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Abstract

Certain materials used in lasers are made by a process called epitaxial semiconductor
crystal growth. In this report a mathematical model is developed for this growth process
which occurs on a substrate at the junction between a masked region and exposed
substrate in a vapor. This new model consists of two partial differential equations;
one for the surface dynamics and one for the crystal growth on the exposed substrate.
An analysis of the steady state solutions is furnished. Approximate solutions for time-
dependent cases are found using two numerical methods. An asymptotic analysis is
also carried out to determine transient solution behavior. The undesireable "bump"
structure at the mask/substrate junction which has been observed experimentally is
present in the solutions found by each method.
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Crystals grown on patterned, masked substrates are used in lasers and detectors. The
masked substrates may also be used as a diagnostic tool; the crystals grown in artificial
geometries may indicate what would be successful or unsuccessful conditions for produc-
ing a desired product. The masked substrates may also be used simply for fundamental
understanding of the crystal growth process.



Figure 1: A schematic of expitaxial growth from a masked substrate. Atoms de-
posited from the vapor accumulate in or near the unmasked region and result in a
growing crystal under appropriate conditions. The outward growth is indicated by
the arrows.

The growth process that we wish to study is epitaxial crystal growth; epitaxy involves
a substrate material such as siliconor other suitable material and the crystal structure and
orientation of the substrate is preserved in the growing crystal. The crystal may be grown
from particles in a vapor which resides above the surface of the masked substrate. The
crystal may also be grown from a very high vacuum process with a beam supplying the
material for the crystal; this is molecular beam epitaxy or MBE. The crystal can be grown
from the liquid phase as well (liquid phase epitaxy or LPE). We will primarily consider
growth from the vapor here. A two-dimensional schematic is shown in Figure 1.

A considerable amount ofwork has been done on the problem of an unmasked substrate;
some recent reviews include [PV, BS, N]. Typically, for electronic applications, one would
like to grow a relatively smooth crystal; this will be the case in this work as well. Relatively
little work has been done in the case of a partially masked substrate. The thin mask is, in
this case, a silicon dioxide film.

A large number of experimental results and associated questions on epitaxial semicon-
ductor crystal growth were brought to the Mathematical Problems in Industry workshop
by Michael Mauk of AstroPower, Inc. The working group focused on the specific problem
of undesireable crystal growth - the formation of a "bump" - at junctions between the.
mask and exposed substrate, which are at the perimeter of the crystal. The bumps may
appear in growth from the liquid or vapor phases, depending on the material system. In
LPE, one would certainly expect bulk diffusion in the liquid to be important, and it may
contribute in growth from the vapor.



Geometric growth models based on the kinetic anisotropy have also been developed
for highly anisotropic crystals grown from selectively masked substrates [JSLH]. In these
models, the growth rate must be known as a function of orientation; from that empirical
data, the Wulff shape may be developed that appears to have some success in predicting
facetted crystal shapes. Some impressive computations have been carried out using level set
methods for geometric growth models of various situations in microchip fabrication ([Se],
both with and without anistropy).

Some previous work in this area suggested that bulk diffusion may be a cause of bumps in
some situations [BBK]; the diffusion model for vapor phase epitaxy studied there predicted
elevated crystal surfaces near the edge of the mask and a thinner region in the middle of the
crystal. That behavior is characteristic of the measured profiles found at AstroPower [M].
The cause of the bump appears to be the "point effect" in the diffusion model of [BBK]. In
growth from the vapor, there may be some experimental conditions and/or material systems
for which surface diffusion or other surface effects may be important [PV,BS].

It was the intuition of Mauk that the competition of bulk and surface diffusion may be
relevant in bump formation. The working group focussed on the role of surface diffusion,
sublimation and growth. Continuum models of the surface concentration on the mask and
of the crystal surface shape were developed for this purpose. Subsequent models offer the
possibility of combining these effects with bulk diffusion to study their competition. One
must understand the mathematical problem with surface d:iffusionalone before letting them
both compete.

In this report, a mathematical model consisting of two partial differential equations is
formulated for this situation. Both differential equations govern the transport of atoms that
will eventually form the growing crystal. One of the equations governs the surface concen-
tration of the atoms on the mask while the other involves the height of the growing crystal
on the exposed substrate. Surface diffusion is the main physical phenomenon modeled in
the first equation as well as the amount of crystal particles leaving and arriving from the
vapor above. The other equation models the motion of the interface between the vapor and
the crystal originating above the substrate.

