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Abstract

Weconsider a multi-mediacall centre answeringcustomerrequestsas a queue-
ing network with priority classes. We use differential equations to analyse its
performance as the system becomes large and approaches a 'fluid limit'. We
also suggest how to approximateaverage delays using existing algorithms for
the classical M/ G/ c queueingmodel.
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6.1 Introduction

A call centre is a location employing a certain number of agents to deal with customer
queries concerning specific types of product or service. At a multi-media call centre
people submit their requests using a variety of distant communication means, such as
telephone, fax, email or the Internet. Occasionally a single round of communication
(that is, a single call) is insufficient: the operator may have to first search for an
answer to the query and then return the call.

Imagine such a busy call centre that handles numerous requests of various types
each day. A good example would be a telephone exchange that looks up domestic
and international phone numbers, facilitates telephone connections, provides infor-
mation on telephone bills, deals with customer complaints, and is engaged in net-
work trouble-shooting. The key issue is that of performance, often measured as the
amount of time that customers need to wait for service. One would like to ensure
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that all requests are dealt with by an operator within a 'reasonable' time. The term
'reasonable' will typically assume different meanings depending on the type of task
or query involved. A fax or email could take longer to process than a telephone call.
Incoming telephone calls are given priority over most other tasks; e-mails or faxes
may be interrupted in order to deal with fresh phone calls, though one would not nor-
mally interrupt an outgoing (that is, 'return') call. There may also be certain absolute
quality levels, imposed to ensure that each request be served within a specific time
limit.

In Section 6.2 of this report we construct a performance model for a multi-media
call centre. The selling is a system of servers (operators) and tasks queueing at
the servers. Given a number of operators with different skills, several request types
characterised by different arrival rates, durations, and service level requirements,
the problem is to decide the schedule and priorities so as to minimise the operating
cost in the system. The cost function can be the number of operators, their total
salary (operators able to deal with more kinds of tasks are paid more money), costs
of training operators to enable them to perform more tasks, fines paid to customers
when quality requirements are not satisfied, or a combination of all of the above. We
choose to focus solely on the mean waiting time as a function of the number and
speed of servers and task arrival rates.

In Section 6.3 we describe an alternative approach to studying the performance
of multi-media call centres, however only as a possible onset of future research. The
basis for this section is the well-known M / G/ c queueing system where, unlike in the
first model, task service times need not be exponentially distributed.

6.2 Call centre as a large queueing network

In this section we analyse a multi-media call centre as a queueing network. There
are n servers, representing people who work at the call centre. Under appropriate
scaling, let nA] be the arrival rate of phone calls; nA2 the arrival rate of faxes; nA3
the arrival rate of e-rnails, In our model the scheduler sends each arriving task to
a randomly chosen server. If there are several types of agents, each trained to deal
with only a subclass of tasks, every new request is handed over to a randomly chosen
server among those who are able to work on it.

We do not explicitly distinguish between inbound calls (that is, fresh requests and
queries) and outbound calls (calls made in response to earlier requests and queries).
The distinction is incorporated implicitly into the total serving time. It is possible
to model interruptions in service as 'pre-ernptions' by higher priority jobs, and this
is what we shall do in the sequel. We could also deal with performance issues such
as different delay requirements for different types of requests, and we could model
several different priority scheduling strategies. Here we only consider the case where
all delay requirements are the same, and in fact we do not overtly try to minimise the
delay as such; we look exclusively at the mean waiting time. We further concentrate
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on one particular scheduling strategy, described in the subsequent paragraph.
Assume that telephone calls have absolute priority over faxes and e-mails, and

faxes have absolute priority over e-mails. This means that whenever a telephone call
arrives at a server currently dealing with a fax or email, this task immediately gets
postponed ('pre-empted') while the server answers the phone call. Similarly, if a fax
arrives while a server is busy answering an email query, this job gets pre-empted, and
the agent answers the fax instead. We further suppose that arrivals of each type of
task form a Poisson process; the arrival rates are AI, A2, A3 for phone calls, faxes and
e-mails respectively. Task durations are assumed to be exponentially distributed with
means l/JLI, 1/JL2, 1/JL3 respectively.

We define the following family of random variables. Let na.il.i2.i3 be the number
of servers with at least il tasks of type a (phone calls), at least i2 tasks of type b
(faxes), at least i3 tasks of type c (e-mails), and currently busy serving a type a task.
The variables nb.il,h.i], nC,il,i2,i3 are defined similarly. Then the vector

forms a Markov process. The transitions of the process can be written down as vectors
±n-

I
ea.il.h.i3' ±n-1eb,il.i2,i3' ±n-Iec,il.h.i]' where ea.il.i2.i3 is a vector with a one in the

position corresponding to co-ordinate na,il,i"i3 and zeros everywhere else, and the
other definitions are analogous. One could write down explicitly the Kolmogorov
forward equations [5] determining the time evolution of this process. This would
in turn yield 'balance equations' (5) for the stationary distribution of the process.
However, the size of the state space increases rapidly with the number of servers,
which makes it impractical to compute this stationary distribution, even for relatively
small systems. The key problem is that the probabilities for each state include a
normalising factor which ensures that all the probabilities sum to one. As the system
grows this factor quickly becomes hard to compute efficiently.

