can have
with the scalar filter are one-dimensional, as to the left in Figure 9.
If we use an aperture as shown in the middle of Figure 9, we do not have a
stream of scalars but rather a stream of vectors. In Figure 1 all the variables
should be vectors except the final output r and its components wand y4•

A linear filter h is characterized by its length N and it acts by Yn =
L::~lhixn-i, where hi E Ilt If we want xn to be a vector of length K and
Yn to be a vector of length L then we just have to replace the scalar hi with
a K x L matrix h., i.e., we have

=t

N-l

Yn = L£?:ixn-i'
i=O

Thus, a linear vector filter is characterized by three numbers, the length N,
the size of the input vector K and the size of the output vector L. The
multiplication operator ® takes two vectors and multiply the entries with
each other



vector filter Yn = L:~~1tJixn-i where tJi E IRKxL. There is no reason for L
to be large than the highest rank of tJ

i
, i= 0, ... , N - 1, so we may assume

that L ::;K.
The number of multiplications of two variables in the vector filter in Fig-

ure 10 is K + M ::;2K. The exact numbers for additions and multiplications
by constants are rather complicated but, if we replace Land M by K, then
they both are of the order (Na + N4 + Ns)K2.

Just as in the scalar case, multiplying each of the linear components of
the cubic filter by a scalar AI, A2, A3, A4, and AS, corresponds to multiplying
the final result w by the product of the scalars A1A2A3A4AS, but in the case of
vector-streams we can do more. We may replace Al and A2 by Lx L-matrices
and A3 and A4 by M x M-matrices, but then it is no longer clear what the
effect on wis.

Suppose we want an aperture as to the right in Figure 9, this can not be
achieved by considering the images as a stream of vectors or scalars. We
need to forget about the streams and just have a certain aperture of say N
pixels. One way of looking at a cubic Volterra filter is to consider it as a
cubic approximation to some unknown (and probably nonexistent) perfect
interpolation function. Instead of looking at an arbitrary cubic functions we
can look at cubic functions of the form

M

:~:::)a~x1 + '" + a~xN )(b~X1 + ... + b~XN )(C~X1 + ... + C~XN)'
k=l



We should note that if M is sufficiently large then we can get any Volterra
filter but the cost is then just as high. The cost of this filter is:

additions
multiplication by constant
multiplication of two variables

3M(N -1);
3MN;
2M;

4 Subclasses of Volterra filters with good in-
terpolation properties

We remarked in Section 2 that there is no simple algorithm for finding an
efficient implementation of a general, high-order, multivariate Volterra filter.
Therefore, it makes sense to consider subclasses of Volterra filters, for which a
general implementation algorithm might be reasonably expected to be found.

Earlier in this report, attention has focussed on a subclasses of filters
which are given by a combination of simple filter components, and which are
thus, by construction, efficient to implement.

However, in this section we take a different approach. We consider what
constitute desirable and sensible properties for a de-interlacing filter. Then,
by formulating these properties mathematically, and solving the constraints
which thus arise, we are able to describe subclasses of Volterra filters which
have good interpolation properties built-in. Typically, there are still some
degrees of freedom left in the filter, and these may be trained by test data.



Because these filters have fewer degrees of freedom than the most general
cases, it should be easier to see how they might be implemented efficiently.2

After some discussion, we decided that the following were minimum re-
quirements for a sensible filter:

1. Symmetry: if the television image is reflected in either a horizontal or
a vertical axis, the actual interpolated values should not change; rather
the interpolated field should just be reflected in the same way. This
assumption greatly reduces the degrees of freedom by forcing (e.g.,
pairs of, quads of) coefficients to equal each other. (Of course, we
also assume translational symmetry by integer pixel quantities, which
means that the same filter is used to find each interpolated point.)

2. We would like the interpolation to be very accurate (if not exact) in
regions where the image intensity or voltage varies smoothly (e.g., lin-
early). Perfect interpolation for a linear profile produces a set of linear
constraints on the filter coefficients, all but one of which are homoge-
neous.