The equations and added physical boundary conditions and initial conditions are nondi-
mensionalized using physical constants obtained from the industry representative's experi-
ments. A parameter € which is the quotient of the diffusion on the crystal over the diffusion
on the mask is small. This fact is exploited in an asymptotic analysis of a linearized version
of the original problem. A transient "bump" is found in the asymptotic solutions.

A finite difference method is used to find approximate solutions to the nondimensional-
ized equations. The numerical solutions from both the linearized and nonlinear equations
can also exhibit the transient "bump".

The steady state situation is considered and an explicit solution is found. A result of
this analysis is the following: a steady state solution exists only if a parameter ~, which is
proportional to the surface energy on the crystal divided by the diffusion on the mask, is
sufficiently large.

An outline of this report is as follows. In Section 2 we formulate the mathematical model,
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Figure 2: A sketch of the mathematical situation. The free surface of the growing
crystal is z' = h'(x', t') in dimensional variables. The free surface is sketched such
that a "bump" is shown near the edge of the mask (x = 0).

list our physical constants, and provide details of our nondimensionalization. In Section 3 we
derive an asymptotic approximate solution. In Section 4 we present the study of the steady
state situation and in Section 5 we describe the numerical computations we performed on
the nondimensionalized problem. Finally, in Section 6 we give some conclusions and future
directions for research beyond the workshop.

In this section we describe the mathematical model which is an initial/boundary value prob-
lem consisting of two partial differential equations, one describing the surface concentration
of the crystal on the mask and the other involvingthe motion of the crystal/vapor interface
originating from the exposed substrate. We also introduce physical constants and use them
to nondimensionalize the problem.

Our study is on the fiat surface covered by the mask material with a periodic series of
parallel long trenches where the substrate is exposed. We examine the growth behavior on
a partial cross-section which is a line segment extending from the center line of one of the
masked "plateaus" to the center of the next trench; a sketch of the mathematical situation
is given in Figure 2. We assume the surface behavior is constant in the perpendicular



directions (out of the page) to legitimize this one-dimensional study. Thus we will pose our
problem on the interval -f < Xl < L, apply symmetry boundary conditions at -f and L,
and use an independent variable Xl.

The interval -f < Xl < 0 corresponds to the zone where the thin mask is located. Here
we study the surface diffusion of the concentration of atoms on the mask, nm = nm (Xl, t');

onm _ D(m) ff2nm J _ nm
otl - s o(xlF + 9 7m

Here Jg represents the concentration of atoms leaving the vapor and resting on the surface.
The term nm/Tm provides the concentration of atoms leaving the surface to go into the
vapor. The constant Tm is the mean residence time of atoms. Finally, D~m) is the surface
conductivity of the crystal concentration on the mask. Note that (1) has been given by
[KM]and [N],for example.

Appended to (1) is a symmetry boundary condition,

onm ( I)oxl -f, t = O.

We assume that the atoms close to the substrate will be absorbed quickly; thus we take the
boundary condition on the other end of the mask to be a perfect sink:

We now turn to the formulation of the equation and the associated boundary and initial
conditions for the motion of the interface between the crystal that is built-up from the
substrate on the interval 0 < Xl < L and the vapor above. It is possible that this interface
can move above the mask on the interval -f < Xl < 0; in this work we assume that this
will not occur. This development of the model closely parallels that of Mullins [Mu] in his
now classic study of grain boundary grooving.

The interface moves via two mechanisms. The first is from a flux of atoms to the
interface from the vapor; this flux is normal to the interface. This contribution to the
motion is proportional to the jump in the chemical potential across the interface, viz.,

Here M is the mobility of the interface and A = ons/oJ.L is the change of surface concen-
tration ns with chemical potential J.L; J.Lcis chemical potential of the crystal surface and is
given by



r is the surface energy of the crystal, 0 is the atomic volume, ""is the curvature of the
crystal surface and /-Leo is the reference value of the chemical potential for the crystal with
a flat surface. /-L~ is the chemical potential of the vapor and it may be written as /-L~ =
/-LV + /-Leo' The differencebetween the two chemical potential eliminates the reference value,
and successfully indicates that the crystal grows when the chemical potential of the vapor
exceeds that of the crystal.

The magnitude of A is estimated very simply by comparing with Mullins [Mu]; com-
paring our terms with his, one sees that A plays a role identical to ns/kT, where ns is the
surface concentration, k is Boltzmann's constant, and T is the absolute temperature. Using
Mullins' estimate for ns ~ 1.5 x 1015 atoms/cm2 for Ag and our estimate of T = 1200K,
we find that A = ns/(kT) ~ 1028. We shall use this estimate in the physical parameters in
the next section.

