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Tomography

E. Cahyono, M.E. Hochstenbach, J. Moienaar,
W.H.A. Schiiders, G.M. Terra

Abstract

In oil production a lot of water is usually pumped up together with the oil. For
many reasons the reduction of the water production is a very important issue.
The method presented in this paper is meant to provide a necessary tool for
this. Most drilling wells consist of a network of bore holes. Some of them may
produce water, others oil or a mixture. At the moment the net flow of all bore
holes together is brought to the surface. It is desirable to be able to detect how
much water a specific bore hole contributes. If this amount surpasses a critical
value one could then consider to close that bore hole. This leads to the question
how the composition of the flow in a pipe can be determined in situ. In this
paper we analyze how tomography techniques, well-known from medical ap-
plications, can be applied in the case of a bore hole. These techniques allow to
measure instantaneously the mass distribution over a cross section of the pipe.
For velocity estimation, the idea is to detect the mass distributions at two neigh-
bouring cross sections at successive times. Correlating the obtained time series,
one might be able to estimate the local velocity profile. The basic idea was
already mentioned in literature before, but it was believed that the number of
correlations to be evaluated is so huge, that the approach would fail in practice.
In this paper we describe the mathematical details of the method and conclude
that the number of time consuming calculations is not necessarily a limiting
factor. In addition, suggestions are made to facilitate the use of tomography for
velocity estimation.

Keywords

Velocity estimation in two-phase flow, oil well management, electrical
impedance tomography.



SWI2000 Velocity Estimation in Mixtures using Tomography

1.1 Introduction

In oil production plants a lot of water is brought to the earth's surface, together with
the oil. There are several reasons to avoid this as much as possible. Since one is only
interested in oil, this has to be extracted from the mixture. The remaining water is
still polluted, so it can not be dumped into the environment. Moreover, one is not
allowed to extract too much water from the soil.

Therefore it is worthwhile to apply techniques to reduce the amount of water that
is pumped up. One of these techniques is to use 'intelligent wells'. In fact, most wells
consist of many subbranches. The key idea is to shut off a branch as soon as it starts to
produce too much water. This strategy can be applied only if one is able to determine
which branches produce mainly water. Hence one has to measure in situ the flow
of water and oil through the pipelines separately. There are no satisfactory methods
to do so yet. It is possible to measure the total flow in situ, and, of course, one can
determine the fractions of oil and water at the surface, but one can not measure the
flows of oil and water in situ separately.

This paper deals with a method which might overcome this problem by using
electrical impedance tomography [21. Measuring cross-sectional distributions of oil
and water at two separate cross sections and looking at the correlations between these
two distribution in time, one could estimate the velocity distribution in the pipe (see
[3]). By coupling the information about the distributions of the fluid's components
and the velocity distribution, the fluxes of water and oil can be determined separately.

The problem with this method, posed to us during the study group, lies in the
number of correlations that have to be calculated in real time. This number was
thought to scale with L8 where L is the number' of electrodes used in the tomo-
graphic device. This would be too time consuming for the computer power that can
be installed. One should bear in mind that the computer must work under very ex-
treme conditions underground. Moreover, it is not possible to send the information
to the surface to perform the computations there. Therefore we were asked to think
about a way to reduce the number of calculations that have to be done.

In fact, our main contribution to the solution of this problem is that we dispute the
scaling with L8• We claim that the number of independent correlations scales with
L4• This is an enormous reduction in practice since the available computers may then
deal with this problem in real time.

This paper is organized as follows. Section 1.2 deals with tomography. First,
a mathematical model describing the situation, is introduced in Subsection 1.2.1.
The ideas behind tomography are explained in Subsection 1.2.2, followed by a one-
dimensional example in Subsection 1.2.3. Next, an efficient way to solve the tomo-
graphic problem is given in subsections 1.2.4 and 1.2.5. The subsequent section deals
with the method used to derive estimates for the velocity distribution by correlating
between two tomographic cross sections. In Section 1.4, our claim that the number of

"Iypically L '" 32.
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calculations scales with L4 is justified. Finally, conclusions are given in Section 1.5.
An appendix is included to describe a reformulation of the correlations, which could
be useful to reduce calculation times further.

1.2 Tomography

This section deals with electrical impedance tomography. A mathematical model
describing the setup, is given in Subsection 1.2.l. Subsection 1.2.2 explains the
idea behind the tomography after which a one-dimensional example is discussed in
Subsection 1.2.3. Subsection 1.2.4 deals with a way to describe the cross-sectional
conductivity distribution. This is used in Subsection 1.2.5 describing a particular
method for solving the tomographic problem.

