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Optimal Train Schedule/Train Length

1. INTRODUCTION

This problem concerns a transportation system consisting of a supply of
ore (the loading terminal at the Mt Whaleback Mine), a destination (the
unloading terminal at Port Hedland), a railway line connecting these
locations, rolling stock, crew and other personnel, and a train-and-crew
scheduling algorithm. The line traverses more than 400 km and consists of a
single track except for a number of train-length sidings and a larger number
of short spurs for the use of track maintenance vehicles. Operating costs and
capital repayments per unit time must both be considered, and the objective
is to determine a policy, complete with detailed schedule, which minimizes
total (discounted) cash outflow per unit time.

A typical possibility involves 6 trains per day journeying (mainly
downhill) from source to destination, each train consisting of 3 locomotives
followed by 180 ore cars, each car bearing 105 tonnes of ore. With 60 cars per
locomotive, the fully laden train requires assistance (banding) for the
relatively short uphill section of the journey {at the Chichester Ranges) - it is
pushed by two extra locomotives stationed at the beginning of this section.

Such a train must spend at least its loading time (2 hours) at the source
and at least its unloading and routine checking time (5 hours) at the
destination. A one-way journey with delays takes 8 hours. Train speed,
laden or unladen, is not to exceed 75 km/h and 6 unladen trains must make
the return journey each day. To avoid the large costs involved in stoppping
and re-starting fully laden trains, the unladen ones must reach sidings at the
right times to let the laden ones through. Crews are not attached to
particular trains. A crew rest period is to be between 8 and 124 hours. For it
to be possible to schedule the above, we need at least 7 such trains in the
system. The one idle train at any time is deemed to require additional capital
cost.

Variations other than merely rearranging the daily schedule are
possible. For example.we may change the payload (the weight of ore per car);
or other train configurations may be used such as 3 locomotives followed by
144 ore cars, or the locotrol configuration with 3 locos at the head of the train
and two more in the middle (radio controlled by the single crew at the head of
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the train, with the aid of a special locotrol unit), with a total of 250 cars -
neither of these configurations requires banking. A more drastic variation
would be to decide that the scheduling time unit should be other than 24
hours.

The problem turned out to be substantially one of understanding the
system and formulating it in such a way that the variables with greater
influence on the total cost per unit time could be identified and the scope of
the decisions concerning these variables could be sufficiently limited. The few
items of reference material available were not directly helpful for this
problem, so the following account is self-contained.

2. VARIABLES AND CONSTRAINTS

K = demand at destination (tonnes) per scheduling time unit;
M = mass of an empty ore car (tonnes) - a constant;
P = payload of ore per ore car (tonnes);

H; = hauling capacity (maximum number of laden ore cars per locomotive) in
a train of type i. For head-end configuration, H; = 48 if banking is not
used and H; = 60 if banking is used. For locotrol configuration, H; (no
banking) increases to 50.

L; = number of locomotives in a train of type i;

C, = number of ore cars in a train of type i;

T; = number of runs of trains of type i per scheduling time unit;

U; = number of runs of trains of type i required in the system for a proposed

schedule to be feasible.

We also define
T=2T;, L=2TL, C=ITC,
U=2U;, L,=ZUL, C,=ZUC,
c=c¢,/T, T =T/T.

T = (TI,ng---). U = (Ul,l]2,.--) .
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(If all trains are of the same configuration, the above definitions simplify: e.g.
L, = TL]
The following constraints apply:
(a) PC, > K - we shall assume that P and/or C, have been adjusted to
make PC, = K.

(b) 90 < P < 125 - it is not worth having P < 90, and ore would spill with
P> 125.

(c) C; < HiL,

;L;» and C, < 255 (for trains to fit onto existing sidings).
(d) If the scheduling time unit is 24 hrs, then T < 10(8) if banking is never

(always, resp.) used.

Note: If indications are that it is better to keep T small (and the
requirements of permanent way maintenance favour this), then the
scheduling constraint posed by the limited set of sidings is not severe.

General Warnings

(1) A train for which C > 144 is split into two parts for unloading, and this
affects the unloading time and thereby the scheduling problem. Cases C
< 144 and C > 144 are therefore basically different.

(2) If there are two or more types of train being run, then in cases where an
extra train is needed in the system, we may well need an extra train of
each type being used.

(3) It has been assumed that the configuration of each train, once the
system is running, is left unchanged. It is not clear that this strategy is
consistent with optimality.

(4) Given T; and L;, we may sometimes reduce U; by reducing C; (details

later). Thus the standard configurations may need to be more
numerous than those commonly considered.
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3. COSTS
(A) Capital costs

Purchase prices: $x per locomotive, $y per ore car, $z per locotrol unit
and $w per km of new track (e.g. for an extra siding, if this is to be
considered). Here x > w > z > y - in each inequality, the larger term is more
than twice as large as the smaller.