The second contribution is from the surface diffusion of atoms along the interface; the
current of atoms Js is proportional to the gradient of the chemical potential along the
surface. For the curve in the plane, the surface gradient is the derivative with respect to
arc length, hence

J = - AD(c) O/-Lc
s s os"

The contribution to the rate of increase in the atoms per unit area (proportional to· the
normal velocity) is proportional to the surface divergence of this flux; for the curve, we
have (-oJs/os').

The net rate of increase in the number of atoms per unit area (or the time rate of change
of the concentration) may be written as vn/O, where the 0 is the atomic volume and Vn is
the normal velocity. Combining the normal and surface diffusion fluxes results in

Vn _ {~[ (c)~( )] (_ )}o - A os' D s os' Or"" + M /-Lv Or"" .

If z' = h' (x', t') gives the height of the interface above the substrate, and the curve
describing the interface is single-valued, we have the useful relations

oh' /Ot' -02h' /0(x')2
Vn = [1+ (oh' /ox')2Jl/2 and"" = [1+ (oh' /ox')2]3/2'

Note that the units of "" are L-1. By using these expressions, we can write a partial
differential equation for the evolution of the free surface of the growing crystal.

At x' = L we assume the symmetry conditions,

oh' 03h'
ox' (L, t') = 0 and 0(x')3 (L, t') = o.

On the left edge of the substrate, we assume the height of the crystal is the same as that
of the mask;



I Constant

'I J
g

Tm
I Dim)

I D{)

!'I ~

ho
A

/-Lv
M

Description
Atoms leaving vapor over mask

Mean residence time of atoms on mask
Diffusivity on mask

Diffusivity on crystal surface
Length of substrate region

Length of mask region
Atomic Volume
Surface energy

Height of mask above substrate
Change in concentration/Change in chemical potential

Chemical potential in the vapor
Mobility

Value/Units
9 x 1014 Atoms/(cm~-sec)

1 see
5 x lO-5 cm2/sec

10-9 cm2/sec
5 x lO-4 em
5 x lO-4 em

2 x lO-23 cm3 / Atom
5 x lO3 ergs/cm2

lO-7 em
2 x 1028 Atoms2/(erg-cm2)

3 x 10-13 erg/atom
101sec-1

We also match the fluxes from the atoms on the mask surface moving from left-to-right
with the flux onto the growing crystal by requiring that

D(m) onm (0 t') = AD(C)0", OK, (0 t')
Sox" S lOS' ,

Finally, we assume initially the crystal layer is the same height as the mask; then

h'(x',O) = !to.

To complete this section we now describe the the nondimensionalization used. Table 2 has
all the non dimensional parameters.

As above, we first handle the part of the problem defined over the mask. Letting

, L2
x' = Lx, t = D~m) t, and nm = TmJgU

OU 02u
- = -+a(l-u)at ox2

OUox (-d, t) = 0 and u(O, t) = 0



I Constant I I Approximate Value I
E D~c)/D~m) 2 x 10-5

D (02 ky)/(L2) 10-7

8 (M02,A)/ D~m) 10-7

a L2 /(TmD~m)) 101
J -(OAJ.tvML)/D~m) 10-5

'TJa haiL 2 x 10-4

{3 (AO,)/(TmJgL) 5 x 10-3
d i/L 1

To nondimensionalize (8)-(12) we make the following variable changes, again referring
to Tables 1 and 2 for the definitions of the constants:

-fPry/ox2
K = (1 + (ory/ox)2)3/2'

We also have the boundary conditions

(17)

(18)

As discussed earlier, epitaxial semiconductor crystal growth on masked substrates often
leads to the formation of undesirable crystal structures during the growth process. In



particular, a "bump" structure on the crystal which forms above the unmasked region has
been observed experimentally.

We begin by studying the surface diffusionover the mask. The small size of € indicates
that diffusion is much faster on the mask, and this suggests that the concentration distri-
bution of atoms on the mask will equilibrate very fast compared to the evolution of the
crystal. In the first part of this section, we shall develop that equilibrium solution. In the
second part of this section, we developan asymptotic theory which allows us to understand
the growth. shape and evolution of these "bumps."

Because we have a linear diffusionproblem on a fixed domain, we can find an exact solution
to the problem for the concentration on the mask. We must solve equations (13) on the
interval -d < x < 0, subject to the boundary conditions (14) and initial condition (15).
The exact solution to the transient problem is

k - (2n + 1)71" (22)
n - 2d

and the an are the Fourier sine coefficientsof the forcing term a.
We can also find the steady state solution from the ordinary differential equation in x:

Usteady(x) = 1 - cosh(vax) - tanh( v"'(id) sinh(v"'(ix).