1.2.1 The mathematical model

In Figure 1.1, the cross section of a pipe with area n and boundary an is sketched.
The pipe contains a mixture of water and oil. We would like to use information
obtained at the boundary an to approximate the distribution of the fluids in n. To
this end, L electrodes ei are attached to the boundary I = 1, ... , L. Applying currents
to the electrodes and measuring the resulting voltages at other electrodes, we obtain
data. In the following we briefly discuss a mathematical model which allows us to
estimate the oil and water distribution in n from these data.

an

electrode

gap

Figure 1.1: A cross section of the pipe
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The electric potential or voltage u(x) in n is governed by the equation

v· (y(x, w)Vu(x» = o. (1.1)

Here x is a point in n, y is the electric admittivity given by y(x, w) = a(x, w) +
iWE(x, w), where a is the electric conductivity, E is the electric permittivity and t» is
the angular frequency of the applied current. Note that the estimation procedure is in-
dependent of the value of ea. In fact, we consider the frequency as a fixed given quan-
tity, determined by the apparatus. Equation (1.1) can be obtained from Maxwell's
equations, see [2]. Note that the current density is given by j = -yVu (local Ohm's
law).

During the measurement one could apply currents on the electrodes and measure
the resulting voitages, or, the other way around, apply voltages and measure the
currents. In practice, the first approach is followed. The boundary conditions are
determined by the currents which produce a current density on each electrode. The
integral of this current density over the electrode is equal to the total current that
flows through the electrode. Hence, we have

1 8u
Y -8 ds = I1

</ V

I = I, ... ,L, (1.2)

where I1 is the (inward) current through the electrode el and fv is the derivative taken
along the outward normal. Through the gaps between the electrodes there is no
current, so there we have

y8u =0.
8v

On the boundary, we have to take into account the electro-chemical effect that
takes place at the contact between the electrodes and the fluids. There, the formation
of a thin, highly resistive layer is observed. The impedance of this layer at electrode
e, is denoted by (,/.The boundary condition on electrode el reads as

(1.3)

8u
u+zIY- = VIav l=I, ... ,L. (1.4)

z/ is called the effective contact impedance or surface impedance.
Since the total amount of charge in the system remains conserved, it holds that

(1.5)

The ground potential is chosen such that

(1.6)
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1.2.2 The idea behind tomography

This section deals with the principles of electrical impedance tomography. The setup
described in the previous section is used to determine the composition ofthe material
in the area n. Summarizing Section l.2.1 we have the following equations for the
voltage u in the cross section n:

'V·a'Vu 0 in n,
au

VI on electrode ei for I = I, ... , L,u+Zla-
avf au

(1.7)
a-ds II for 1= 1, ... , L,

,/ av
au

0 through the gaps,a-
av

together with the calibration L~=IVI = 0 and mass conservation L~=III = O.Note
that the (complex-valued) admittivity y has been replaced by the (real-valued) con-
ductivity a for simplicity. Like in 12], we consider only the problem of approximating
the conductivity a. Existence and uniqueness of the solution u, given the currents II
and the conductivity distribution o'(x), have been proved in [l ]. This yields the po-
tential distribution u(x) and the voitages VI on the electrodes. In case of tomography
we would like to do it the other way around. We apply currents It. measure the volt-
ages Vt. and from this we try to determine the distribution o (x). In fact, the potential
distribution u(x) itself is not of interest here. Only the voltages VI at the electrodes
are used eventually to find the conductivity distribution a(x).

For this purpose, L - 1 independent current patterns are applied, specifying
the currents II for I = 1,2, ... , L such that the condition L~=III = 0 holds,
and the resulting voltages VI, for I = 1, 2, ... ,L, are measured. These patterns
will be denoted by Ik = (I~, I;, ... ,ID, with corresponding measured voltages
Vk = (V1

k, V;, ... , VZ), for k = 1,2, ... , L - l. By way of illustration, suppose
that current pattern Ik has positive (inward) current I~ through electrode k which
flows outward through the opposite electrode. Other patterns are linearly dependent
on these ones. Because the model (1.7) is linear in u(x), VI and It. those patterns do
not provide additional information. Because of the choice of ground potential (the
condition L~=IVl

k = 0), the number of independent measurements per current pat-
tern is L - 1. However, the total number of independent measurements is even less
than (L - 1)2. Due to the symmetry under changing the direction of the currents,
the number of independent measurements is L(L - 1) /2, which is the number of de-
grees of freedom in a symmetric (L - 1) x (L - I) matrix. Intuitively, this is because
powering up electrode k and measuring at electrode I yields the same information as
powering up electrode I and measuring at electrode k.