3. Edge resolution: the filter must behave well in the neighbourhood of
edges (which are sharp spatial transitions in the 'voltage' describing
colour/brightness). In particular, we wish to design filters without
Gibbs' phenomenon, where sharp edges induce spurious oscillation in

2 An interesting and open question is whether the subclasses of filters described in this
section overlap with the subclasses of filters discussed elsewhere in this report. We would
expect those filters, after they have been trained, to satisfy approximately the properties
described here.



the voltage levels of nearby interpolated points. Eliminating Gibbs'
phenomenon gives an extra set of homogeneous linear constraints on
the filter coefficients.

There is an extra reason for considering filters with good built-in edge
resolution: currently Snell and Wilcox choose their filter by minimising the
two-norm of the interpolation error with respect to some test data. However,
the two-norm will not penalise bad interpolation errors in localised regions
(e.g., near edges) heavily - hence the optimal filter with respect to the two-
norm may give bad edge errors, which are highly visible to the human eye.
There are two solutions to this problem:

• Optimise with respect to a higher p-norm (which is less computationally
convenient) ;

• ) Continue to optimise with the two-norm, but only over a set of filters
(e.g., the class satisfying property 3 above). which already have good
edge resolution properties.

To illustrate what might be achieved by our approach, we work through
two examples, showing how to construct:

1. Good cubic four point filters in one space dimension (see Figure 11(a));

2. Food six point filters in two space dimensions (see Figure l1(b)).

Higher order filters and larger apertures are amenable to our procedure, but
the calculations are much more involved, and we do not consider them here.
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Figure 9: Example of an aperture for a scalar stream, an aperture for a vector
stream and a general aperture.

4.1 Example l.

We consider the four point filter depicted in Figure l1(a). We suppose that
the unknown point, whose voltage Va is to be determined by the Volterra
filter, is located at X = 0, and the four input data points are at X = X-2,

X-I, X+l, X+2, and have known voltages V-2, V-I, V+I, and V+2 respectively.
(If h > 0 is the inter-pixel spacing, then -X-I = X+I = hand -X-2 = X+2 =
3h.) Our four point cubic Volterra filter calculates the unknown voltage by

VD= aD + LaiVi + LaijViVj + L aijkViVjVk,
i i~j i~j~k (18)

i,j E {-2,-1,+1,+2}.

Here aD, ai, aij, aijk are constants which determine the properties of the
filter. In this case there are 4 ai, 10 aij, and 20 aijk, and hence altogether



35 degrees of freedom in the filter-we now show how requiring good filter
properties reduces the degrees of freedom.

First of all, we impose reflectional symmetry about x = 0, i. e., swapping
(V-2 and V+2) and (V-I and V+I) should not change the interpolated value
110· This forces a-i = ai, and a_i, -j = a+i, +j, a_i, -j, -k = a+i, +j, +k
(up to re-ordering of indices). In full, we obtain a-2 = a+2, a-I = a+I at
the linear level of the filter, a_2, -2 = a+2, +2, a_I, -I = a+l, +1, a_2, -I =
a+I, +2, a_2, +1 = a_I, +2 at the quadratic level of the filter, and a_2, -2, -2 =
a+2, +2, +2, a-I, -1, -1 a+1, +1, +1, a_2, -2, -I

a_I, +2, +2, a_2, -2, +2 = a_2, +2, +2, a_2, -I, -I

a+I, +2, +2, a_2, -2, +1

a+I, +1, +2, a_I, -I, +1

a_I, +1, +1, a-I, -1, +2 = a_2, +1, +1' a_2, -1, +1 a_I, +1, +2, a_2, -I, +2

a_2 , +1 , +2 at the cubic level of the filter.
Together these constraints reduce the degrees of freedom to 19, which

may be represented by ao together with the vectors

aI = (a+I, a+2f, (19)

3 _ (
a - a+1, +1, +1,a+2, +2, +2, a_2, +1, +1, a-I, +1, +1, a+1, +1, +2, a_2, +2, +2,

a_I, +2, +2, a+l, +2, +2, a_2, +1, +2, a_I, +1, +2)T,

which represent the free coefficients at the linear, quadratic, and cubic levels
of the filter respectively.

Next, we consider what extra constraints are provided by supposing that a
linear variation in voltage is interpolated exactly, i. e., , we set Vi = (Ah) li +B
(where -L2 = l+2 = 3, and -LI = l+1 = 1), and require that (18) returns
Vo = B.