An important quantity that is needed in the next section is the derivative of U at the
boundary x = 0 this quantity is

U~teady(X) = -vatanh(v"'(id).

This flux out of the mask will be used as a boundary condition on the asymptotic analysis
of the growing crystal in the next section.

3.2 Linear theory for the growingcrystal

We begin by linearizing equations (16)-(20), that is, we neglect terms proportional to ri;
and study the followinglinearized system:



1](0, t) = iJo

E}31] 1 8u
8x3 (0, t) = - €!38x (0, t)

81]
8x (1, t) = 0

831]
8x3 (1, t) = 0

1](x,O) = iJo·

(29)

(30)

Without loss of generality, we may take 170= O. Further, we assume that the mask region,
with scaled adatom density, u, has equilibrated. Hence, we assume that ux(O, t) is known
and constant, and is given by equation (24). We may then write equation (27) as

831] q
8x3 (0, t) = €!3

3.2.1 Linear steady states

Next, we may consider steady-state solutions of our linearized system, equations (25)-(30).
Setting time derivatives to zero and solving the resulting linear ordinary differential equation
yields:

J ( X) q (€D)3/2 [COSh ( ~(1 - x)) f8]
1]steady(x) = 1]0+ -gx 1 - 2" - €!3 8 sinh ~ - coth V d5 . (33)

For realistic values of the parameters, as found in Table 2, a sample plot of this solution is
shown in Figure 3. We immediately notice two features of such a plot. First, there are no
bumps; this suggests that bumps are a transient phenomena and are smoothed as t ---t 00 in
the linearized model. Second, there is a boundary layer near x = 0 and a parabolic region
away from x = O. It is worth noting that the given form of the steady state solution is
better than some other forms involving hyperbolic functions because it minimizes problems
due to roundoff error.

We also notice that the limit l5 ---t 0 is a singular limit of this steady-solution. This
suggests that the full nonlinear problem, equations (16)-(20), may not possess a steady-
state solution in the limit l5 ~ O. This limit will be explored for the nonlinear problem
more fully in Section 4.
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Figure 3: The steady state solution given by Equation (33) for the parameters of
Table 2 except that flo = o. The absence of a bump at the left boundary suggests
that bumps are a transient phenomenon. Note that there is still a clear transition
from a boundary region near x = 0 to a more parabolic-looking region away from
the boundary.



3.2.2 Transient asymptotic solutions

Now, having identified "bumps" as a transient phenomena, we return to the time dependent
linearized problem, equations (25)-(30) and study their evolution. We assume that E « 1
and that the remaining parameters scale with E. In particular, we assume that

Examination of the parameter estimates in Table 2 confirms that this is a physically realistic
limit. Suppose we were to seek an asymptotic expansion of the solution in terms of a power
series in E:

Inserting this expansion into equation (25) and equating to zero coefficients of powers of E,

we find:
8170 = 0
8t

which immediately implies 170(x, t) = 170(X). Then, by the initial condition, equation (30),
we have that 170= O. Two difficulties with this solution are apparent. First, the boundary
condition, equation (27), is not satisfied. That is, the solution is not uniformly valid in
space, suggesting the appearance of a spatial boundary layer. Second, if we continue to
O(E), we find:

Recall that from the beginning of the section, J is O(E), so that J/epsilon is an 0(1)
quantity. Clearly, the expansion is not uniformly valid in time, which indicates the presence
of a temporal boundary layer. This occurs because the ordering of the terms is lost when
t = O(l/E), for example; in that case, the two terms 170(x, t) and E171(X, t) are of the same
size.

We first patch up the solution on the t time scale by introducing a boundary layer about
x = O. Introducing the stretched variable

x
(= -'-,J€

defining f3 = !JJ€, and expanding the solution as before, we find that the leading order
inner solution satisfies:

817 f)417 [y217
8t = -c 8(4 +.A 8(2

17(0, t) = 0
8317 -
8(3 (0, t) = q

17-+0 as (-too

817
8( -+ 0 as

(37)

(38)

(39)

(40)

(41)



5 D _ q).= -, c = - and q = -=,
t t (3

which implies )., c and q are 0(1). It is clear that the solution to this problem grows from
zero, due to the influx at ( = 0, and yet it must decay back to zero as ( -+ 00. Hence, the
solution to this equation represents the evolution of the bump.