Given a conductivity distribution o'(x), for each current pattern Ik, with k =
1,2, ... , L - 1, the model (l.7) can be solved in principal, usually numerically. In
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eg

Figure 1.2: A sketch illustrating the sensing areas between e2-eS and between ere7

particular, the corresponding voltages at the electrodes are calculated. We denote
these calculated voltages by Uk(a). Just like the measured voltages v'. each Uk(a)
is itself a vector of voltages at all of the electrodes. Furthermore, it depends on the
conductivity distribution o'(x). The aim of tomography is to find the distribution a(x)
for which the measured voltages V/k and the calculated voltages Ut(a) agree best.
Note that the conductivity distribution is assumed to be constant on the timescale of
the tomography. The tomographic intersection is considered to be a 'snapshot' of the
fluid's composition at a certain time. This can be done because it is possible to switch
between the different current patterns very fast electronically; adaptation to (1.7) is
almost instantaneously.

Many algorithms have been proposed for reconstructing the distribution a from
the measured voltages v}. An extensive list of methods and references can be found
in [2, page 90]. For example, the linear backprojection method assumes that the
measurement of the voltage at one electrode when powering up another depends only
on the material inside a so-called "sensing area" from the former electrode to the
latter, as illustrated in Figure 1.2. Such a sensing area exists for every combination
of two electrodes, hence there are L(L - 1)/2 of them. Note that this is the same as
the previously mentioned number of independent measurements. The intersections of
these areas lead to a mesh naturally. A linear formula is used to calculate the values of
a on this mesh from the measurements. This method is fast, but crude. In particular,
because there are much more mesh cells (one for each intersection of two sensing
areas) than independent measurements, these values of a can not be independent;
there must be relationships between the various values.

Another method is the Noser algorithm, which is discussed in Section 1.2.5.
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1.2.3 A one-dimensional example

To get a better understanding of the mathematical model given in Section 1.2.1 and
the ideas in the previous section, we shall work out the one-dimensional case in detail.
We take for n the interval [-1, 1], and for simplicity, we consider only the problem
of reconstructing conductivity a in case of vanishing surface impedance, so z, = 0
for I = 1,2 and vanishing permittivity E. Hence, equations (1.1), (1.2), (1.4), (1.5)
and (1.6) become

ax (a (x) axu(x» = 0, (1.8)

a(-l) aul = -/1, a(l) aul = h, (1.9)
ax x=-I ax x=1

u(-l) = VI, u(1) = V2, (1.10)

I1 + h = 0, (1.11)

VI + V2 = 0, (1.12)

respectively. Note that the derivatives in (1.2) are taken along the outward normal.
This leads to the minus sign in the first equation in (l.9).

We remark that equations (1.8)-(1.12) are linear in u, /1, Ii, VI and V2• Further-
more, from (1.11) and (1.12) it directly follows that h and V2 are not independent
from I1 and VI. The one-dimensional system is in fact a highly reduced case since
only one independent measurement is available. One can set the value of I1 and
measure the resulting VI value. This can be done at most once, since all other mea-
surements do not yield extra information for the estimation of a. The number of in-
dependent measurements to be used in the estimation is called the number of degrees
of freedom of the system. This concept is more interesting in the two-dimensional
case and is discussed in more detail in other sections. In this terminology, the one-
dimensional case has one degree of freedom. This implies that if a(x) is expanded
in a power series or a Fourier series on the interval [-1, 1],only one coefficient of
such a series can be estimated. Let us, for purpose of illustration, approximate a(x)
by the constant ao, ao =1= O. Then from (1.8) we find that

u(x) =ax+b (1.13)

for some constants a and b. From (1.9) we obtain that a = -IJao and by combin-
ing (1.10), (1.12) and (1.13) we conclude that b = O. So,

-/1
u(x) = -x. (1.14)

ao

Evaluation at x = 1 yields for ao the estimate

(1.15)

which is just Ohm's law.
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1.2.4 Representation of the conductivity

