Some Mathematical Aspects of
Hollow Fibre Ultrafiltration

1. INTRODUCTION

This problem was presented to the 1986 Mathematics-in-Industry Study
Group by Dr D.L. Ford, the Director for Research of Memtec Ltd. Memtec
specialises in ultrafiltration equipment with uses in the separation of oil-water
mixtures, the purification of water, the filtration of fruit juices and wine, the
treatment of wastes, and many other industrial processes. The heart of the
Memtec filtration system is a bundle of about 3000 very small hollow fibres
made out of plastic foam (see figure 1a). The hollow fibres have millions of
tiny holes in their walls: in cases where homogeneous and isotropic foams are
used, the diameter of the small holes is typically 0.1-0.2p (lp=1
micron = 1078 m), whilst the hollow fibres have typical inner and outer radii
of 100 and 300 p. The fibres are contained in a cartridge about 15-50 cm long
and 7cm in diameter, and the material to be cleaned or separated is
circulated around the fibres at low pressures (typically 100-400 kPA above
atmospheric pressure). Under these pressures, the permeate moves almost
radially through the wall of the fine tubes, and then axially along the inside
(or the lumen) to be gathered at the ends of the cartridge. The filtration
surface is the outside of the tubes.

This process allows regular cleaning of the filtration surface. To do
this, the ends of the lumen are exposed to a high pressure air pulse at
typically 500-700 kPa (see figure 1b). The fluid driven ahead of this pulse
expands the foam in the tube walls by up to 10% in all directions and this
loosens particles stuck in the holes of the walls. Subsequently, the air breaks
through when the air pressure is high enough to overcome surface tension in
the tiny holes. As the viscosity of air is 55 times smaller than the viscosity of
water at 20°C, the expanding air moves through the tube walls relatively
quickly "during decompression and expels the small particles which had
blocked the tube walls. The combined effects of back pressure from the inside
and the use of elastic foam tubes allows the cleaning operation to be
performed many times, and the cleaning only takes a small time. The
cleaning process would not be as effective if the filtration surface was the
inside of the tubes as is the conventional practice (see Breslau et al., 1980).
To see this, consider that the 100 kPa pressure of the filtration phase is not
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Figure 1a (top) and 1b (bottom): Illustrating the operation of the Memtec
filtration cartridges.

sufficient to cause the tubes to collapse or buckle, whilst the 500-700 kPa
pressure of the cleaning phase might cause thin tubes to buckle if it were
applied from the outside. Also, an attempt to clean the tubes by applying
pressure from the outside would contract the pores, thereby gripping dirt
particles more tightly. When applied to the inside, however, the 500-700 kPa
cleansing pressure is sufficient to loosen the dirt particles from the expanded
pores, but not so great that it would rupture the tubes.

Memtec regards its ultrafiltration process as unique, and considers that
it has a lead of between 2 and 5 years on any competitors. To preserve that
competitive lead, Memtec is seeking to optimise its present products and to
develop new products. For these reasons, Memtec sought mathematical
assistance at the 1986 MISG.

In preliminary discussions, the following five topics were identified for



consideration at the 1986 MISG: :
(1) To derive a mathematical model of the filtration process for the
purification of tap water in which there is very little dirt or particles so
that the filtration surface of the tubes does not become badly fouled.
The goal is to derive the total flux Qo1 ©of permeate from the cartridge
as it depends on the parameters N (the number of tubes), r; (the inner
radius of the tubes), r, (the outer radius of the tubes), A (the
cross-sectional area of the cartridge), X (the half-length of the
cartridge), u (the viscosity of the permeate), k (the permeability of the
tube walls), and Ap (the pressure drop between the unfiltered material
surrounding the tubes and the pressure at the exit of the lumen).