Here, we do not present a full solution to the boundary layer equations. Rather, we
proceed with the long time analysis, from which inform?tion about bump height and lifetime
may be gleaned. We now introduce a stretched time variable, 7 = tt, into equations (25)-
(29). Note that equation (30) will not hold for the long time problem, but rather initial
conditions will be determined by asymptotic matching. Our long time problem is:

7](0, t) = 0

(;37] 1 ouox3 (0, t) = - t{3 ox (0, t)

07]ox (1, t) = 0

037]ox3 (1, t) = O.

(44)

(45)

Just as for the short time problem, the solution to the long time problem also exhibits
a spatial boundary layer structure. Since the boundary layer variable and the expansions
in and out of the layer are as before, we do not repeat the analysis here. Rather, we simply
note that our leading order outer problem for the long time equations, (43)-(47), is

07]ox (1, 7) = 0

037]ox3 (1,7) = 0

7](0,7) = O.

(50)

(51)

We note that equation (51) is a matching condition obtained by matching into the short
time outer solution and that an additional condition at x = 0 is obtained by matching into



the long time inner solution. The leading order inner problem for the long time equations
is

84'fJ 82'fJ
-c 8(4 + A 8(2 = 0

'fJ(0,7) = 0

83'fJ
8(3 (0,7) = Q.

(52)

(53)

Additional spatial boundary conditions are obtained by matching as ( -+ 00, while an
initial condition is obtained by matching as 7 -+ O. Both the inner and outer long time
problems are easily solved, matched, and a spatially uniformly valid long time solution may
be constructed:

00

+L Qn exp( -AW~7) sin(wnx)
n=O

(2n + 1)71"
wn= --2--

and the Qn's are the Fourier sine coefficients of -Q(c/ A)3/2. From this solution, we im-
mediately obtain an expression for bump height. In particular, as 7 -+ 0, this solution
approaches the long time limit of the bump evolution equations, (37)-(42). We obtain

(
C)3/2Bump Height = Q )."

Further, since the outer problem for this long time solution smoothes the bump as 7 -+ 00,

we may obtain a crude estimate of bump lifetime:

Bump Lifetime:::::~.

If we undo the scalings to find the physical scales, we find the following. The time scale
for the long time problem is to = £2 /(€D~m)) = £2D~c); for our choice of parameters, this
gives to = 250s. The quantity A = 81€ = 5 X 10-3 for our parameters. The prediction of
the time scale for the life of the bumps is then tolA = 5 x 104s ~ 14 hours. Experiments at
AstroPower [M] over the time scales of 1/2 to 3 hours may show bumps, but the bumps do
not appear to die out within that time scale. This lifetime estimate from the asymptotics



appears to be reasonable given this information. We shall return to this point in the
numerics of Section 5.1.

The bump height may be computed as well; in nondimensional terms, Eq. (57) yields
a height of about 2.8; redimensionalizing with L = 5Jtm yields about a 14Jtm high bump,
according to the linear theory.

The time-dependent linear analysis of the last section predicts the growth and deformation
of an initially fiat crystal interface through the formation of bumps at the mask edge. The
question of whether these bumps are transient or whether they grow to establish a steady
ridge may be addressed by considering the steady-state solutions to the nonlinear pro.blem
(13-20). We conclude from the work in this section that steady solutions do not exist unless
the rate of deposition is sufficientlysmall, J :s; Jc for a critical constant Jc• Also, none of the
steady states have the "bump" shape that we are looking for indicating this phenomenon
is a transient effect.

The analysis begins by assuming that the interface is stationary, Vn = 0, and that the
adatom density along the mask, u, is an equilibrium solution to (13-14). In this case our
problem reduces to solving an ordinary differential equation for the curvature as a function
of arc length, K (s ),

dKI .;a-d = --{3 tanh .;ad,
s 5=0 E

and a symmetry condition applied at the center of the crystal region where x = 1 and
s = L* . Here L* is half the total arc length of the interface. Symmetric solutions to
equations (59-60) are easily determined to be

K ~ { + tanh,;ad l"D coshf1;w - s1.
o {3 EO sinh!T L*VEl5

The first point to make about this result is that the steady-state curvature is positive
definite; the crystal "opens downward" everywhere. The existence of a stationary bump at
the crystal-mask edge requires a steady-state curvature that changes sign and so although
it was shown in the previous section that our model predicts that ridges do form during
the initial stages of deposition, these ridges must be a transitional phenomena. If a steady
state exists, the crystal is strictly convex.