For given conductivity a, the tomography model embodied in equations (1.1)-(1.6) is
linear in the electric potential u, the measured values of the currents 1" and potentials
V, of the boundary. It can be concluded (see [2] or Section 1.2.2) that for a system
with L electrodes, at most L(L - 1)/2 linearly independent measurements are avail-
able. These 'degrees of freedom' can be used to fit the distribution a over the cross
section by means of a fitting function that contains at most L(L - 1)/2 parameters.
A convenient approach is to expand a(t, x) in terms of a set of basis functions Ri,
i = 1, ... , N, with N ::::L(L - 1)/2, which are defined on the cross section. The
estimate a for a is written as

N

aCt, x) = Lai(t)Bi(x) .
i=]

(1.16)

Note that the spatial dependence of a is represented via the basis functions Ri,
whereas the time dependence is included in the coefficients a..

It is advantageous to take the B, orthonorma1, i.e.

(Bi, Bj) := f Bi(x) Blx) dx = ~ij ,

cross section

(1.17)

with Qi.j the Kronecker delta, which is non-vanishing only if i = j. Then, it holds that
the a, simply follow from the inner product

ai(t) = (a, Bi) = f aCt, x)Bi(x) dx .

cross section

(1.18)

For the B, several choices are possible. Natural candidates are obtained by di-
viding the cross section into N disjunct cells with areas Ai, i= 1, ... , N. The basis
functions could then be defined as

{
I, x E cell i

Bi(x) = o , x rf.cell i
(1.19)

Note that these basis functions are othogonal but not orthonorrnal. For this choice
the coefficients a, have a clear geometrical interpretation:

ai(t) = ~i f ait ;x) dx ,
cell i

(1.20)

so ai(t) is the average value of a over cell i at time t. In this case the continuous
function aCt, x) is approximated by N discrete levels.
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If the cross section is the unit square, an alternative choice for the B, is to make
use of Fourier basis functions (x = (x, y), n, m = 0,1,2, ... )

cos(2rrnx) cos(2rrmy),

cos(2rrnx) sin(2rrmy),

sin(2rrnx) cos(2rrmy),

sin(2rrnx) sin(2rrmy).

(1.21 )

These functions form an orthogonal set with respect to the inner product introduced
in (1.17) and can be easily normalized. For a cylindrical cross section it would be
natural to use as basic functions products of Besse1 functions and harmonics. In both
cases the coefficients a, do not represent the amplitude of a around a specific location,
but measure the relative strength of the 'modes', i.e. the basis functions. Since the
specific choice of the B, is not a central issue of this project we do not work out this
aspect in detail.

An important aspect to mention is the smoothness of the representation. If use
is made of (1.19), the a distribution is discretized using N cells. Plotting this dis-
continuous estimate of a, we obtain a non-smooth plot. On the contrary, represen-
tation (1.21) is a continuous function over the cross section and the corresponding
plot will look much more reliable. Smooth basis functions like the ones in (1.21)
always lead to a smooth visualization. However, this does not necessarily imply that
the accuracy is higher than that of a discontinuous representation. In the two exam-
ples given here the local basis functions (1.19) are discontinuous, whereas the global
basis functions (1.21) are continuous. This need not be the case in general. It is also
possible to choose localized smooth functions as well as discontinuous global basis
functions.

1.2.5 The Noser Algorithm and extensions

In this section we discuss a specific tomography method, the Noser algorithm, and
some generalizations and modifications. We have already seen in Section 1.2.2 that
we have L(L - 1)/2 degrees of freedom, the independent measurements. We can
recover at most L(L - 1)/2 degrees of freedom of a.

In general it may be wise to recover less degrees of freedom, say N ~ L(L - 1)/2,
to reduce the influence of 'noise' (such as measurement and rounding errors) in the
model. The idea is to approximate a by a linear combination of N basisfunctions.
A simple choice is to split up the domain, and take the indicator functions on mesh
elements as basisfunctions. Then the approximation to a will be a piecewise constant
function, constant on each mesh element. These constants can be thought of as the
average of a on the mesh elements. But we may also consider more sophisticated
systems of basisfunctions, see Section 1.2.4.