Figure 11: (a) The four point aperture for the one dimensional filter of
Example 1; and (b) the six point aperture for the filter of Example 2. In
each case, the known field is plotted with' x', and the interpolated field with
'.'. The bold characters denote exactly which points of the known field are
used to determine the value of a particular point in the interpolated field.

We equate polynomial terms in A and B in (18) At the 0(1) level we
obtain ao = 0, and also

O(B) : Lai = 1,
i

0(B2
) : L aij = 0,

i~j

0(B3
): L aijk = 0,

i~j~k

(1, l)a1 = 1/2, (2,2,2,2,1, l)a2 = 0

respectively. Most of the other polynomial terms vanish by the symmetry
which has already been imposed, but we do obtain

0(A2
): (2,18, -6,6, -9, -1)a2 = 0,



O(A2 B): (2,54, -6, -2,6, -54, -18, 18, -18, -6)a3 = O. (24)

Now, let us consider what extra constraints are put on the filter coeffi-
cients by requiring that edges are interpolated in an accurate manner. With
reference to Figure 12, we take a perfectly sharp edge, i.e., the voltage is a
step function with value f _ to the left of the edge and f+ to the right. Two
different edge positions need to be considered:

(a) between X+I and X+2, in which case the filter should give f- for the
interpolated value Va. (N.B.: because of the symmetry relations which
have already been imposed on the coefficients, taking the edge between
X-2 and X-I gives the same constraints, so we do not consider that po-
sition. Further, note that the calculations which follow do not depend
on whether f- < f+ or f- > f+·);

(b) Also, we have edge position between X-I and X+I, where it is not possi-
ble to say what value va should take, because we do not know whether
the edge is to the left or right of X = O.

Figure 12: Edge positions for the ID filter of Example 1. (N.B., here the
x-axis runs horizontally, x = 0 denotes the interpolated point and x = X-2,

X-I, X+I, X+2 denote the known points.) There are two edge positions up to
symmetry: (a) the asymmetric position, where the interpolated point should
take the value f-, and (b) the symmetric position where the value that the
interpolated point should take is not clear.

First, consider the edge position of Figure 12(a). For (18) to give Va = f-,
the linear level L:ai Vi alone must give f -, and the quadratic L:aij Vi Vj and



cubic L O'.ijk ViVj Vk levels must vanish. (To see this, equate polynomial terms
in f _ and f+.) Taking into account the symmetry in the coefficients, the
linear level of (18) gives

f- = 20'.+d- + 0'.+21+,

which we want to hold for all values of f- and f+. Consequently,

0'.+1= 1/2 and 0'.+2= 0,

and the linear level of the filter is wholly determined.
Observe that this result is rather different from the optimal sinc function

linear filter used for interpolating smooth functions.
Note that for the edge position of Figure 12(b), if va is to be independent

of quadratic and higher terms in f- andf+, then it must now take the average
value U- + f+)/2.

We now consider what constraints on a2 and a3 are produced by requiring
the quadratic and cubic sums of (18) to vanish for each of the two edge
positions shown in Figure 12.

First consider the quadratic sum L O'.ij ViVj, and the edge position of
Figure 12(a). Substituting V-2 = V-I = V+l = f- and V+2 = f+ in the
sum, and setting to zero, yields 3 homogeneous linear constraints on the O'.ij'

However, these constraints add up to give L O'.ij = 0, which has already been
obtained by assuming the perfect fit of a linear profile. Thus, at most 2 of
these constraints are linearly independent with those that have been obtained
before - hence we need only note that OUi) terms give (0,1,0,0,0, 0)a2 =
0, and that OU-f+) terms give (0,0,1,1,1, 0)a2 = 0 (taking into account
the symmetry relations between coefficients).

For the quadratic sum and the symmetric edge position of Figure 12(b),
the three constraints arising from 0U'!J,0U- f +), 0U~)also add to L O'.ij =
O. Further, because of the symmetry relations that have been imposed on
the coefficients, the OU~) and OU~) equations are identical; hence there is
only one genuinely new constraint which can be linearly independent with
those that have been derived previously - so, we need only note that OU~)
terms give (0,0,2,0,1, l)a2 = O.