The mathematical model which was derived was based on the
observation that the ratio [length of tubes:wall thickness] is very large
(typically about 103). Hence the flow of permeate through the walls is
almost radial and the flow in the lumen is almost parallel. The model
showed that the flux Q from an individual tube would be initially
increased by increasing the half length X although, eventually, no
further increase in Q is obtained by increasing X. The model provides a
framework for other cases in which the tubes become blocked. The
model is presented in Section 2, and some preliminary comments on
optimization of the total flux Qiot 2re presented in Section 3. This
shows that it is crucial to establish values of Ap for which the tubes will
collapse or fall.

(2) The failure of the hollow fibres due to externally imposed stress can
either be due to buckling of the walls, or to the stresses in the relatively
thick walled tubes rising above the yield stress of the foam walls thereby
causing plastic collapse. In particular, a distinction has to be made
between “non-wetting” failure (in which the tube walls do not support a
radially-inwards flow of permeate) and “wetting” failure (in which the
presence of permeate in the tube walls provides a body force on the
foam and would eventually lead to plastic collapse). The “non-wetting”
case is investigated in Section 4 and the “wetting” case in Section 5.

(3) The process by which the fibres are cleaned also needs examination.
This process involves features such as: swelling of the foam due to the
imposed internal pressure, the eventual passage of air through the foam
walls, and the possibility that the foam walls would rupture under the
imposed stresses. This cleaning process was considered to be of great



importance, but there was not sufficient time during the MISG to

examine it in detail.

(4) It was suggested by Dr Ford that the optimum design for the tube walls
would be one in which the foam had a honeycomb structure with large
holes about 2 pu across separated by thin foam walls containing holes
about 0.1 p across. The adoption of such a honeycomb foam would
reduce the resistance to radial flow of the permeate, and would not
compromise the strength of the walls required to avoid compressive
failure during the filtration or rupture during the cleaning process.
There was insufficient time at the MISG for a thorough investigation of
this important topic.

(5) Finally, a simple control problem was identified. =~ Memtec had
discovered that the total flux of permeate could be described by an
empirical law (equation 6.1) which has some theoretical justification
and in which two parameters have to be determined by least squares
fitting of the model to flux data. The time at which the filter should be
cleaned can be determined using this law and the fact that the cleaning
process occupies a certain amount of time. This decision making
process suffers from two practical defects: firstly, it requires an
integration of data and, secondly, the flux drifts in time so that the two
parameters in the model have to be updated. The goal was to suggest a
control process which avoids both of these defects if possible. In fact,
the control mechanism which was deduced avoids the second difficulty
but still has to face the first. This topic is examined in Section 6 and it
is shown that the equation which determines when to clean the filter
(equation 6.3) is distribution-free and non-parametric.

2. FLUX OF PERMEATE THROUGH THE HOLLOW FIBRES

The application that is envisaged is one in which the material to be
filtered is quite clean and the filtration surface takes a long time to become
blocked. The foam walls of the hollow fibres are relatively thick in
comparison to the inner radius and the pressure drop across the walls is
typically less than 100 kPa. Under these circumstances, the walls can be
regarded as being stiff and permeable. (A more detailed investigation as to
when the walls are not stiff - by virtue of buckling or plastic failure - is
presented in Section 4.)



The immediate goal is to find the permeate flux through the permeable
foam tube walls, and to relate this to the flux of permeate through the Jumen.
Some of the notation has been introduced in point 1 in Section 1, and figure 2
displays the configuration and the co-ordinate system. It is noteworthy that
an incomplete analysis of this problem has been given in the well-known text
by Bird, Stewart and Lightfoot (1960, p.151).
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Figure 2: Definition sketch for the calculations of Section 2.

The flow speed v in the tube walls is given by Darcy’s Law (see e.g.
Batchelor, 1967, pp.223-224, for a crisp justification)

Vp = -uv/k (2.1)

where g is the permeate viscosity, k is a constant called the permeability, and
P,v are the pressure and velocity averaged over a volume whose dimensions
are large compared with the individual holes in the foam (typically 0.1 #) and
small compared with the thickness of the tube walls (typically 200 u). The
theoretical justification for Darcy’s Law is that the flow through the medium
is as if it consisted of a number of tubes of small diameter in each of which
the flow is of Poiseuille type with the speed proportional to the pressure
gradient and inversely proportional to the viscosity. Non-linear inertia forces
are negligible provided the holes in the foam walls are suitably small.