Once we have chosen our N basisfunctions, we would like to find an approx-
imation a := (at, a2, ... , aN), such that the corresponding voltage patterns ut (a),
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U2(a), ... , UL-I(a) agree with the measured ones Y:= rv'. y2, ... , yL-I) as much
as possible". For this goal, we want to minimize the least-squares functional

L-I

E(a) =L IIU*(a) - Y*1I2.
k=1

Differentiating with respect to the n-th component of a, and setting the derivative
equal to zero we obtain the condition

These N nonlinear equations are summarized as

f(a, Y) = 0,

So, a implicitly depends on the measurements y. Suppose that we start with a(O) as
an initial guess. The model then provides us with U(a(O» and DuU(a(O» (where the
D denotes the total derivative). If our measurements were y(O) := U(a(O», then a(O)

would be a solution, but in general Y 1:- y(O).

The Implicit Function Theorem states that if Du f(a(O), y(O» is invertible, then, in
a neighborhood of (a(O), y(O», there exists for all Y a unique a such that f (a, Y) = o.
This defines a function ({J:

a = ({J(Y), ({J: jRL(L-I)/2 ~ jRN.

Moreover, the Implicit Function Theorem gives that

A Taylor expansion of ({J around y(O) gives

a = a(O) + D({J(Y(O»(y - y(O» + higher order terms.

Neglecting the higher order terms we obtain a new approximation a(1):

(1.22)

Compare this with a Newton step applied to the function f, to find a given the mea-
surements Y:

2Note that, with a slight abuse of notation a is used to denote the vector of amplitudes aj(t) in this
section.

(1.23)

10



Velocity Estimation in Mixtures using Tomography SWI2000

It can be shown that when we linearize (1.23) around the point V(O), we get ex-
actly (1.22). For this reason, we call (1.22) a Newton step as well. When we take
for the initial guess a(O) a uniform conductivity in (1.22), we get the Noser algo-
rithm. This method has the advantage that (D"f(a(O), V(O»rl

. Dvf(a(O), V(O» can
be computed (and stored) beforehand.

So, the Noser algorithm is in fact the first step of the following Newton algorithm:

Input: an initial guess a(O) and a number of steps K
Outp.;t: an (hopefully better) approximation a(K)

For s = 0, ... , K - 1 do
1. a(s+I) = a(s) - (D"f(a(S), V(S»rl. Dvf(a(s), V(s». (V - yts»~
2. Compute U(a(s+I» and D"U(a(s+l) from the model

Newton's method to approximate a.

In the first step of this algorithm,

(1.24)

looks troublesome. However, it may not be prohibitively expensive, considering the
following remarks:

1. Suppose that we would like to compute x:= (D"f(a(S), V(S»rl y for a vector
y. Instead of computing (D" f(a(s), V(S») -I, and multiplying y by this matrix,
it is in general much cheaper to solve the linear system D" f(a(s), V(s»x = y.
Numerical linear algebra provides us with a number of different approaches
to solve this system. Which method is best depends on the properties of the
system. It may also be solved approximately, the resulting method is called an
inexact Newton method.

2. Instead of using (D"f(a(S), V(S»rl . Dvf(a(s), yts»~ each step, we may also
try cheaper (Newton) variants of the form a(s+l) = a(s) - M . (V - yts»~. For
example, M may be taken (D"f(a(O), V(O»rl . Dvf(a(O), V(O» all the time,
or updated cheaply (e.g. Broyden's method). Another idea is to approximate
both Jacobians (e.g. by finite-difference Newton) or only one of them.

In conclusion, when we have reasonable approximations to the Jacobians (Step 1
of the algorithm), and when the model computations (Step 2 of the algorithm) are
not too expensive, it may be worthwile to repeat Newton to get better tomographic
approximations.

11



SWI 2000 Velocity Estimation in Mixtures using Tomography

A B

i
Figure 1.3: The experimental set-up consisting of a pipe and two tomographic sec-

tions

1.3 Velocity estimation

This section describes how results from two tomographic sections can be used to
determine velocities of the fluids inside a pipe. In Subsection 1.3.1 the correlations
are defined. Subsection 1.3.2 explains the estimation of the fluids' velocities using
these correlations.

1.3.1 Correlations

The measurement device to be developed consists of two tomography units at a dis-
tance e along the tube. Each unit yields an estimate for the conductivity profile over
a cross section of the tube. The situation is sketched in Figure 1.3. The measure-
ments and the analysis involved are performed at equidistant times tk = to + k . t<,.t
for some time interval t<,.t. We assume that t<,.t is small with respect to the timescale
of fluctuations in the conductivity a. Although estimated conductivity profiles are
available at discrete time points t» reliable estimates for the profiles at intermediate
times can be obtained by interpolating if t<,.t is small enough. So, in the following
we consider these profiles to be available for all times t. We will discern between the
data obtained from the two tomography units by superscripts A and B.

