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Abstract

We investigate the effect of mechanical strain on the frequency of an electronic oscillator em-
bedded in an integrated circuit. This analysis is aimed at explaining a 1% inaccuracy in the
oscillator frequency under test conditions prescribed by a leading supplier of semi-conductor
devices. During the test the package containing the oscillator was clamped to a circuit board
by mechanical pressure. By considering the nature of the oscillator we show that tensile strains
of the order of 10−4 could explain the observations via the piezoresistance effect. Both a simple
one-dimensional analysis based on the beam equation and an elastic finite element simulation
show that strains of this magnitude can be generated during the test.
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1 Introduction

Silicon chips, or Integrated Circuits (ICs), perform the underlying functions of most modern
electronic devices. These miniature circuit boards consist of millions of electronic devices such
as transistors, capacitors, resistors and diodes. During manufacturing, the components in ICs
are built up and connected together in layers on the surface of a silicon substrate, known as a
die, via etching, deposition and photo-lithography [1]. The die are then moulded into a plastic
case, which we refer to as a package.

Chips are typically tested before being sold and may be moved mechanically between a variety
of test sites. During testing, a downward force of the order of 100 N is exerted on the chip to
ensure good electrical contact. A particular chip manufactured by a leading semi-conductor
supplier (who we refer to simply as “the supplier”), contains an oscillator circuit whose frequency
must reach a ±1% accuracy specification over a temperature range of −40 to +105◦C and 100%
of the chips are tested. However, the supplier observed that the loads experienced by the chip
could lead to significant errors in the accuracy of the oscillator circuit, possibly due to some
sort of piezo effect.

In this paper we investigate how a vertical load placed on such a chip might result in errors in
the oscillator frequency. This problem was presented at the 70th European Study Group with
Industry (ESGI), hosted by MACSI at the University of Limerick in 2009, funded by the Science
Foundation Ireland mathematics initiative grant. In Section 2 we give a detailed description
of the problem including the structure of the package, the test-rig set-up, data concerning the
frequency response to loading and how the chips are “trimmed” to the required frequency. We
describe in Section 3 how the key components in the oscillator circuit, namely capacitors and
resistors, might affect the oscillator frequency when subjected to a vertical load. In Section 4
we discuss mechanical modelling of the elastic response of the package to loading using the
beam equation and finite element elasticity calculations. Finally we summarise our results in
Section 5.

2 Detailed Problem Description and Data

2.1 Package Design

Due to commercial sensitivity, details of the specific package and chip design cannot be pre-
sented in this paper. A sketch of the package is illustrated in Figure 1(a). There are two die
in each package, one of which is smaller and sits on top of the larger (see Figure 1(b)). These
are placed on a copper base known as the lead frame. The three layers are aligned at their
centres and attached using epoxy adhesives. There are 8 contacts along each side of the base
of the package that are connected to the die via small wires. The die, lead frame, contacts and
connections are moulded into a plastic case.
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Figure 1: (a) Sketch of the base of the package (not to scale) illustrating the lead frame and
contact positions. The relative positions inside the package of the top and bottom die (dashed
boxes) and the oscillator circuit (shaded grey box) are indicated. (b) Cross-section of the
package (larger scale than (a)). Again the positions of the lead frame, contacts and the top
and bottom die are marked. The epoxy glues are also labelled. (c) Photo of the base of the
test-rig in which the package is placed during testing. (d) Magnification of the socket in which
the package is placed and the electrical contact pins on which it sits.

2.2 Test Rig Set-Up

During testing, each package is transported between test sites (see Figure 1(c)) using a me-
chanical test rig arm. This device places a small cylindrical nozzle on top of each package and
then applies a suction force to attach the package to the arm before it is relocated. In each
test, an individual package is placed in a plastic well on the test circuit board, where it rests
on top of a set of copper pins that connect with the contacts on the base of the package (see
Figure 1(d)). There are three pins positioned slightly off centre that contact the lead frame
and one for each of the contacts around the edge of the package. The test rig arm exerts a
vertical force on the package to ensure good electric contact, but the magnitude of this force is
not known accurately and varies between different test rigs.