The permeate flow in the tube walls is incompressible and almost radial
in direction since the ratio [length of tubes:wall thickness] is very large. The
continuity equation then gives



which implies
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and hence, in the tube walls,

pdr!

V.aq(r) = -C(z)/r . (2.2b)

(2.2a)

Here C(z) has dimensions of

[pressure permeability/viscosity] = [MLT-2.L2/ML 1T!) = (L2T°}]

and is a slowly varying function of the axial co-ordinate z. Suppose now that
the almost radial flow holds for z > z;. Then the total volume flux of
permeate through the inside wall of the tube up to station z is

z (2@ C(z)
Q(z) = constant + / / r do dz’
Zo (o]

r

or

2!
Q(z) = constant + 27 f C(z) d’ . (2.3)

z0
Now consider the flow in the lumen. This flow is pressure driven and
almost parallel since the ratio [inner tube radius:tube length] is very small.
Locally, the pressure gradient can be regarded as constant and the non-linear
inertia forces can be neglected. Thus the approximate expression for the axial

velocity u(r) is Poiseuille’s law

alr) = - 330 - ) (2.4)

and the local volume flux swept past station z is



Qz) = lori /02“ u{r) r dr d@

or
4
B 1l’l'i dp
Q(z) =- 8y 32 (2.5a)
Using equation (2.2a), the local pressure gradient inside the lumen is
dp _ dC
dz = “dz
where
To pdr
a= . 2.5b
/ri k(r) (2.50)

and o has the dimensions |[L-ML'!T-1/L.L? = [ML-3T"!). Thus equation
(2.5a) becomes

a:rr? dc

Q(z) = B &2 (2.5¢)

and, if it is assumed that this expression for the flux is true for all z, the two
flux expressions (2.3) and (2.5¢) give that

/z oun';4 dcC

tant + 2 C(z)de! = — —. .
constant + 2% 0 (z)dz 8p dz (2.6)
This expression holds provided that C(z) varies on a scale which is large
compared to the inner radius r;.

Differentiation of equation (2.6) with respect to z gives the second order
ordinary differential equation

dc e (2.7a)
= 5 7a
dz?
where the constant 4 depends on the permeate and tube properties and is
given by
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The constant 4 has dimensions [ML’I'I"l /ML':;'I"IL“]2 = L'l. The general
solution of equation (2.7a) is

C(z) =cy e +cye (2.8)

and the corresponding expression for the pressure in the lumen is (from 2.2a
and 2.5b)

p=py- afc; e +cye T} (2.9)

The constants c; and c, in equation (2.9) are now determined for two
cases.

Tube of total length 2X (-X < z < X)

If the origin z = 0 is chosen as the midpoint of the tube, the pressure
will be even in z so that c; = ¢, in (2.9). Also, the pressure at the end of the
lumen z = X is p, which gives

P = Pp - 2ac, cosh vX
so that

(Po - Pe)
Cl =

~ 2a cosh X’ (2.10)

Thus the solution for -X < z < X is

(pg - P,) cosh 7z

pressure: p(z) = pg-

k]

cosh vX

¥(pg - Pe) sinh 7z
4 cosh 4X

velocity: u(r,z) = (ri2- r?).

Also, if the volume flux Q is taken to be zero at the midpoint of the tube, we
have that



wr?'y(po - Pg) sinh vz
8u cosh 4X

Qz) =

and the volume flux out of either end of the tube is

7t 1(pg - P,)

QX) = —

tanh vX . (2.11)

Note that the dimensions of the expression are
[L4AL-MLAT2/MLLTY] = [L3T)] (as expected) and that Q(X) tends to
the finite value wr?'y(po - p.)/81 as X becomes large. In this limit, the
pressure-driven flow through the lumen is limited by the viscous stress at the
wallsr =r;.