The existence of a steady-state, however, is not guarateed by (61); one must be able to
integrate the equation for curvature to find a single-valued interface 'fJ that is symmetric
about the mid-channel at x = 1. This is not always possible. Consider the experimentally



relevant case where the term JED /8 is small. In this case the curvature is constant up
to exponentially small terms everywhere outside a layer in arc length at the mask edge of
thickness JED /8, viz.,

K"'~, VED/fJ-+O. (62)

This boundary layer is similar to that seen in the linear case; examples will be plotted below
from numerical results. Away from the mask edge (x = 0) the crystal forms a circular arc
with radius 8/J. This circular arc region corresponds to the parabolic region away from
the mask edge in the steady state from the linear problem.

The circular arc is too small to fill the crystal region if 8/ J < 1 and as a result there
are no steady-state solutions to the nonlinear problem,(13-20) for small values of v!f.D / 8 if
the flux of adatoms onto the surface J is larger than 8. In dimensional terms this becomes
a restriction on the chemical potential in the vapor; there are no stationary solutions if

The effectof the terms in (61) that are negligibleas JED / 8 -+ 0 is to increase the magnitude
of the interfacial curvature and these terms put an even tighter restriction on the critical
size of the deposition flux. For an arbitrary set of parameters, steady states exist only if
J < Jc < 8.

In this section, we will numerically integrate the linearized equations for the case with a
fixed, known flux from the mask.

The numerical method used for this purpose is as follows. Centered finite differences
were used for the 2nd and 4th order spatial derivatives (see, for example, [AS,S]). One can
write for any of the spatial derivatives at the point Xi through 4th order:

1]i+1 - 1]i-l
:::::: ----

2Llx
1]i-l - 21]i+ 1]i+1

(Llx)2
-1]i-2 + 21]i-l - 21]i+l + 1]i+2

2(Llx)3 '
1]i-2 - 41]i-l + 61]i - 41]i+l + 1]i+2

(Llx)4

These approximations have second-order accuracy, i.e., the truncation error is O((Llx)2).
If these approximations are used while the time variable was left continuous, there re-
sults in a system of ODE's to be solved on the uniformly spaced grid points Xj = jLlx



with j = 0,1, ... ,N and spacing t::..x. The ODE's are solved by the package DASSL
[BCP); the package is in FORTRANas was the calling program (The code is available via
http://www .math. udel. edu/f"Vbraun/dovnload/linearxtal. tar). DASSLuses a variable
time step and variable order Backward Differentiation Formula (or BDF) method which has
excellent stability characteristics for stiff problems such as ours [A). This method is an im-
plementation of the method of lines using finite differencesin space and a BDF method in
time.

Some care must be taken at the boundary x = O. A modified finite differenceformula is
used that takes into account that "7(0, t) = "70 is given and that TJxxx = q/(€f3) is given. The
formula for the 4th derivative at Xl is given by

( t) 2("71 - TJ2) + (2/3){"73 - TJo) 2 q
TJxxxx Xl, ::::; (t::..X) 4 . - t::..x €f3

One way to obtain this equation is to apply a non-centered difference approximation to
TJxxx(O, t) and solve for "7-1; this expression is then used to eliminate TJ-l in a centered finite
difference formula for "7xxxx(Xl, t).

Several cases will be examined. First consider the case for the nonlinear results to follow;
they are used in the problem specifiedby Eq. (18); call these conditions Case I. In that case,
the parameters are given by a = 0.2,f3 = 0.1, € = 10-3, 8 = 10-6, J = 10-6, and D = 10-8.

We find the results given in Figure 4. The bump can clearly be seen, but the scaling of
the asymptotic analysis is not strictly adhered to. The amplitude of the bump from the
scalings should be about 10-2, but the numerics give more like 10-3• The lifetime of the
bump is around 104; the time scale of 103 for the decay is within an order of magnitude.
This is reasonable.

Case II is the parameters € = 2 X 10-5, D = 10-7, J = 10-5, 0 = 10-7 and "7xxx (0, t) =
q/(€f3) = 300. Note that these are the values given in Table 2, except that we should have
q/(€f3) ::::;3 X 107• In this case, we are solving Eq. (43), that is, the long-time problem. The
initial condition for cases II through V is

TJ(X,O) = 2.5 x 10-4 [1- tanh(lOx)].

The lifetime of the bump is somewhat shorter than what would be expected of from the
asymptotic theory; this is acceptable because the flux boundary condition is not in the
asymptotic regime.