As estimates for the expansion of the conductivity profiles aA(t, x) and aB(t, x)
we use (1.16) with basis functions (1.19). This choice is not necessary, but it is made
for clarity. For other choices of base functions essentially the same can be done. The
interpretation however, is not immediately clear then. The measurements thus yield
per grid ceJl i the averaged conductivities af(t) and af(t), i = 1, ... , N. We scale
the conductivity such that 0 ::::a, ::::I, with a = 0 corresponding to only water in
cell i and a = 1 to only oil. Intermediate values of a, then represent the ratio of the
volume fractions of water and oil in cell i. The basic idea of the present approach is
to estimate the velocities of water and oil from correlating the time series af (t) and
a7(t). If there is a strong correlation between af(t) and a7(t + Lij) for some time
interval Ljj, it may be concluded that most of the flux through cell i of cross section
A has arrived at cell j of cross section B after a time interval Ljj. Since the distance
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between these cells is known, this leads to an estimate for the velocity of this part of
the volume flux. To calculate such a correlation reliably we have to average over a
time window, say T. This interval should be such that the direction and intensity of
the average velocity in cell i of cross section A does not vary much. On the other
hand, T should be such long that the composition of this flux changes over this time
interval, since otherwise no correlation at all can be detected. As for the notation we
use the following conventions.

For the average:
t

(at(t») = ~ f at(t') dt'
e-r

(1.25)

and for the variance

var(at(t» = «at(t»2) - (at(t»)2, (1.26)

with similar notation for aB. The correlation Cij between at(t) and aj(t + r) is
defined as

{(at(t) - (at(t))) (aj(t + r) - (aj(t + r))))
Cij(t, r) = (1.27)

Jvar(a~(t» var(aj(t + r)

Since both j and j run over N values, the number of correlations to be calculated is
given by N2 = L2(L - 1)2/4. This number thus scales with L4, not with L8 as was
thought for a long time; see also Section 1.4.

From the definition of correlation it follows that -1 :::Cij ::: 1. If the correla-
tion between two signals equals one, this indicates that they vary in an identical way
around their successive averages. The levels of the averages themselves are not rele-
vant and there is also some freedom in the amplitudes of the fluctuations: two signals
that fluctuate similarly apart from a multiplicative positive factor also yield a corre-
lation equal to one. If the correlation equals zero, this indicates that the signals have
nothing in common. They probably stem from completely independent sources. A
correlation equal to minus one indicates that the fluctuations of the signals are similar
apart from a negative multiplicative factor.

The correlations Cij in (1.27) are expected to be non-negative in view of the
physics of the system. If most of the flux through cell i of cross section A hits cell j
of cross section B, Cij will be close to one. If nothing of the flux through cell i hits cell
i.Cij will be close to zero. If a negative value for Cij is calculated, the corresponding
correlation must be spurious and then it is better to correct this by setting Cij equal to
zero.

1.3.2 Velocity estimation

In equation (1.27) we defined the delay r to take into account that it takes some time
for the flow to travel from cross section A to cross section B. This time will depend
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on the local velocity at cell i of cross section A. The best estimate for r, for mass
transport from cell i to cell j, follows from

fij(t) = value of r for which Cij(t, f) is maximal. (1.28)

In practice it is neither possible nor necessary to scan all positive r values, since
the maximum speed of the flow is limited. If no fraction of the flux through cell j
hits cell j the value of Cij(t, f) will in theory vanish for all r, and fij is undefined.
In practice, the correlation will be very small in this case. Then, it suffices to set the
corresponding velocity Vij, defined underneath in (1.33), at zero, instead of apply-
ing (1.33) itself. Moreover note that, for determining fiAt) from (1.28), it is possible
to use

Cij(t, f) = ~ it a~(t') aJ(t' + f) dt'
t-T

(1.29)

instead of Cij, assuming that the flow regime does not change considerably on
the timescale related to r, i.e. that (af(t + f)) ~ (af(t)) and var(af(t + f)) ~
var(af(t))·

The flow is assumed to be such that all material passing cross section A passes
cross section B after a short while. If we would take the correlation Cij(t, fij) with Lij
determined by (1.28) as a measure for the fraction of the flux through cell j hitting
cell i. this would imply that

N

L:>ij=l.
j=l

(1.30)

In practice this condition will never be met, but one will find

N

L:>ij=di t= 1.
j=l

(1.31)

In order to correct for possible inaccuracies of the method, we normalize the Cij by

C"- IJ
Cij = di ' (1.32)

so that (1.30) is satisfied for the Cij.