Semi-infinite tube (-0 < 3 < X)

In this (unrealistic) case, the constant c, in (2.9) must be taken as zero
and the constant c, is determined from the equation

Pe = Pg- & ¢y €%

which holds at the end of the lumen. The solution for -co < z < X is

pressure: p(z) = pg - (Pg - P.) e 1(X-2) ,
Y(Pg - Pe)
velocity: u(r,z) = T e 1(X-2) (ri2- ),

4
71y 7(Pg - Pe)
volume flux: Q(z) = —l—s"—e e-q(X-z) .

(Here the volume flux was taken to be zero as z — -cc.) Finally, the volume
flux at the end z = X of the tube is

mriv(pg - P,)
Q(X) = T

which is the limiting value of expression (2.11) for X large.
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8. OPTIMIZATION OF THE TOTAL FLUX

Suppose that the filter cartridge contains N hollow fibres. The total
flux of permeate from the cartridge is

Qtol. = 2N Q(X)

where Q(X) is given by equation (2.11),

nr?’y Ap
X) = ——— tanh 7X.
QX) = —-

The parameters on which Q, , depends are N, r;, r;, A, X, p, k and
Ap = py - py. (These parameters are defined in point 1 of Section 1.) Some
of the parameters must be regarded as constants (namely u for a given
permeate, k for a given foam, and (A,X) for a given cartridge). There is also
the engineering constraint that not too great a fraction of the cartridge
cross-section should be occupied by fibres, i.e.

N:rrg
A

< B

where B8, < 1 is a packing fraction and cannot be so large that the dirty
material cannot circulate around the fibres. Further, if 8, is too large, dirt
particles build up between the fibres thereby causing the fibres to become
glued together. Under this condition, there is a risk that the fluid pressure
acting on the fibres would be sufficient to stretch the fibres beyond their
elastic limit. The constant B, has to be determined experimentally.

There is another engineering constraint - the pressure drop Ap must not
be so large that the fibres would collapse cither by buckling or by stresses
exceeding a safe working stress such as the clastic limit of the foam. If the

critical pressure drop is written (Ap) the engineering constraint is

crit?
Ap < ﬂ2(Ap)crit,

where B, < 1 has to be assigned by Memtec. Note that (Ap),;) depends on
r and r, and is examined in some detail in the next two sections.

On combining the above arguments, it can be seen that the tube radii r;
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and r, need to be chosen to maximize the expression

ﬂlA 7"'? 7ﬂ2(Ap)crit

Quot = 2
tot, 7“_(2) 8u

tanh 4X (3.1)

where, for uniform foams, 7 is {(equations 2.5b, 2.7b)
: ( X )% (3.2)
y==——]". .
ri2 In[r /r;]

Optimization with respect tor;, r

It is convenient to use the variables

T
1=
§=’7X:ﬁ( K )é
ri2 In[r_/r;]

instead of r; and r,. Note that 0 <r; <r < oo corresponds to 0 < 5 <1,
0 < ¢ < oo and that (r;r ) are given in terms of (n,) by

i 2@)% (ln[i(/n])% ’

r

r, =—
° 7

The critical pressure drop (4p),,;, required in equation (3.1) is given by
two distinct analyses subsequently in this report, culminating in expressions
(4.7) and (5.6). If these equations are re-written using the variables (n,¢), the
flux is given by

HQuot . { E (l-r;)3
~—————— = min 5 It
4(1-2)% n(in 1/n)2

. 1

(In 1/n)? n?