Case III is the parameters € = 2 X 10-5, D = 10-7, J = 10-5, 0 = 10-7 and TJxxx(O, t) =
q/(€f3) = 3 X 105• In this case, we are again solving Eq. (43), the long-time problem. The
size of the bump is about 10 times the thickness of the flat part of the film for a time
interval surrounding T = 0.05. This appears to be consistent with the asymptotic theory.
The lifetime of the bump is expected to be on the scale of unity for this Choiceof parameters.
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Figure 4: Numerical solution of linearized problem with € = 10-3, D = 10-8, J =
10-6, 8 = 10-6 and 7Jxxx(O, t) = 200; this is Case I. The solution shows a bump, but the
flux at the left end is somewhat less than that given by the nondimensional parameters
of Table 2.



Figure 5: Numerical solution of linearized problem for the parameters of Case II. Values
of the nondimensional time T are indicated near the curves. The solution shows a bump,
and the flux at the left end is substantially less than that given by the nondimensional
parameters of Table 2.
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Figure 6: Numerical solution oflinearized problem for the parameters of Case III. Values
of the nondimensional time T are indicated near the curves. The solution shows a bump,
and the flux at the left end is close to that given by the nondimensional parameters of
Table 2.
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Figure 7: Numerical solution oflinearized problem for the parameters of Case IV. Values
of the nondimensional time T are indicated near the curves. The solution shows a bump,
and the flux at the left end is close to that given by the nondimensional parameters of
Table 2.

For this run, where the flux in from the mask is near the asymptotic regime, we have a
timescale for the bump lifetime of about 10-1.

Case IV is the parameters € = 2 X 10-5, D = 10-7, J = 10-5, 6 = 10-7 and l7xxx(O, t) =
q/(€f3) = 3 X 106. In this case, we are again solving Eq. (43), the long-time problem, and
the flux from the mask is basically in the asymptotic regime. If one takes a close look at the
curve for T = 0.005, one can see that 17 takes on negative values in a small spatial interval.
This is clearly not physical; however, we can observe reasonable later time behavior if we
overlook this part of the evolution. The size of the bump is about 10 times the thickness
of the flat part of the film for a time interval of roughly 0.05 ::::;T ::::;0.5. This appears to
be consistent with the asymptotic theory in that the evolution of the bump on the T time
scale for this choice of parameters. Save for initial transients which may be due to a poor
choice of initial conditions, the long time behavior of the bumps appears to be captured by
the asymptotic theory.
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Figure 8: Numerical solution of linearized problem given by Eq. (43) for the parameters
of Case V. Values of the nondimensional time T are indicated near the curves. The
solution shows a bump, and the flux at the left end is that of Table 2.

If all of the same parameters are as in Table 2 and we use q/(€(3) ~ 3 = 107, we have
Case V. We find oscillations in the interface shape 1J. This suggests that the 1Jxx is not
playing a significant role in the early part of the evolution. We may integrate to long times
for Eq. (43), if we ignore the early oscillations. Some results are shown in Figure 8. In the
figure, a bump forms near x = 0, then evolves to an approximation to the steady state.
The solution does not change after T = 819.2. The solutions show a bump until a time not
long after T = 25.6; this suggests that the bump lifetime, according to these numerics is
about 25 x 250s or about 1.75 hours. This is about the length of time of the AstroPower
experiments, yet they don't see the bumps die out by about twice that time.

Some observations may shed some light on the situation. First, the asymptotics appear
to overestimate the lifetime of the bump compared to numerical solutions. The 1/>.scale is
for the decay of the transient solutions to the steady state; this scale fits the evolution shown
in Figure 8. Second, the numerics really require better accuracy; inspection of the steady
state solution in Eq. (33) compared with the solution at T = 819.2 in Figure 8 reveals that



the numerics are giving a bigger steady state answer than the exact solution. We presume
this is due to the accumulation of numerical error during the evolution. It is worth noting
that even evaluating the steady state solution can be difficult numerically; using a formula
involving a different combination of the hyperbolic functions results in disastrous roundoff
problems. Finally, we are clearly outside of the validity of the linearization of the original
equations after just a few time units; the conclusions reached are qualitative for this reason.

It is interesting to note that we can illustrate the balances used in the long time problems
given by Eqs. (48)-(51) and (52)-(55) by using numerical results. The absolute value of the
terms with with fourth and second order derivatives are plotted in Figure 9, for the data of
Case V. The figure shows that the spatial derivative terms are large and that they are the
same size in the boundary layer region near x = O. Away from the origin and later in time,
the second derivative term is much larger than the fourth derivative term and evolves to
about the same size the source term JI€. The second derivative term and the source term
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Figure 9: Abolute values of the spatial derivative terms from Eq. (43) for the parameters
of Case V at several times. Values of the nondimensional time T are indicated near the
curves. In the figure b = €eand a = >.. The different balances seen in the figure justify
the scalings used in the long time problems.