At this stage we have found all the constraints on the coefficient vector
a2 for the quadratic level of the filter. Together they take the form

+2 +2 +2 +2 +1 +1
+2 +18 -6 +6 -9 -1
0 +1 0 0 0 0 a2 = O. (27)
0 0 +1 +1 +1 0
0 0 +2 0 +1 +1

19



We have five constraints on six unknowns, and (27) may be row-reduced to
yield the general solution

a2 = v (+1, 0, +3, -1, -2, -4),

v {(V~I + V~I) + 3 (V-1 V+2 + V-2 V+I) - (V-2 V-I + V+IV+2)

-2V_2 V+2 - 4V_IV+I} ,

for the quadratic level of the filter.
Now we consider the coefficients a3 of the cubic level of the filter. For each

edge position (rather like the calculations at the quadratic level), adding the
equations arising from equating the O(j:), O(j':!+), O(j_!~), O(jt) terms
gives '2:.: O'.ijk = 0, which has already been obtained by requiring the perfect
fit of a linear profile. Hence at most three of the four equations are linearly
independent of those that have been obtained before. For example, for the
edge position of Figure 12(a), we need only note the O(j':!+), O(j_!~), and
O(jt) equations.

However, for the symmetric edge position of Figure 12(b), the (O(j:)
and O(jt)) and (O(j':!+) and O(j_!~)) equations are identical - hence
there is only one genuinely new equation, e.g., that from O(j~), which can
be linearly independent of those obtained before.

Altogether we have found 6 homogeneous constraints on the la-vector
a3 (consisting of 2 from the perfect linear fit, 3 from the asymmetric edge
position, and 1 from the symmetric edge position). These may be solved to
give the general solution

a3 = </>(0,0, -1, 0, 0, 0, 0, 0, 0,1) + 'l/J( -1, 0, -3,2,1, 0, 0, 0,1, 0)
+ X(7, 0, 9, -8, -8, -1, 0, 1, 0, 0) + w(4, 0, 5, -5, -4, -1, 1, 0, 0, 0),

with 4 degrees of freedom, </>,'l/J, x, and w. The solution (30) can be used
to write down the general form of the cubic level of a filter with our sensible
properties. Our properties have reduced the 35 degrees of freedom in filter
(18) to just five-one at the quadratic level and four at the cubic level. This
is a substantial improvement, for the reasons we discussed earlier.



We now consider the filter of Figure 11(b), where the voltage va at a point,
e.g., the origin, of the unknown field is calculated by a polynomial function

Vo= ao + L a( i , j )V( i , j )

+ La(i,j)(k,I)V(i,j)V(k,l) (31)

+ L a( i, j) (k, I) (m, n) V( i, j) V( k, I) V(m, n),

of the voltages at six surrounding points (i,j) = (±1,0), (±1, ±1) of the
known field. (The index (i, j) denotes the point with coordinates Xl = ih
and X2 = jh, where h is the inter-pixel spacing.)

In formula (31), there are 6,21, and 56 coefficients at the linear, quadratic,
and cubic levels respectively. (These numbers take into account the permuta-
tional symmetry of indices, e.g., a( i, j) (k, I) and a( k, I) (i, j) are considered
identical, as are, e.g., a( i, j) (k, I) (m, n) and a( k, I) (i, j) (m, n) and the four
other similar permutations.)

Let us concentrate on the linear and quadratic levels of the filter, and what
constraints are implied by assuming symmetry (i.e., that the interpolated
value va should be independent of the data being reflected about Xl = 0 or
X2 = 0.) At the linear level, such symmetry implies

so that there are only 2 degrees of freedom, which may be represented by the
vector al = (a( +1,0), a( +1, +1 »). Note (in contrast to the one dimensional
filter of Example 1) that we have square symmetry, so that quads (as well as
pairs) of coefficients may be forced equal.

At the quadratic level of the filter, it can be shown that symmetry reduces
the degrees of freedom to 8, which may be represented by the vector

a2 = (a( +1,0) (+1,0)' a( +1, +1) (+1, +1), a( -1,0) (+1,0)'

a( +1,0) (+1, +1), a( -1,0) (+1, +1), a( -1. +1) (+1, +1), (33)
a(+1, -1)(+1, +1), a(-1, -1)(+1, +1»)T.