From Lij we can find an estimate for the velocity of the fraction of the flux through
cell j hitting cell j. We are interested in the component vij parallel to the pipe axis.
This component is estimated by

(1.33)

14



Velocity Estimation in Mixtures using Tomography SWI2000

The average axial velocity Vi of the flux through cell i is obtained by taking into
account the velocities of all its fractions. This leads to

N

Vi(t) = L cij(t) Vi/t) .
j=1

(1.34)

The average velocity of the oil through cross section A in the time window (t - T, r)
is then given by

N

Voil(t) =L (a~(t)) Vi(t).
i=1

(1.35)

For the water component we find

N

VWalCr(t) = L(1 - (a~(t)}) Vi(t) .
i=1

(1.36)

Note that the formulae provided here can not be found explicitly in the literature
(e.g., cf. [3]).

1.4 Scaling of the number of correlations

As was already mentioned above, the main problem in applying tomography methods
to velocity estimation was believed to be the number of correlations that have to
be calculated. This number was thought to scale with L 8• The reasoning for this
stems from the popularity of the linear backprojection method, explained in the last
paragraph of Section 1.2.2. It calculates the values of the conductivity a on the
mesh arising from intersecting so-called "sensing areas". Because there are N :=
L(L - 1)/2 sensing areas, the number of mesh cells is N (N - 1)/2, which is of order
L4• Because correlations have to be calculated between all mesh cell in tomography
unit A and all mesh cells in B, the number of correlations is the square of the number
of mesh cells, hence of order L8•

However, as was discussed in the previous sections, the number of degrees of
freedom plays an important role. Because the number of independent measurements
per tomography unit is L(L - 1)/2, it is not possible to recover more than L(L - 1)/2
independent values of a. Apparently, many of the values of a at the mesh cells
calculated by the linear backprojection method are interdependent. For the Noser
algorithm discussed in Section l.2.5, it is very clear that no more than L(L - 1)/2
independent components of a are found. This means that the number of independent
correlations that have to be calculated is no more L2(L - 1)2/4, which is of order L4.

This is a dramatic reduction in comparison to the L8-scaling. In fact, it renders the
problem tractable in real time.
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1.5 Conclusions and discussion

In this paper we considered estimating velocities in multiphase flow using tomo-
graphy methods. In its most general selling, the velocity estimation problem is very
hard and possibly fundamentally unsolvable. For example, if the flow reverses its di-
rection in the vicinity of the measurement device, the estimation procedure outlined
in this paper, fails. However, in practice the situaton will not be that bad; it is to be
expected that under standard conditions the estimation yields reliable results.

The idea of applying tomography methods in this context is not new, but the ap-
proach was esteemed to be too time-consuming. We were asked to reduce the num-
ber of necessary calculations. This number is practically determined by the number
of correlations to be evaluated between signals from different regions of two neigh-
bouring cross sections. This number was thought to scale with L8, where L is the
number of electrodes in the tomographic device. It was known how to reduce this
to a L4-scaling in case of using linear reconstruction methods, such as the linear
backprojection method. However, this method is too crude to acquire the needed
accuracy. We wcre asked to make the reduction work also for other, nonlinear recon-
struction methods. In fact, Appendix 1.6 reflects our work on this problem. However,
we reached the far more interesting conclusion that the number of essentially differ-
ent correlations always scales with L4, and that the L8-scaling is based on a wrong
insight.

Effectively, this amounts to noting that there must be very many dependencies
between the 0(L8) correlations that were thought to be required. Using the linear
backprojection method, one implicitly introduces many more (dependent) correla-
tions. By using the Noser algorithm (Section 1.2.5) these dependent correlations are
eliminated in a natural way, leading to 0(L4) correlations. This solves the problem
that was posed to us, because 0(L4) is the best we can get without losing information,

Although the present findings make the the application of tomography methods a
real option in oil well management, several problems still have to be overcome if the
method is to be implemented in practice. For example, the calculations depend quite
strongly on separation of timescales. The flowregime should not change much on the
timescalc T (see Section 1.3.1) over which the correlations are calculated. Neverthe-
less this timescale T must be large compared to the timelag L to travel from cross
section A to B. Several of such conflicting assumptions are to be made. Secondly,
this method will not only measure the velocity of the fluid. Correlations caused by
travelling and standing waves will also be found. The wave speed of travelling waves
can not be distinguished from the velocity of the fluid itself by this method.