Therefore it is useful to look at what happens in the limit as the number of servers
n tends to infinity. The parameters Ai, JLi embody the (appropriately scaled) relation
between the number of servers, their speed, and the arrival rate of tasks; varying
Ai, JLi will tell us how many servers we need in large finite systems and how fast they
should operate. The deterministic system obtained as the limit of the finite systems
as the size n tends to infinity is a 'law-of-large numbers' type of limit. Earlier work
and simulations of related models [4, 6, 7, 8, 9, 11, 12, 13] show that this sort of
approximations are quite accurate even for relatively small n.

We shall now establish limiting differential equations for the pre-emptive priority
service model outlined above. Similar equations could be obtained for other kinds of
scheduling policies. Define x = ~n, a re-scaled version of the process n. Then x is
also a Markov process, and moreover we have

Note also that Xb,il,i2,i3 = 0 whenever il > 0 and Xc,i"h,i3 = 0 whenever il > 0 or
i2 > O.
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In the limit as n ~ 00 one would expect the process x to become deterministic
and approach the solution of the system of differential equations presented below.

dXa.il.i2.i3

dt
+A2 (Xa.il.i2-I.i3 - Xa.i,.h.i3)

+A3(Xa,il,i2,i,-1 - Xa,il,i2,i3)

-ILl (Xa,iloi2.i3 - Xa,it+l,i1,i3)'

When il > 1, and i2 = ° or i3 = 0, the above is also valid, with the convention that
Xa,il,-I,i3 = xa,i"i,,-I = 1.

For il = 1, i2 > 0, the equation becomes

dXa,l,i2,i3
dt = A2(Xa,1,i,-I,il - Xa,1,i2,i3) + A3(Xa,1,i2,il-1 - Xa,I,i"i3)

-ILl (Xa,l,i2,i, - Xa,2,i2,i') + AIXb,O,i2,i3'

The term AIXb,O,i"i3 accounts for the increase in xa, !,i2,i) when there are no type a
tasks in the system, a type a task arrives, and 'pre-empts' a type b task currently
being served.

For il = 1, i2 = 0, i3 > °we have

dXa,1,O,i3

dt A3(Xa,1,O,i3-1 - Xa,I,O.i3) - ILl (Xa,I,O,il - Xa,2,O,i')

+AIXb,O,O,il + A1Xc,O,O,il'

For il = 1, i2 = i3 = ° we obtain

dxu, 1,0,0 ( ) +A +A~ = -ILl Xa,l,O.O - Xa.2.0.0 IXb.O,O.O IXc.O.O.O·

Similarly we derive equations governing the time development of the fraction of
servers busy working on type b tasks:

For i2 = 1, i3 > 0, the equation becomes

A2(Xb.0.O,il - Xb.0.l.i3) + A3(Xb,O.!,i3-1 - Xb,O,I.il)

-IL2(Xb,O.I,i3 - Xb,0,2,i.) + A2Xc,O,O.iJo

For i2 = 1, i3 = 0, we get

dXbO 1 i
•• 03_A(X -x )-11 (x -x )+AXdt - 2 b.O,O,O b.O,I.O ,.,2 b.O.I.O b.O,2,O 2 c,O,O,O'
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Finally the appropriate equations for servers busy serving type c tasks are as follows:

dXc,Q,Q,iJ

dt

In the above, we assume an infinite 'waiting room', that is no request gets lost from
the system. With this assumption the obvious stability condition is

AI A2 A3 I-+-+-< .
11-1 11-2 11-3

Equally, we could assume that the queue size at each server can be at most B for
some BEN. This would result in truncating the equations to the appropriate polytope
where the capacity constraints il +i2 +is ~ B are satisfied (arrival rates would be
zero at servers where il+ i2 + i3 = B).

The above constitutes a system of linear differential equations. A natural strategy
would be to calculate its fixed points and examine the stability of these fixed points.
This would enable one to analyse the equilibrium (stationary or long-term) behaviour
of the system. When the stability conditions are met, then each finite n-server queue-
ing system is an irreducible Markov process with a unique stationary distribution,
and converges to that distribution as time tends to infinity. (Observe that a finite ca-
pacity system is always stable.) Therefore under these conditions one would expect
the limiting differential equations to have a unique, globally attractive, fixed point.
However, this needs further theoretical study as well as computer simulations. Suit-
able ideas and techniques can be found in [2, 4, 7, 8, 9, 11, 12, 13]. Additionally it
should be possible to prove that the finite random process with n servers converges
as n tends to infinity, in a suitable sense, to the deterministic differential equations
[1,3,4,8,9,11,12,13].

Note that the mean number of customers per server in the system is given by

L il(Xa,i,-I,Q,Q - Xa,il,Q,Q) + L i2(xa,Q,i2-I,Q - xa,Q,;"Q)
il~l i2~1

+Li3(Xa,Q,Q,iJ-1 - xa,O,O.i,) +Li2(Xb,Q,i2-I,O - Xb,O,i2,O)
i3~) i2~)

+L i3 (Xb,O,O,iJ-1 - Xb,O,Q,i,) + L i3(xc,Q,Q,i,-1 - xc,Q,Q,i,)·
i3~1 i3~1

One could calculate the mean waiting time for each customer class using Little's
formula [14].