Next we consider what constraints on al and a2 are provided by supposing
that a linear voltage profile,

is fitted exactly. In a similar fashion to Example 1, we substitute Vo = C
and (34) in the RHS of (31), and equate polynomial terms in A, B, and C.
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Figure 13: The five possible edge positions (up to symmetry) for the 2D filter
of Example 2. 'x' denote the known points, and '.' denotes the interpolated
point.

We immediately obtain ao = 0 and 4a( +1, +1) + 2a( +1,0) = 1 (from 0(0)),
together with

L a( i , j )(k , I) = 0

and two other constraints at the quadratic level from 0(A2) and 0(B2). (The
O(AB) term vanishes automatically by the symmetry constraints already
imposed.)

Next we consider what constraints are imposed on coefficients by sup-
posing that edges are interpolated in an accurate manner - we follow the
approach of Example 1, by supposing that the filter interpolates step func-
tions exactly.

Figure 13 depicts the five possible ways (a)-(e) in which the edge may cut
through the six point aperture. Position (a) (for which we require Va = 1-)
forces a( +1, +1) = 0, and together with the linear fit constraint, this implies
a( +1, 0) = 1/2, so that the linear level of the filter is wholly determined.

Next, consider the effect of the edge constraints on the quadratic level
of the filter: each of the positions (a) to (e) yields 3 homogeneous linear
constraints on a2, corresponding to equating O(J~), O(J-I+) and O(Ji)



terms. However, for each edge position, the three constraints add together
to give (35), so that at most two, e.g., those from 0U;) and OU-f+), are
linearly independent of the linear fit constraints obtained previously. Further,
for each of the symmetric edge positions (d) and (e), the OU'!J and OU;)
equations are identical, so that at most one genuinely new equation (i. e.,
linearly independent of those found before) is obtained. Thus, although one
may expect 5 x 3 = 15 constraints on a2 to arise from positions (a)-(e), one
obtains only 3 x 2 + 2 = 8 constraints.

Altogether, one has 11 homogeneous linear constraints (3 from the perfect
linear fit, and 8 from edge constraints) on the 8-vector a2 of quadratic level
coefficients. Unfortunately, these constraints are not degenerate and have
rank 8 - hence the quadratic level of our filter must be identically zero.

However, if one advances to the cubic level, symmetry constraints reduce
the number of degrees of freedom from 56 to 16. The perfect linear fit
conditions provide 3 constraints (arising from 0(C3), 0(A2C), and 0(B2C)
terms), edge positions (a)-( c) provide 3 constraints each (e.g., arising from
OU~f+), OU-f;), and out) terms), and symmetric edge positions (d) and
(e) provide 1 constraint (e.g., that arising from the out) term) each - in
total, we have 14 homogeneous linear constraints on 16 coefficients.

Hence, we can guarantee that there is a nonzero family (with at least 2
degrees of freedom) of cubic terms with our sensible interpolation properties.

We have shown how to build Volterra filters with sensible interpolation prop-
erties built-in. These properties greatly reduce the number of free parameters
and thus it should be easier to see how the filters can be efficiently imple-
mented.

In Example 2, we saw that there were more constraints on the quadratic
level of the filter than degrees of freedom, and hence that there were no
nonzero terms which have our sensible interpolation properties. As filters
become bigger (Snell And Wilcox often consider 20 point apertures), the
number of coefficients increases; but, the number of constraints arising from
edge interpolation also rises (because the number of different ways of cut-
ting the aperture increases). An interesting question is which number grows
fastest, i.e., do we have more and more degrees of freedom as apertures
grow, or does it become impossible to find nonzero filters with our sensible
properties?

\Vork is now under way to develop software and counting theorems to
find the number of coefficients and constraints for arbitrary, large apertures,



using the sorts of techniques which have been outlined in our two examples.
PA,CJB,DB,JG,RAG,AMH,JL,MoG,AR,REW,AZ.
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A Why only uneven terms?
We are looking for a polynomial approximation to an unknown (and proba-
bly nonexistent) "perfect interpolation function" ~N -+ JR. Assuming some
simple symmetry properties simplifies the this task considerably.

Theorem 1. If P : JRN -+ JR is a polynomial that satisfies p( -x) = -p(x),
then p only has uneven terms.