2.3 Problems with Frequency Response Due to Loading

As stated, the oscillator circuit in the chip must oscillate at a frequency of 128 kHz with a
±1% tolerance. However the supplier found that this error could not be reduced below 1.5%,
which they suspected was due to the loads placed on the chip. This was confirmed using a
hand test rig consisting of the standard test rig base and a locking top that applies a vertical

32



% Frequency Change vs. Applied Mass

%
F
re

q
u
en

cy
C

h
an

ge

Force (kg equivalent)

Figure 2: Data recorded by Analog Devices relating percentage change in frequency to applied
mass (i.e. the load placed on top of the package). A decreasing linear response is observed.
Note that a load of the order of 100 N (i.e. 10 kg) causes approximately a −0.3% error. Thus
the testing process alone wastes a significant amount of the specified tolerance.

force to the chip via a hand operated screw mechanism. Although variations in frequency were
observed during the hand test, the amount of force applied during the test was not quantifiable
in any way. Furthermore, the hand test rig is not used during the actual testing of the chips,
so is only an indication that loading of the chip affects the oscillator frequency.

To quantify the effect caused by loading the package, the supplier collected a small amount of
preliminary quantitative data, illustrated in Figure 2, by applying a range of vertical loads to
a given package. The results of this experiment suggest a linear relationship between the load
applied and the frequency response of the oscillator circuit, although it is stressed that the data
is only indicative. Note that these experiments indicate that for a load of the order of 100 N
(i.e. 10 kg), a −0.3% error is observed. Thus a significant amount of the specified tolerance is
wasted on the testing process alone, which must be compensated for by higher manufacturing
precision.

2.4 Circuit Trimming

Banks of components (including resistors and capacitors) are used to tune the oscillator to the
required frequency over the given temperature range. This process is known as trimming, and
in the traditional sense would mean that particular components were removed permanently
from the active circuit. In this instance, a flash memory stores the identities of the trimmed
components.
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3 Piezo Effects in the Oscillator Circuit

We now describe how the response of the key components in the oscillator circuit might be
affected by mechanical loading. An oscillator circuit provides a continuous, synchronised trigger
signal to the rest of the devices on the chip from which information is processed [2]. Due to
commercial sensitivity (and its shear complexity), the specific design of the oscillator circuit
in question was not provided. However, there are two main types of electronic oscillators, RC
circuits (composed of Resistors and C apacitors) and LC circuits (composed of inductors and
capacitors). Inductors are not common in ICs, hence we focus on the first type of oscillator.

The oscillation frequency of an RC circuit is f = 1/(2πRC) [1], where R and C are the effective
resistance and capacitance of the banks of resistors and capacitors on the chip respectively.
Typical values of resistance and capacitance are R = 10kΩ and C = 100pF. A small fractional
increase, δ, in the product of the resistance and capacitance results in a fractional decrease in
frequency, f, of the same amount,

f =
1

2πRC(1+ δ)
≈ 1

2πRC
(1− δ). (3.1)

Thus a 1% drop in frequency requires a 1% increase in capacitance or resistance (i.e. δ = 0.01).
We now consider whether the kind of mechanical load experienced by the chip can give rise to
such changes in the capacitance or resistance.

3.1 Capacitor Response

Capacitors consist of two parallel conducting plates with a dielectric material sandwiched be-
tween. The plane of the conducting plates is perpendicular to the applied load in this case.
The value of capacitance is given by

C =
εAC

d
, (3.2)

where ε is the permittivity of the dielectric, AC is the area of the plates and d is the distance
between them. Thus the capacitance increases in response to a decrease in distance between
plates, which might be expected when subjected to a vertical load as in this scenario.