6.3 Call centre as an M / G/ c queueing system

In this section we introduce another line of research that may be pursued when mod-
elling multi-media call centres. This certainly is not an in-depth study, but rather an
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outline of some general ideas and possible direction(s) where one could expect at
least some results.

As in the previous section we concentrate on delay performance; in particular on
approximating the average delay experienced by various types of calls. At this stage
it is impossible to determine the degree to which our results are practically relevant
and contribute to a deeper understanding of the problem.

The basic building block of our analysis will be the multi -server queueing system
with Poisson inputs, also known as the M / G/ c system. Here M stands for the Poisson
arrival process, G denotes the general service time distribution, and the constant
c denotes the number of servers active (all servers are assumed identical). In the
light of earlier studies of various communication systems, the Poisson assumption (or
approximation) appears plausible. It aids the analysis considerably, if only because
dividing and combining of various customer classes (see below) makes no impact on
the nature of the arrival processes involved.

Presently we do not look at the asymptotic behaviour as the number of servers
becomes very large. We do not use differential equations to estimate call waiting
times. Instead, we suggest that the expected waiting times of calls or customers
in the system be approximated with the help of powerful algorithms contained in
Tijms [l0].

One of the key features characterising a multi-media call centre is the presence
of several different types of customers, who thus fall into different priority classes.
In particular, we shall consider an M / G/ c system with two types of customers. If
there is a need to distinguish between more than two customer types, initially several
classes may be combined into one 'multi-class'. Such a multi-class may be parti-
tioned and analysed in more detail at a later stage.

In what follows we shall assume that whenever necessary 'high priority' cus-
tomers (calls) may interrupt the service of 'low priority' customers (calls). Typically,
high priority calls correspond to service requests that come in by telephone or other
'real-time' media, such as Internet chat sessions or real-time video. Low priority
calls represent requests that do not require immediate service, since they arrive in the
form of fax or email. Both high and low priority calls are characterised by their own
Poisson arrival process and service time distribution.

6.3.1 High priority calls

Assume that a high priority call interrupts a low priority call if on its arrival all the
servers are busy and at least one low priority call is in service. Thus high priority
calls may now be regarded in complete isolation, separate from low priority calls,
since obviously low priority calls have no influence on them. This implies that we
can analyse high priority calls using the standard single-class M / G/ c model. Real
data may be used to fit in an appropriate service time distribution G. When more than
one call types together constitute the high priority class, the total service distribution
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is a mixture of the individual service time distributions. Algorithms described in
Tijms [10] should yield reasonable approximations to the expected waiting time of
high priority calls.

As an aside we note that it might be useful to include server 'vacations' (that is,
idle periods) into the model. In this way one would account for short-term variations
in the number of available servers due to coffee breaks, etc. Vacations could be
modelled as 'extra' customers of the highest priority type.

6.3.2 Low priority calls

We now outline very briefly three different approaches that may be used to analyse
low priority calls. The reader is referred to Tijms [10] for more details.

1. One possibility is to consider the standard M/ G/ c queueing system in which
the speed of each server is decreased by a factor I - />hp. Here />hp is the
stationary mean fraction of time that each server is busy serving high priority
calls (when the system is stable, then of course 0 < />hp < 1). The rationale
follows easily from the analysis of high priority calls presented in the previous
subsection. However, this is a rather crude approximation, likely to lead to
over-optimistic estimates, since it takes no account of variations in the service
rate available to low priority calls.

2. Alternatively, we could analyse low priority calls as an M/ G/ c queueing sys-
tem with vacations caused by the service of high priority calls. The main draw-
back of this approach lies in its total ignorance of the fact that vacations do not
arrive according to a Poisson process independent of the state of the queue.

3. Finally, one could try to do more justice to the individual nature of various
types of low priority calls. However, for this we need an assumption that con-
tradicts the basic assumption made in the analysis of high priority calls, namely
that high priority calls should not be allowed to interrupt low priority calls al-
ready being served. That is we now impose a non-preemptive priority service
discipline. Therefore, once again one can only hope for approximate results; in
practical situations one may decide whether the error size is satisfactory. An-
other necessary condition is that high and low priority calls must have the same
service time distribution. When this holds, then the waiting time distribution
(for both high and low priority calls) is the same as the waiting time distribu-
tion of a customer in an ordinary M/ G/ c queueing system without priorities
and with first come, first served service discipline. The arrival rate is simply
the sum of the arrival rates over all customer classes. This model will provide
approximations for EW, the expectation of the waiting time of a call whose
type is unknown. Then, by conditioning on the type of call, we obtain that

EW = Pip E"lp + />hp EWhp•

Pip + />hp Pip + />hp
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Hence, using the expression for EWhp found under the pre-ernptive resume
service regime, we get an approximate formula for E"'\p. Earlier studies of
related systems suggest that the resulting error is unlikely to be excessively
large, particularly if the system consists of many servers.
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