2(1-)% 2in /7 tanh ¢. (3.3)
— + 1-2v

1-172
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It is clear from this expression that Q, , can be optimized by treating
=r;/r, and ¢ = X separately. To exemplify the calculation, we adopt the
values E = 200 MPa, 1-4% = 0.8 and L ax = 12 MPa (see Section 4 for a
discussion of these values) and plot on figure 3 the two components in the
curly brackets in expression (3.3). For these values of the parameters, it is
clear that

{ £ Qo }
max _—_1
8,8, AL

occurs for 7 slightly greater than 0.7 and takes the value 2.8 tanh ¢. The
maximum value for tanh ¢ is achieved by taking ¢ as large as possible
although, in practice, there is nothing to be gained by taking ¢ larger than 2.
This completes the optimization of Q,, with respect to (n,5) and hence with
respect to (r;,r.)-

CRUSHING FAILURE

BUCKLING __»
FAILURE

05 06 07 08 09 10

LA,
n=r, /1,

Figure 3: A plot of the n-dependent components of equation (3.3) against 7.
The point labelled A gives the max{min{RHS}} with respect to 5.
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The approach described above depends on the fact that the expressions
for (Ap)., involve (r;r)) only as their ratio ri/r,. This must be so (on
dimensional grounds) and hence is true for any critical pressure evaluation by
a buckling or crushing calculation. A further benefit is that the method
allows empirical determination or checking of the optimum ratio of radii for
maximum pressure capacity without having to vary two parameters. This
could be important in view of the uncertainties in buckling behaviour,
especially if the fibres are not exactly circular and concentric.

4. NON-WETTING FAILURE OF THE HOLLOW FIBRES

It was pointed out in the previous section that it is essential to know
(Ap),,;t - the critical pressure drop across the walls of the hollow fibres at
which the fibres will fail. The failure of the fibres can be due to several causes
including buckling collapse, the stresses exceeding the yield stress of the
material, or the contraction to (nearly) zero of the inner radius under the
external pressure. Recall also that a distinction must be made between
non-wetting failure (discussed in this section) in which the walls of the fibres
do not support a radial fluid flow, and wetting failure in which they do.

Buckling is now examined. A thin-walled, infinitely long cylinder of
internal diameter d, thickness t, Young’s modulus E, Poisson’s ratio v, is
known to collapse by buckling when the pressure drop across the wall exceeds
the critical value

(Ap) rjy = a% (3)3

(see e.g. Baumeister and Marks, 1958, pp.5-64, 65). In terms of the notation
used in this report, this condition becomes

(AP)erit = 4(1[.3,,2) (ror-; ri)s ' (4.1)

This expression is valid provided (r-r;/r;) is suitably small, say less than 1/5.

The expression is the lowest eigenvalue in the problem for the circumferential
displacement, and the analysis for this has been simplified by assuming that
the radial stress is negligible and the hoop stress varies linearly with radius.
These assumptions are inapplicable when the cylider does not have thin walls
and, in this case, the eigenvalue problem for the circumferential displacement
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probably has to be solved numerically. Delegates at the MISG were unsure if
this case had been analysed, possibly a literature search would reveal the
solution. It is noteworthy that buckling is impossible as (r;/r ) — 0, hence

(Ap)py — o as ry/r, = 0. (4.2)

There is, however, a well-known solution due to Lamé (1852) for the
stress distribution in a thick-walled cylinder in which buckling has not taken
place and the radial and hoop stresses are functions of radius only. The
solution is (Timoshenko and Goodier, 1951, p.59)

g. =

{r?rﬁ (P, - P;)
r

2 2 2
o2 +PRifi - Po"i}/(ro -r)%, (4.3a)
l.i2 r(2> (po - pi) 9
Cg=\-"

2 +pyry- Por?,}/ (ro-1)2, (4.3b)

in which the boundary conditions

(ar)rzri = -pl ’ (Ur)rzro = -pO

have been applied. The corresponding values for o4 at the inner and outer
boundaries are found to be

2
I
1
(aﬂ)rzri = ’pO -2 Ap 9 2' Ap (4.43)
To - Tj
A
=-pj-24p5—, (4.4b)
PR
and
r2
1
(Og)r=r = Po-24P 53—, (4.4¢)
l'o - l'i

in which the notation Ap = p, - p; has been used. The radial and hoop
stresses are skeiched in figure 4.