However, the dielectric material is typically silicon dioxide, which is a very stiff material. Given
a 100N force placed on a package approximately 6mm×6mm, the resulting pressure P is 4 MPa.
The Young’s modulus E of silicon dioxide is approximately 100 GPa, thus considering Hooke’s
law, the resulting strain (and hence the change in distance between plates) is

P

E
≃ 3× 10−5, (3.3)

which is much smaller then the 1.5% change required.
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Thus the change in capacitance due to the plates being forced closer together cannot be re-
sponsible for the observed 1.5% change in frequency. The deformation of the dielectric does
not change its permittivity either, since silicon dioxide does exhibit any piezoelectric effects [3].

3.2 Resistor Response

Piezoresistance is a well known effect that occurs when resistors are subject to mechanical
deformation [4]. The resistance of a conducting element with a fixed cross section of area AR

and length l is given by

R0 = ρ0

l

AR

, (3.4)

where ρ0 is resistivity. If the shape of the resistor is changed, the subsequent change in resistance
is related to the strain ǫ = ∆l/l via

∆R

R0

= Gǫ, (3.5)

where G is known as the gauge factor,

G := (1+ 2ν) +
(∆ρ/ρ0)

ǫ
, (3.6)

and ν is the Poisson’s ratio of the resistor material, which accounts for the change in cross-
sectional area due to the change in length. It is known that the resistivity change (∆ρ/ρ0)/ǫ for
semiconductors is much larger than the dimensional change (1+ 2ν) [5]. In fact gauge factors
as large as 100 have been measured for p-type silicon and as low as −100 in n-type silicon [4, 6].
Thus to observe a 1% decrease in frequency due to piezoresistance, we would need strains of
the order of 10−4.

4 Mechanical Modelling

To calculate the strains induced by mechanical loading, we first consider a simple method in
which the package is modelled using a one-dimensional beam equation. This approach neglects
inhomogeneities in the package and corner effects that arise in the plane perpendicular to the
loading due to the stacking of the die. Thus we develop a more sophisticated two-dimensional
axisymmetric model of the composite package that we solve using finite element software in
COMSOL, from which we obtain the strain field in a cross-section of the package.

4.1 One-Dimensional Model

A simple approach to calculating approximate values of the strain in the package is to model
the entire assembly using the one-dimensional beam equation [7]. Thus we consider the package
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Figure 3: Geometry in which the package is modelled as an elastic beam. The pins are modelled
as Hookean springs, while the die is modelled as two localised forces.

to be elastically homogeneous and made entirely of silicon. The geometry used in this case is
shown in Figure 3. The width of the package is 2A and the load is represented by two localised
forces F imposed at x = ±B. The pins are modelled as Hookean springs, positioned at the edges
of the package (x = ±A) and the centre (x = 0) with spring constants k1 and k2 respectively.
The spring constant of the outer pins is chosen to be five times larger than at the centre to
reflect that there are more pins around the edge of the package. However, the spring constants
are not known accurately,thus we consider two cases: (a), stiff springs, k1 = 500 MN/m and
k2 = 100 MN/m ; and (b), flexible springs, k1 = 50 MN/m and k2 = 10 MN/m .

As noted, we model the vertical displacement u(x) of the package using the one-dimensional
beam equation with point forcing,

EI
d4u

dx4
= F [δ(x+ B) + δ(x − B)] − k2δ(x)u(x), (4.1)

where E is the Young’s modulus of the package and I is the second moment of area. The
boundary conditions at the edges of the package are

EI
d3u

dx3

∣∣∣∣
x=±A

= −k1u(±A) and (4.2)

d2u

dx2

∣∣∣∣
x=±A

= 0. (4.3)

Note that at each discontinuity, the zeroth, first and second derivatives must be equal. These
equations form a linear system whose solution is a piecewise cubic polynomial in x. The
polynomial coefficients in each of the four regions along the beam can be easily calculated using
computer algebra, however they are somewhat complicated and hence we do not reproduce them
here.

