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PROBLEM 7

MODIFICATIONS TO THE LANGUAGE M"ORION™

1. INTRODUCTION

Interactive Engineering Pty. Ltd. of Parramatta, NSW, has developed a
mathematical modelling language called ORION (Brander and Royle, 1985). ORION
is a member of the class of languages which includes PEOLOG (Sammut and Sam-—
mut, 1983a,b), in thst it has both a declarative and procedural semantics.
The declarative semantics consists of a high level description of the set of
mathematical and logical relationships in the model, together with a represen-—
tation of these relstionships in the form of a network. The procedural seman-~
tics consists mainly of a basic strategy for calcuiating desired unknown
parameters of the model given a set of known parameters by searching the com—
putational network. 1In addition, there are a number of specialized evaluators
which are called in when the basic evaluator is unable to proceed. The spe-
cialized evaluators include, among others, an iterator and a simultaneous

equation solver.

2. STATEMENT OF THE PROBLEM

The problem pos=d to the Mathematics—in-Industry Study Group is the
specification of a specialized evaluator which can be used when the computa—~
tion is indeterminate in detail, but does in fact contain enough information
to produce a solutiorni. For example, suppose the model consists of the two

equations
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A=B~+C
B+C=25

and the command is given to find A. There is not information to determine
either B or C, but it is clear by inspection that A has the value 5. A list
of six examples was provided by Interactive Engineering, involving combina-

tions of arithmetic anc logical operations.

3. BACKGROUND

A model in ORION is represented as a network. Each variable or constant
is represented by a terminal node. Terminal nodes are connected by computa~
tional links expressing the mathematical relationships between them. A given
variable is represented by only one node. If it participates in a number of

equations, it will have several computational links: one for each equation.

When computation cof a variable is requested, a breadth first search is
started at the node of that variable. When the search reaches a computational
link with more than two branches, the search is split and proceeds along both
branches. When the search reaches a terminal node with & definite value (con-
stant or variable with a value assigned), the value is sent back along the
path. When two or more values arrive at a computational link, the computation
is performed and the calculated value sent along. For example, if a link
expresses X + Y = Z anc¢ X and Z are passed through it, the output at the Y arm

is correctly computed as Z ~ X. This is illustrated in Figure 1.
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Figure I: Computation in Orion
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The problem presented is expressed in the network representation in Fig-

ure 2. The value 5 cannot pass the plus link, because there is only one arm

determined. The search is said to be blocked at that point.

O

m Blocked
\D? >

A=B+C B+C=5 Find A

Figure 2: A Blocked Computation

A number of problems other than the one submitted were raised by the

group, including:

1. Computational stability. What does the system dc about situations such

as

B

A=c=%

where B and C -~ D are of order 1, but C and D are of order 109, or a sys-—

tem of simultaneous equations which is nearly degencrate?
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2. What happens in a nonlinear system with more than one solution?

3, How does it recognize and deal with under or over~determined systems?

4. Can we guarantee termination of the computation?

5. What are the convurgence characteristics of the iterative techniques in

different kinds of problems?

6. Is there a comprehensive trace-back facility so it is possible to follow

how the solution was arrived at?

7. Can we characterize (and automatically recognize) classes of problems for
which the system as stated provides reliable ancd comprehensible solu-

tions?

4, SOLUTION

As it turned out, there was sufficient interest and expertize in the
problem as stated that some progress could be made. The main body of theory
found to be relevant was automatic algebra such as that used in the MACSYMA

system, automatic theorem proving, and the theory of graph isomorphisms.
Two general points were made:

1. It is not possible to use floating point values as constants in automatic

algebra. Any constants used must be integers.

2. Small logic problems can be solved by exhaustive enumeration of truth

tables. This is very simple and could be practical for systems with up

to 5 or 6 variables.

A general strategy for solving the problem was suggested.
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1. Detect the situstion.
2. Identify a porticn of the network as a candidate for simplification.
3. Perform simplif::cations.

4. Recognize the sclution.

The first point was ot addressed.

Points two anc !our could be addressed using tne theory of algebraic
dimension. An algebr.ic system has a dimension which :: the number of degrees
of freedom in select.:n of variables. A zero dimensicrisl system has a finite

number of solutions. A one~dimensional system has a crie~parameter family of
solutions, and so or. A path in the network through wiich a solution can be

sent must represent : lero-dimensional system.

If a computatic: is blocked and there is any hope ©f solution, there must

be more than one pctential path through. It would o possible to classify
subsets of these patnz by dimension, then choose subset: for simplification in
sequence of increasing dimension. A solution could i+ recognized when the

dimension of a subsystem has been reduced to zero.

Most of the effcrt of the group was focussed on pint 3, performing the
algebraic simplificaiions., It was discovered that a nuuber of simplifications
could be performed similar to those performed in MACSYMi. The simplifications
correspond to the laws of arithmetic or to algebraic :uontities. Some of the

simplifications identiried are shown in Figures 3 and ..

Using identities such as these, it was possible tc solve all six of the
example problems submitted, using a disciplined hand sinulation. It therefore

appears that it would ve feasible to perform the simplifications by computer.
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An algorithm for the expression of a graph in bi~connected components
(Sedgwick, 1983, pp :90-392), was found to be useful in identifying parts of

the network as candicastes for simplification.

5. CONCLUSION

A plausibly progrzmmable approach to the "blocked network" problem was
found using the theory of algebraic simplification and of graph ismorphisms.
The network representation of mathematical and logical systems seems to be a

very convenient one for such problems.

(b)
AX¥(B+C)=A%B + AX(

Figure 3

Simplification Using The Laws of Arithmetic
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(a)
Redundant Additions

a-b a-b ,__l:]_ d-¢

a-c+d-b

c d-c ac —[ d-b

(b)
A More Complex |dentity

Figure 4
Simplification Using Algebraic fdentities
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