J I€ are practically identical for the the steady state solution outside of the boundary layer.
We now study the nonlinear case.



In this section we describe the numerical schemes we have implemented to obtain approxi-
mate solutions to (13)-(20). (The code for this section is available via anonymous ftp from
http://www.ms.uky.edu/..-.skim/dmmload/Crystal.CF .tar.) Let T > 0 be the maxi-
mum time for the simulation, the timestep Ilt = T/Nt for a positive integer Nt, and

tk = kilt, k = 0,1, ... ,Nt.

where Ilx = I/Nx for an integer Nx > O. We denote rl = 1](', tk).

Let us begin with the time-stepping procedure for (16). We employ the backward Euler
method with the nonlinear terms in (16) treated by the second-order extrapolation: for
k = 0,1,··· , Nt - 1,

¢}+1 = (1 + (oErl+l /ox)2) -1/2, E1]k+1 = 21]k_1]k-1.

The initial extrapolation is given with the assumption that 1] = 0 for t :s; 0:

Er/ = 21]° - 1]-1 = O.

It is not difficult to see that such an extrapolation approximation has asymptotically the
same order of accuracy as fully nonlinear (iterative) schemes; see [D, DDE] for incomplete
iterations.

For the spatial discretization, we first replace the surface derivates by terms including
x-derivatives

~_"'k+1~os - 'I' ax'
Now, it is straightforward to approximate the spatial derivatives by the standard centered
differences as described above for spatial derivatives with second order accuracy.

Figures 10-13 show the approximate solutions for 1] at time t = 5, 60, 120, and 180,
respectively. We have chosen Ilt = Ilx = 0.01. Observe how the "bump" appears and then
disappears providing further evidence that it is present but that it is transient.

In this report we have described the results of the work performed by the mathematicians
who chose to tackle the AstroPower problem. Essentially, the work group identified a partic-
ular physical phenomenon to study among many brought by the AstroPower representative,

http://www.ms.uky.edu/..-.skim/dmmload/Crystal.CF
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Figure 10: The computed solution 'TJ at t =
5. The bump appears from an early step.

I
0.

0151

Figure 12: The computed solution 'TJ at t =
120.

Figure 11: The computed solution "l at
t = 60. One can see the smoothed bump
profile due .to the surface diffusionbetween
x = 0.05 and x = 0.3.

Figure 13: The computed solution "l at
t = 180. Only a trace amount of the bumps
remain.



Michael Mauk. The problem chosen involved the undesirable "bump" behavior. A realistic
mathematical model was developed. Through the numerical and asymptotic solutions, an
understanding and quantification of the formation, behavior, and control of the bump was
begun. This model problem suggested new experiments for AstroPower.

Several new research directions were suggested at the workshop which we list, briefly. In
experiments it is observed that the crystal growing from the substrate may overgrowonto
the mask, and grow outward from the original exposed substrate area. This would give rise
to a moving three-phase or contact line in the problem. The presence of three-phase lines
may lead to stress singularities in continuum models (see, for example in fluid mechanics,
[Da);with heat transfer, [ADa];and with evaporation, [ADb);and references therein). The
beginnings of a formulation were attempted, but they were not sufficiently well developed
to include in this writeup.

The formulation of the model in terms of dynamic equations for the curvature could be
attempted, along the lines of Yokoyamaand Sekerka [YS),e.g., and references therein. They
find a nonlinear diffusion equation for the curvature of the free surface and then advance
the interface with a motion law involving the curvature that specifies the normal velocity
of the surface. The difficulties with this formulation are that the boundary conditions may
be hard to specify, and that the growth law for the normal velocity of the surface becomes
nonlocal.

Anisotropy may be a very important property in the epitaxial semiconductor crystal
growth problems because it may have a critical influence on the shape of the growing
crystal. To bring this into the current mathematical model we should allow the mobility
M, surface diffusion coefficient D~c), and the surface energy 'Y, to depend on the direction
of the normal to the free surface; that is, these properties are orientation dependent. These
properties could be four-fold or six-fold symmetric depending on the type of crystal grown,
but they will generally be four-fold (e.g., for Si).

Other future directions include considering nucleation on the mask, bulk diffusion, and
extending the work to two and three dimensional problems. Michael Mauk showed several
interesting experiments where the layout of the trenches was crucial to the crystal growth
process.
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