The parameters used in the calculation are given in Table 1. The displacement along the beam
u(x) is illustrated in Figure 4(a) for the stiff springs case and in Figure 4(b) for the case flexible
springs case. These illustrate that the stiffness of the pins can affect the overall shape of the
package: stiffer pins result in a “W”–shape, whereas flexible pins give rise to a concave shape.
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Parameter Value

A 3 mm
B 2 mm
h 1 mm
E 150 GPa
F 50 N

Table 1: Values of parameters used in the calculation. In addition, two different types of spring
constant are considered: stiff springs, k1 = 500 MN/m and k2 = 100 MN/m ; and flexible
springs, k1 = 50 MN/m and k2 = 10 MN/m .

Figure 4: Displacement calculated from equations 4.1–4.3 for the cases (a) (stiff springs) and
(b) (flexible springs).

Given the displacement and the height of the package h, we can calculate the tensile strain,

ǫxx =
h

2

d2u

dx2
, (4.4)

at the base of the package. This is plotted in Figure 5(a) and (b) for the stiff and flexible pin
cases respectively. In both instances, the magnitude of the strains are large enough to account
for the observed frequency variations due to piezoresistive effects. The stiffer springs used in
Figure 4(a) result in a region of compression at the centre of the package. Note that in both
cases, the largest strains occur in regions of extension (positive strain) where the downward
load is applied. The strain is zero at the edges due to the boundary conditions (4.3).

4.2 Axisymmetric Finite Element Model

Although the simple approach using the beam equation shows some promising results, it is
based on a very restrictive set of assumptions, in particular that the package is homogeneous
and can be represented as thin rod. A linear elasticity model of the composite package can be
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Figure 5: Tensile strain at the base of the package for cases (a) (stiff springs) and (b) (flexible
springs).

computed numerically using finite element methods. To facilitate this, we used the Structural
Mechanics Module of COMSOL 3.4 software package [8]. This includes a stationary linear
solver for the equilibrium equation from linear elasticity theory,

σij,j = 0

where σij,j is the derivative with respect to j of the ij component of the stress tensor. This is
supplemented with the linear stress-strain and strain-displacement relationships,

σij = λǫkkδij + 2µǫij,

ǫij = 1/2 (ui,j + uj,i) ,

respectively where ǫ is the strain tensor, u is the displacement and λ and µ are Lamé’s param-
eters, which can be expressed in terms of the Poisson’s ratio and Young’s modulus. We used
2nd-order Lagrange finite elements with ideal constraints.

The simulation set-up is illustrated in Figure 6. We consider an axisymmetric model in cylin-
drical coordinates to reduce the complexity of the simulation. Consequently the model of the
package is disc shaped. In this geometry, we model the full composite structure of the package
including the copper lead frame and contacts, the silicon die, the epoxy glues and the plastic
casing. Material properties of each of the component parts are listed in Table 2. The load is
applied over a 1mm wide annular region on top of the package. The upward forces exerted by
the pins are positioned under the contact on the outside edge of the bottom of the package and
at the centre under the lead frame. We distribute the downward load between the inner and
outer pins with a 1:5 ratio respectively to reflect the fact that there are more pins around the
outside of the package. This is an approximation since the pins are not completely stiff and
hence may distribute the load differently. The point at the base of the edge of the package is
held fixed.

In Figure 7, we illustrate the deformation under loading of a cross-section of the package. Note
that the scale of the displacements have been increased to accentuate the change in shape. We
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Figure 6: Cross-section of the numerical simulation set-up for the linear elasticity calculation
in axisymmetric coordinates. The composite package is modelled, including: (a) top die, (b)
bottom die, (c) lead frame, (d) contact, (e) and (f) epoxy glues, (g) plastic case. The applied
load is labelled P and the reaction forces from the pins on the contacts and lead frame are
labelled FL and FL respectively. These forces are distributed over the coloured regions.

observe that the maximum displacement (shaded in dark red) occurs where the downward force
is applied and, due to the boundary conditions, there is no displacement at the bottom of the
outer edge (shaded dark blue). The centre of the package (r = 0) is also displaced vertically
since there is less support from the pins. Thus a slice through the full diameter of the package
would resemble Figure 4(a), i.e a W–shape. Furthermore, if we reduce the load supported at the
centre of the package, we find that the deformed package becomes concave, as in Figure 4(b).