Proof. Let
n

P(XI, ... , XN) = L II (};iloo.ikXil .•• Xik'

k=O 191~···~ik~N

n

P(-XI"'" -XN) = L(-l)k II (};il.ooikXil •• 'Xik'

k=O l~il ~···~ik~N

adding the two equations gives us:

0=2 L II (};iloo.i2IXil ••. Xi21 for all (Xl, ... , XN),

O~2l~n l~il~·oo~i21~N

The following is a Fortran code to calculate the optimal MMD filter for
a 4 pixel aperture. It prompts the user for the filter architecture which
are the three numbers N A, N B, NC which must add to six. To run the
code you must have access to the NAG library (although any unconstrained
optimisation package should do). You will need to have a data file

cor.dat
giving the correlation matrix MTM, the vector MTR and the scalar RTR.
You will also need to create the file

guess.dat
which contains the initial guess for the coefficients. In practice a file full of
zeroes will do. The output is given in the file

opt .dat.



c Code to solve the Snell and Wilcox optimisation problem c
c ======================================================= c
c
c
c Chris Budd, University of Bath,

c
c Data
c ----

c h
c hi
c hh
c xtx

unknowns in the filter coefficients
i = 1,6 filter banks
coefficients in the Volterra filter
etc. correlation input

c
c ===========================================================
c

common/al/ic(20,3)
common/a2/hl(10),h2(10),h3(10),h4(10),h5(10),h6(10),hh(34)
common/a3/xtx(34 ,34),xty(34) ,yty
common/a4/na,nb,nc,num

dimension bl(20) ,bu(20),iw(30)
dimension h(20),w(500)

c
c Read in the initial guess of coefficients
c



c
c Read in the correlation matrix
c

c
c Set up pointers
c

c
c Optimise the system using the NAG subroutine e04jaf
c which performs an unconstrained optimisation.
c

n = num
ibound = 1
liw = 30
lw = 500
ifail = 1

c
c write out the solution
c

write(10,*)
write(10,*)
write(10,*)
write(10,*)
write(10,*)

write(10,*) 'Converged values for each filter bank'
wr it e (10 , * ) , ,



call filter(h)
write(10,*) 'h1: ',(h1(i),i=1,na)
write(10,*) 'h2: " (h2(i),i=1,na)
write(10,*) 'h3: ',(h3(i),i=1,na+nb-1)
write(10,*) 'h4: " (h4(i),i=1,nb)
write(10,*) 'h5: " (h5(i),i=1,nc)
write(10,*) 'h6: " (h6(i),i=1,4)
write(10,*) , ,

call hhset
write(10,*)
write(10,*)
write(10,*)

do 110 i=1,34
write(10,*) i,hh(i)

110continue

write(10,*) , ,
write(10,*) 'RMS error of optimal MMD filter is: ',f

write(6,*) , ,
write(6,*) 'RMS error of optimal MMD filter is: ',f

stop
end

c
c ===========================================================
c

c
c Calculates the penalty function of the
c optimisation routine
c



common/a2/h1(10),h2(10),h3(10),h4(10),h5(10),h6(10),hh(34)
common/a3/xtx(34,34),xty(34),yty

c
c Set up the filters using constraints where necessary
c

c
c Set up vector hh
c

do 20 i=1,34
sum1=0.

do 10 j=1,34
sum1=sum1+xtx(i,j)*hh(j)

10 continue
sum = sum + hh(i)*sum1 - 2.*hh(i)*xty(i)

20 continue

c
c ===========================================================
c



c
c Inputs the initial guess
c

implicit double precision(a-h,o-z)
common/a4/na,nb,nc,num
dimension h(20)

write(6,*) 'Give the filter architecture'
read(5,*) na,nb,nc

write(6,*) 'Initial guess'
write(6,*) , ,

do 10 i=1,num
read(2,*) h(i)
write(6,*) hCi)

10 continue

write(6,*)
close(2)
return
end

c
c ===========================================================
c

subroutine xtxset
implicit double precision(a-h,o-z)
common/a3/xtx(34,34),xty(34),yty
dimension xtxn(34,34),xtyn(34),c(34),wk1(34),wk2(34)



ifail=O
ia=34

do 20 i=1,34
do 10 j=1,34
read(3,*) xtx(i,j)
xtxn(i,j)=xtx(i,j)

10 continue
read(3,*) xty(i)
xtyn(i)=xty (i)