It is clear from figure 4 that the largest stress component is the hoop
stress at the inner wall, and, moreover, the thick-walled cylinder may be
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Figure 4: The Lamé solution for the stress components o, and gp.

considered to have failed when this component exceeds a safe working value.
If the internal pressure p; in (4.4b) is taken to be zero, failure will occur when

2
To

2 Ap > X (4.5)

2 2 max
l'o - I'i

where X' - is the safe working stress of the foam walls.
It is instructive to interpret criteria (4.1, 4.5) diagrammatically. To do
this, however, it is necessary to have estimates of the values of the parameters

E,vand ¥ ..
values'of these parameters for a solid plastic are assumed as

These values are not known with certainty. As an example,

E = 700-1600 MPa, v = unknown, Zmax = 59-69 MPa,

and the values which were taken for the plastic foam were

E=200MPa, 1-v2=08, X__ =12MPa.

m
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Using these values, equation (4.5) yields

4(1'1’2)(Ap)cril. 2(1- 2)‘Emax rg - ri2
E - E rg ’
that is
4(]-V2)(Ap)crit r¢2) } l'i2
= 0.096 . (4.6)
E 2
o
4('-V2)Ap
lOG‘o!—-—E—} /II
2 EQUATION
b
! I
|
0 i
-1 | “NON-WETTING' "\EQUAT'ON (47)
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Figure 5: A composite figure to present the essential results of Sections 4 and
5 on the likely critical pressure drop Ap which can be supported by the
hollow fibres. In this example, the parameter values are E = 200 MPa, 1

-2 =08, __ =12 MPa.

max

Figure 5 displays all of the above information. Note that equation (4.1)

for the buckling of the thin-walled tubes is equivalent to
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(Ap)piy = = (ro-ri)3- (4.7)

414 \ 1o

for (r, - r;)/r; small, and this modified form is the one plotted in figure 5.
The curve which indicates failure due to buckling has been sketched in a
plausible way to connect the two asymptotes (4.2, 4.7). The small area
marked on figure 5 corresponds to

E = 200 MPa, 1 - 1% = 0.8, Ap = 100 kPa, r; = 100 p, r_ = 300 ¢,

and it may be seen that the pressure Ap could be increased by a factor of
about 50 before “non-wetting” failure of the tube walls would occur.

5. WETTING FAILURE OF THE HOLLOW FIBRES

We present in this section an alternative model for the stresses in the
foam walls. Assume that Darcy’s law gives the speed and pressure of the
permeate flowing through the foam tube walls. The pressure force which
drives the fluid is assumed to have an equal and opposite reaction on the foam
material in the walls. The goal is to find this reaction force (or body force) on
the foam, and then solve the equilibrium stress and compatibility equations to
find the radial and hoop stresses (o, and o, respectively).

Equilibrium of radial forces requires that

148 1
;E;(rar)-;aa+F=0 (5.1)
where F is the body force caused by the permeate flow. A consideration of

equation (2.2a) shows that the body force exerted by the permeate is

F=.—=.22 (5.2)

where C(z) is a slowly varying function of z and, for the largest body forces, is
assigned the value at the end of the fibres (see equations (2.5b, 2.8, 2.10))

(Po - Pe)
C(z) - —.
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Hence, if the permeability k is constant, the body forces near the ends of the
fibres are

Po - Pe
" Trin(ry/ry)
Suppose now that there is zero axial strain (see e.g. Mase, 1970,
pp.145-147 for a justification) and let € be the radial displacement under the

body force (5.3). Linear elasticity gives that the stress components are (see
e.g. Timoshenko and Goodier, 1951)

F (5.3)