The ǫrr strain field in the lead frame, top and bottom die are illustrated in Figure 8. We have
omitted the strain field in the rest of the package since the circuitry lies in a thin layer on
the surfaces of the two die, i.e. in the (r, θ) plane. Furthermore, the plastic casing and epoxy
glues are much softer than the die and lead frame and consequently the magnitudes of their
strains are much larger. Note that the strains on the top surfaces of the die where the electrical
components are placed are much less on the top die than on the bottom. This accounts for the
fact that the problems with the accuracy of the frequency of the oscillator circuit came to light
after it was moved from the top die to the bottom die.
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Young’s Modulus E, GPa

Lead frame (Cu) 127
Contacts (Cu) 127
Die (Si) 150
Epoxy Glue - bottom 3.1
Epoxy Glue - top 0.3
Plastic case 0.2

Table 2: Material properties used in linear elasticity simulation.

r

z

nm

Figure 7: Deformation of the package under loading. The black out line illustrates the original
position and the shaded region shows the subsequent deformation. The colour correspond to
the magnitude of the total displacement. These have been greatly enhanced in this picture to
illustrate the qualitative behaviour of the package.
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Figure 8: The coloured shading indicates the ǫrr strain field in the lead frame, top and bottom
die. Note that the lead frame is stretched, however the bottom die is compressed.

(i) (ii)
ǫrr

ǫθθ

r r

Figure 9: The strains ǫrr (a) and ǫθθ (b) along the top surface of the bottom die in the r-
direction.
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In Figures 9(a) and (b) we plot the ǫrr and ǫθθ strains respectively against r at the z–position
corresponding to the top surface of the bottom die. The oscillator circuit lies in this plane,
between the edge of the top die (r = 0.75) and the edge of the bottom die (r = 1.5). The
magnitude of the strains there are large enough to account for the observed change in frequency
due to the piezoresistive effect. Note that because of the W–shape of the package, there is a
change in the sign of the strain. Furthermore, toward the outer edge of the package, the
ǫθθ strain is less than the ǫrr strain. Thus a qualitative feature of our simulation results
is that an appropriate choice of position and orientation of the components of the oscillator
circuit on the bottom die would minimise the strain they experience. We stress however that
computing the strains within the package with enough precision to achieve this would require
extending the geometry to three dimensions in rectangular coordinates (which requires far
greater computational power) as well as a detailed knowledge of the components themselves.

5 Conclusion and Recommendations

This report investigates the possibility that inaccuracies in the frequency of an electronic os-
cillator measured under test conditions may be due to mechanical deformation of the chip
containing the oscillator that occur during testing. We show that the most likely explanation
is that the oscillator frequency is modified by the piezoresistive effect and estimate that the
observed variations could be produced by tensile strains of the order of 10−4. We carried out
two elasticity calculations: a highly simplified calculation based on the beam equation and a
second, considerably more sophisticated, treatment using finite element analysis. These simu-
lations both demonstrated that strains the of the order of 10−4 in magnitude occur within the
die, which explains the drift in oscillator frequency during test conditions.

From our simulations, we observe that the strain is largest directly underneath the nozzle that
pushes down on the package and that the strains are significantly lower in the top die. Thus
one might consider relocating the oscillator circuit or changing the shape of the nozzle that
applies the downward force in order to reduce the strain in the package. Another possible
solution could involve tuning the method in which the oscillator circuit is trimmed such that
components which undergo lower values of strain are chosen preferentially.
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