20continue

do 25 i=1,34
read(3,*) dummy

25continue

c
c Estimate optimal volterra filter
c

c
c The following is a NAG routine to invert a matrix
c

write(10,*) , ,
write(10,*) , ,
write(10,*) 'Volterra filter calculation'
write(10,*) '==========================='
write (10,*) ,
write(10,*) , Optimal Volterra filter coefficients'
write(10,*) , ------------------------------------,
write(10,*) ,



write(10,*) i,c(i)
50continue

write(10,*) I

do 70 i=1,34
sum=sum-2.*c(i)*xty(i)
psum=O.

do 60 j=1,34
psum=psum+xtx(i,j)*c(j)

60 continue
sum=sum+c(i)*psum

70 continue

write(10,*)
write(10,*)
return
end

'RMS error of the optimal filter is
I I

c
c ===========================================================
c

c
c Sets up the hh vector
c

common/al/ic(20,3)
common/a2/hl(10),h2(10) ,h3(10),h4(10) ,h5(10) ,h6(10) ,hh(34)

do 100 i=1,4
hh(i) = h6(i)

100continue

do 110 i=5,14
hh(i) = O.



do 120 i=15,34
j = i-14

ii =
jj =
kk =

ic(j,1)
ic(j,2)
ic(j ,3)

c
c Calculate intermediate coefficients
c

aa = ff(ii,jj,kk)+ff(ii,kk,jj)+ff(jj,ii,kk)+ff(jj,kk,ii)
hh(i) = (aa+ff(kk,ii,jj)+ff(kk,jj,ii))/6.

if «ii.ne.jj).and.(jj.ne.kk).and.(kk.ne.ii)) then
hh(i) = hh(i)*6.
endif

if «ii.eq.jj).and.(ii.ne.kk)) hh(i) = hh(i)*3.
if «ii.eq.kk) .and.(ii.ne.jj)) hh(i) = hh(i)*3.
if «jj.eq.kk).and.(ii.ne.jj)) hh(i) = hh(i)*3.

return
end

c
c ===========================================================
c

implicit double precision(a-h,o-z)
common/a2/h1(10),h2(10),h3(10),h4(10),h5(10),h6(10),hh(34)
common/a4/na,nb,nc,num



c
c Sets up the filter banks and applies the constraints
c

h1(1) = 1.
h2(l) = 1.

do 10 i=1,na-1
h1(i+1) = h(i)
h2(i+1) = h(na+i-1)

10 continue

do 20 i=1,na+nb-2
h3(i+1) = h(2*na+i-2)

20 continue

do 30 i=1,nb-1
h4(i+1) = h(nb+3*na-4+i)

30 continue

do 40 i=1,nc
h5(i) = h(2*nb+3*na-5+i)

40continue



h6 (1) = h(num-3)
h6(2) = h(num-2)
h6(3) = h(num-1)
h6(4) = h(num)

return
end

c
c ===========================================================
c

subroutine ipoint

common/a1/ic(20,3)
c
c Sets up pointers to the data indices
c

ic(1,1) = °ic(1,2) = °ic(1,3) = °
ic(2,1) = °ic(2,2) = °ic(2,3) = 1

ic(3,1) = °ic(3,2) = °ic(3,3) = 2

ic(4,1) = °ic(4,2) = °ic(4,3) = 3

ic(5,1) = °ic(5,2) = 1

35



ic(5,3) = 1

ic(6,1) = 0
ic(6,2) = 1
ic(6,3) = 2

ic(7,1) = 0
ic(7,2) = 1
ic(7,3) = 3

ic(8,1) = 0
ic(8,2) = 2
ic(8,3) = 2

ic(9,1) = 0
ic(9,2) = 2
ic(9,3) = 3

icCiO,1) = 0
icCiO,2) = 3
ic CiO,3) = 3

icCi1,1) = 1
ic(11,2) = 1
ic(11 ,3) = 1

icCi2,1) = 1
ic(12,2) = 1
ic(12,3) = 2

icCi3,1) = 1
ic(13,2) = 1
ic(13,3) = 3

icCi4,1) = 1
icCi4,2) = 2
icCi4,3) = 2

icCi5,1) = 1
icCi5,2) = 2
icCi5,3) = 3

36



ic(16,1) = 1
ic(16,2) = 3
ic(16,3) = 3

ic(17,1) = 2
ic(17,2) = 2
ic(17,3) = 2

ic(18,1) = 2
ic(18,2) = 2
ic(18,3) = 3

ic(19,1) = 2
ic (19,2) = 3
ic(19,3) = 3

ic(20,1) = 3
ic(20,2) = 3
ic(20,3) = 3

return
end

c
c ===========================================================
c

c
c calculates the intermediate coefficients of the Volterra filter
c

common/a2/hl(10),h2(10),h3(10),h4(10),h5(10),h6(10),hh(34)
common/a4/na,nb,nc,num