E d§ 3
%r = (1+o)(1-20) {(1"’) ar T ”?}

E d¢ £
% = (1+v)(1-2v) {V art (1-2) r} ’
Equations (5.1, 5.3) then give the equation

d/d&y & (1+v)(1-20) Po - Pe
dr ( ) “r (1-9E  In(r,/r;)

T dr
for the displacement &, and £ therefore takes the form

(5.4)

_A (1+v)(1-2v) Po~ Pe T
£—r+Br+ ) ln(),

r
(1-2)E  2ln(r,/r, r,

1
where A and B are constants. The stress components atre found to be

E A PoPe r
% = (1+v)(1-20) {'(1'2”) 27 B} T 3(1-) In(r,/r;) {ln r; * l-v}

E A Po - Pe r
%= T {(1-2V) St B} T 2(1) In(r,/r;) {ln nt V} '

Now suppose that the pressure acts on the liquid which then exerts a
body force on the foam. The appropriate boundary conditions on the radial
stressare o, = Qatr=r, r=r, The constants A and B above are therefore
found to be
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_ (14920 Po'Pe{ 2 1-v }

= +
1-v 2E I.(2) . ri2 In ro/ri

and these lead to the following expression for the stress components

Po = Pe r(2> ri2 ]"(r/ri)

7= 200 {2 2 (1-3)- ln(ro/ri)} ! (5:5a)
Po-P, ( T2 ri2 [-In(r/r;) + 1-20]

og=- 2(10) {rg - ri2 (1 + ;3) + ntr_/r) } . (5.5b)

It is readily checked that o vanishes at (r;,r ) and that the maximum stress
is |

| Po - Pe To + 1-2v»
Ogleey, == .
Olr=r; v (1242 2n(ry/r)

Thus the condition

To -2v -
(P - Pe) < (1-0) Ty { T T /ri)} ! (5.0

may be derived by ensuring that all stresses are below the safe working stress
z

max'

Equation (5.6) is plotted in fig. 5 assuming the values E = 200 MPa, 1 -
v? = 0.8, 2 max = 12 MPa. The model yields a rather lower critical pressure
for failure than does equation (4.6) although it also implies that, for the
parameter values which were chosen, the pressure difference (p, - p,) could
still be increased significantly (by a [actor of 10) without causing failure of
the hollow fibres.

6. WHEN SHOULD THE HOLLOW FIBRES BE CLEANED?

It is known that the total flux of permeate from the filter cartridge
reduces with time as the surface of the hollow fibres becomes clogged with
filtrate. According to Memtec, there is strong theoretical and experimental
evidence that the flow speed v(t) is given by an expression of the form
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v o'K

vit) =K + (6.1)

1+ Dtd

where v is the initial flow rate, K is the flow rate at very large times, and
(D,d) are constants which need to be determined by fitting expression (6.1) to
data. It is also known that the constants D,d drift slowly over time, so that
expression (6.1) has to be refitted at infrequent intervals.

Now, suppose that it takes a time T_ to clean the filter. It is required
to find that time T over which the filter should be operated in order to
maximize the average production rate

T
APR = TIT, /0 v(t) dt . (6.2)

At present, this time T, is determined by a procedure which requires an
integration of (6.1) and a knowledge of the constants {D,d). Memtec asked
the MISG if a control strategy could be suggested which would avoid these
two requirements.

The strategy which was suggested is as follows. Choose the time T so
that d(APR)/dT = 0, i.e.

1 T v(T)
-m/o v(t)dT+T+Tc=0

or

T
/0 v(t) dt = (T + T,) v(T) . (6.3)

The filter should be cleaned if this condition is satisfied. Note, however, the
condition may be written

T
[o {v(t) - v(T)} dt = T, v(T)

and it follows that the condition will never be satisfied if T, is sufficiently
large. (That is, the filter should not be cleaned if T_ is very large.) The
condition (6.3) is distribution-free and non-parametric, and it should be an
improvement on the present procedure in which volume productivity alone
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determines the times of backwash. It still requires, however, an integration
with respect to time of the flow rate.
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