These and other considerations make clear that further research is still necessary
in order to develop a robust tool for velocity estimation in two-phase flow based on
tomography techniques.
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1.6 Appendix: Efficient evaluation of correlations

This appendix deals with a method by which the number of correlations could be
reduced if the reasoning leading to the scaling L8 were true. The idea is to express
the correlations between timeseries of a in terms of timeseries of the measured volt-
ages V,k. Because the number of independent measurements is L( L - 1)/2 per tomo-
graphy unit, whereas the number of timeseries of a would be of order L4, this would
amount to the required reduction. However, according to the reasoning we adhere to,
the number of independent measurements is the same as the number of independent
timeseries of a. Hence, no reduction is obtained, nor is it needed anymore. Never-
theless, this appendix is included, if only because we have devoted so much time to
it. Here a method is proposed to calculate the correlations between the timeseries of
a at the mesh cells indirectly. The idea is that these correlations between time series
of a at sections A and B can be found from the correlations between the measured
voltages at the electrodes. This could overcome the problem that the number of corre-
lations that have to be calculated is too large (of order L8) for the available computer
power. Although in Section 1.4 the scaling L8 is disputed, we still think this method
is interesting by itself. It can be demonstrated most clearly for linear reconstruc-
tion methods. In this appendix the reasoning leading to the scaling L8 is assumed
to be correct. Note that this is important only when commenting on the number of
necessary calculations.

Suppose that we use a linear reconstruction map, for example

As in Section 1.2.5 the o-values at the mesh cells are represented as components of
an N-dimensional vector. The matrix M has dimensions N x L. Moreover, u(O) is
some known distribution, e.g. the uniform distribution. Indeed one could define all
parameters relative to this reference state, in which case the equation would read

u= -M· V. (1.37)

We are interested in the correlations, see equation (1.29). Due to equation (1.37),
i.e. U; = - Lm M;mVm (note that this is an abuse of notation: Vm denotes V,k and m
indexes all L(L - 1)/2 independent measurements), it can be written as

! 1./ uA(t') UB(t' + r) dt'
T /-T I J

Lm.n M;mMjn t LT v~(t') VnB(t' + r) dt'.
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Note that at each cross section the same (precomputed) matrix M is used. This is jus-
tified by the fact that the shape of the cross sections is the same (usually circular). So
it is possible to calculate the correlations for the measurements V only, and from this
we can find the correlations between the values of a in the cells by a simple linear
expression. Because the number of cells is the square of the number of indepen-
dent measurements according to "standard reasoning", this amounts to a reduction of
computational work that has to be done.

Applying the Noser algorithm, discussed in Section 1.2.5, each step is linear
in V. Although the resulting distribution a(K) after some number K of steps, depends
nonlinearly on the measured voltages V, this linearity of each single step can be used
again to express the correlation for the cells in terms of those for the measurements.
In fact, using the definition (1.24), the recursive formula in the algorithm becomes
a(s+l) = a(5) -" M(5)(V - V(s»). Therefore the correlations can be updated each

I i ~m lm m m
step using the following formula:

C(s+l) (t r)
I) ,

1 ft= T a['+l),A(t') a~S+I).B(t' + r) dt'
t-T

Note that this formula allows us to update the correlations one step in advance. One
does not need to find a(5+1) in order to calculate the correlations c;;+l). However,
this does not reduce the number of correlations because the matrices M(5) have to
be included as they depend on time through a(5) and V(5). Only if a constant matrix
M would be used, as was proposed at the end of Section 1.2.5, this formula results
in a linear expression for the correlations between cells in terms of the correlations
between voltages. Moreover, in that case, all correlations c;;> can be expressed in
terms of correlations between the measured voltages, because the a-distributions in
the second and third terms in the righthand side of equation (1.38) can be eliminated,
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using

s
a~S) = a~O) - L L Mim(Vm - V~-l»)

r=l m

and the fact that a~O) can be omitted because it is constant. Of course, this also
increases the number of correlations that have to be calculated, but only linearly in the
number of steps s. Nevertheless, equation (1.38) reduces the number of correlations
that have to be calculated as soon as the matrices M(s) can be kept out of the integrals
because at least one of the a-distributions has been replaced by voltages.
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