jl = jj-mm-ll
j2 = kk-mm-ll
nl = na-l

if ((jl.ge.O).and.(jl.1e.nl).and.(j2.ge.O).and.(j2.1e.nl)) then
suml=suml+h4(mm+l)*hl(jl+l)*h2(j2+1)
endif

if (((ii-ll).le.n3).and.((ii-ll).ge.O)) then
sum = sum+suml*h5(11+1)*h3(ii-ll+l)
endif

return
end



1 -8.9130844719457786E-02
2 0.5987875705312924
3 0.5790294448848945
4 -8.6293237312759341E-02
5 2.8136854929962395E-04
6 -7.2505629753418356E-04
7 1.7481162214815838E-04
8 4.6859261785271791E-06
9 -1.3571065960541544E-04

10 1.6766713332701235E-03
11 -7.2758968850160171E-04
12 -9.9065351052699977E-04
13 1.9106195475938193E-04
14 2.4146613505981082E-04
15 -3.4652998087846348E-06
16 -2.6204276920334582E-05
17 2.6557574758950933E-05
18 -5.3441497961841746E-06
19 4.0155916617402962E-05
20 2.0278951865025677E-06
21 -1.8192339248831110E-06
22 -3.0208140141996826E-05
23 1.7460292172708630E-05
24 -9.2670139148104249E-06
25 -1.5527872018860456E-06
26 -1.2672580315562128E-05
27 -1.6568897991731025E-05
28 -1.5843718750425863E-05
29 -4.2878359786767087E-06



30 2.9108348569319611E-05
31 1.1268675383362890E-05
32 2.6080079410444757E-05
33 -2.0873545454280818E-05
34 -4.9643830327691209E-06

h1: 1.000000000000000
h2: 1.000000000000000
h3: 1.000000000000000
h4: 1.000000000000000
h5:-3.5162819360725E-07
h6:-0.1034556961938496

-9.5231028171078E-02

80.54113650908003 -58.79791819006203
-1.290744618049413 -7.452512436174E-02
-0.1313062155505152 -0.9131080341948733

3.6224119601860692E-07
0.6125895835435735 0.5851376076171718

1 -0.1034556961938496
2 0.6125895835435735
3 0.5851376076171718
4 -9.5231028171078841E-02
5 O.OOOOOOOOOOOOOOOOE+OO
6 O.OOOOOOOOOOOOOOOOE+OO
7 O.OOOOOOOOOOOOOOOOE+OO
8 O.OOOOOOOOOOOOOOOOE+OO
9 O.OOOOOOOOOOOOOOOOE+OO

10 O.OOOOOOOOOOOOOOOOE+OO
11 O.OOOOOOOOOOOOOOOOE+OO
12 O.OOOOOOOOOOOOOOOOE+OO
13 O.OOOOOOOOOOOOOOOOE+OO
14 O.OOOOOOOOOOOOOOOOE+OO
15 -3.5162819360725633E-07



16 -2.7820501175926814E-05
17 2.1022285424528633E-05
18 O.OOOOOOOOOOOOOOOOE+OO
19 4.0213644541039521E-05
20 -1.8484765101127162E-06
21 O.OOOOOOOOOOOOOOOOE+OO
22 -2.0443249362126583E-05
23 O.OOOOOOOOOOOOOOOOE+OO
24 O.OOOOOOOOOOOOOOOOE+OO
25 -4.4376020079184224E-06
26 -1.4911620605454200E-06
27 -2.1656789625155458E-05
28 -1.8784931246337220E-05
29 1.9042680706753014E-06
30 2.1060276832393731E-05
31 6.3516378530186342E-06
32 3.1061396201482659E-05
33 -2.3325864887009759E-05
34 -1.4493880029159903E-06