If an interest rate of 100p% applies, then the annual cash outflow in
repayments for a locomotive, for example, must exceed $xp. Company policy
will fix a repayment rate r (> 1), resulting in an annual cash outflow of $xpr
per locomotive, etc. The evaluation of such outflow in relation to inflation,
tax, etc., as compared with the evaluation of operating cost figures, will also
be determined by the Company.

In any case the quantity (L, x + C y)p/365 needs to be considered, and
to be expressed in terms of the unit Cgp, the current daily operating costs.
(Corresponding terms for the proposed number of locotrol units and the
porposed length of new track (if any) must also be included.)

(B) Operating costs

Currently, 70% of the total operating cost comes from a,...,e below - «
making the greatest single contribution, 8 and v each making a substantial
contribution, but § and ¢ being relatively small. Our attempts at minimizing
total daily costs will therefore, in the first instance, focus on those variables
which most affect a, 8 and 4.

a: permanent way maintenance cost:

a; = contribution via T (as T increases, the track becomes less
accessible to maintenance vehicles);

aqy = contribution via C;, M and M+P (wearing out of track).

B:  locomotive maintnenace cost - assumed to be a constant multiple of L,.
7:  locomotove fuel cost - assumed to depend on C;, M and M+P.

é:  crewing cost - a function of T (which can take into account extra costs of
banking and for splitting longer trains for unloading).

¢  ore-car maintenance cost - a function of C;, M and M+P.
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Let S be the scheduling time unit (cycle length), measured in days.

Then C,, is defined as (@ + 8+ 7 + 6 + ¢)/S. Currently $ =1 and C, is

70% of the total daily operating costs. C_

p necessarily represents an amount

of money per day.

CC&.

Our task is to provide a procedure for minimizing, or at least reducing,

o+ Cop:

Notes:

(1)

(2)

(3)

(4)

(5)

Relative contributions of “up” (unladen) and “down” (laden) journeys
need to be determined for a,, 7 and ¢ (in decreasing order of
importance): apart from the proportionately larger amount of fuel used
in the mainly uphill journey, there is also the effect of the rattling of the
empty ore cars. We expect that the relative contribution of the “up”
journey will be greater in the case of v than with a, and .

In o, and 4 the relatively small contributions of the locomotives have
been neglected. This means that the estimates of cost changes below (as
P is varied) will be systematically a little too large.

g, v and ¢ are each of the form C, (function of M + function of (M+P))
where C, = K/P. At the lower levels of the optimization procedure, S
and K arec taken as constants, so, for any given value of P, we may try to
optimize a; + B + & + appropriate capital costs. But see later (Cost
Minimization, Capital Costs), where results show that a decrease in T,
leading to an increase in C, leads to an increased average turnaround
time for trains, which may increase U and the capital costs. Further, the
question of smoothing the work load at source and destination (if this is
desirable) would lead us to consider larger T rather than smaller.

If L, and C are increased while L, and C, remain constant, # and ¢ may
increase slightly.

The total mass hauled on down-journeys in each time interval S is
K + MC, = K + MK/P, a decreasing function of P.
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4. COST MINIMIZATION

Optimization techniques for discrete and for continuous variables are
quite different, particularly where the discrete variables can assume 6nly a
small number of values. Thus, for example, the question of how many trains
(if any) to bank is treated, not by a formula, but by the enumerator of
separate cases in the final search technique.

The operating and capital cost analyses also differ markedly. Thus,
with C = CL/T, and taking K as a constant, the constraint PCT
(= PC,) = K allows the elimination of one variable, but C__ is more readily
handled in terms of P and is related to C,, while C_, is more readily handled
in terms of the C’s and is related to L, and C , and finally, U is determined
from T by the requirements of train and crew scheduling.

Dimensionless formulation of operating costs

Let {;,,f;9:f5,...of5 be the fractions of the total daily operating cost
currently contributed by a,a,,8,...,¢ respectively, and let f =1;; + 19

It is known that f; > f, ~ f3 > f, ~ f; and that fig > fj;, each
inequality being substantial.

Let K°PO,... denote current values, and let k = K/K°, p = P/P°, ... for
any proposed plan. Take as unit of money the present daily operating cost.
Then the following results are derived:

ay = fu,{(l.q)ct + ne, f(M:P) / f(M:PO)} (i)

is the axle load of a laden ore-car, and 5 is the fraction of Qg9

where y

contributed by the laden trains on their “down” journey.

It is suggested that f(x) = x" for some 2 < n < 3. Note that
¢, =C,/CP = K/P + K°/P® = k/p. Let § = M/P°® = 25/105 ~ 1/4. Then

M+P  6+p

Mipo 641’

so that we suggest
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k 0+p\n

so that
o £k -
ap lp=1 12 {0+1- }
Estimates:

For example 7 ~ 0.85,n ~ 2, 6 ~ 1 gives

a relatively small difference of larger quantities.

(i)’

Because of the importance of a,, we need to know n and n fairly
accurately, and care is necessary if |p-1| is too large, since then a, - af may

not be well approximated by

60:2

1) — .
(p )ap bet

Note:

If the rattling of empty cars increases their contribution to wear on the
rails by a factor r, and if the formula f(x) = x" applies even when the axle

load is just M/4, then

rg" r

l-n = .
0" + (140)"  r+ (1 +1/6)"

With n = 2 and n = 0.85, we get r to be almost 5, which is surprising.

The term o, is less well known. One guess is that, for 4 < T < 10,

a;(T) can be approximated by a quadratic function of T with a stationary

value at T = 4, so that then

(T-4)2 + A

a; - fj;+————>——, for some constant A >0 .

(T°-4)2 1 A
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= « - - /. — v

T=13- > {1 7+ 1 0+1} (ii)

where 7' is the fraction of ¥ contributed by the laden trains on their “down”
journey.

Then

v

o
= - = . i
aplp-1 = 4k {0+1 l} (3)

<Osincen’ < 1.

The term ¢ is treated similarly:

€=f1g- E «S1-pgh 4+ p¥. 0+_p for some constant m > 1 (iii)
TS5 p " T e =0
Then
O¢ "m
> _, =15k {n— . } : (iii)!
dplp=1 0+1

so that it is important to know m and 5", even though f; is smallish.

ad
Overall, 8_ (ag + 7 + €) can be estimated as a function of p and, in
P

particular, at p = 1,

Present indications are that a, + 7 + ¢ is increasing, as a function of p,
but more precise numerical data will probably be needed. (We expect that
will be smaller than either 5 or n”.) Tentatively, ay + v + € will be decreased
if we decrease p.

Notes:

(1) In a term such as ¢, if, as a first approximation, we omit consideration of
the “up” journey (unladen) and the presence of M, then we obtain a
non-decreasing function of p, with
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O¢

= f:k(m-1).
P 5k(m-1)

p=1

However, if the “up” journey and M are taken into account, we find that
e

dpip=1
(2) Other terms (e, 8 ad é):

may be <0 evenifm> 1.

a;(T) is conjectural at this stage, as already noted;

B(L,) is probably best left as a function of L, which, together with T
(from which it is determined), places bounds on C;

5(T) must take into account crews for banking and the possible use of
charter flights for transporting crews, together with any extra
personnel expenses that may be involved in the unloading of
longer trains (which are split into 2 sections for this purpose).

5. CAPITAL COSTS

Here we may easily generate lower bounds for rolling stock
requirements, but precise requirements depend on detailed scheduling. The
lower bounds could assist in the final algorithm, where it would be useful if
most unsatisfactory possibilities could be rejected before an attempt was
made at scheduling them. While available rolling stock comfortably exceeds
requirements, the following considerations of capital cost are of lesser
importance - they would assume greater importance if replacement and/or
major overhaul were needing a fresh decision, or if the question arose of
selling off or re-deploying some surplus stock.

Lower bounds on rolling stock requirements (L, C, and locotrol units)
will come from a knowledge of turnaround time A as a function of C and a
sample method of (under)estimating requirements given T, C and A.

Warning:

If a schedule is too tight, then apart from the effects of any breakdown
there is the danger that if K is to be increased slight!y this will be done
simply by increasing P (C, already being at the upper limit of some
range), with consequent increase in a, (and ¢?). For these reasons,
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together with the fact that the method employed may sometimes
underestimate requirements, we are less worried if calculations are based
on what may be a slight overestimate of turnaround time.

Definition

The turnaround time for a train is the sum of the times for loading,
journey to port, unloading and routine servicing, and return to mine.

Each one-way journey occupies 8 hrs, the loading time is C/72 hrs, and
the unloading and routine servicing time is 3 + C/72 hrs if C < 144 and
5— + C/144 hrs if C > 144. Trains with C > 144 are split into two

sections and the two sections are then unloaded simultaneously.
Denoting the turnaround time by A(C), we have:

for C € 144, A(C) =19 + C/36 < 23, whichis <1 day

for C > 144, A(C) = 215 + C/48 > 24z, which is > 1 day .

(If there are trains of several types_invo involved, we may define mean
turnaround time A(C) Z A(C;)/T. Then A(C) A(C) iff all trains have C

< 144 or all trains have C > 144, but in mixed cases A(c)
under-(over-)estimates A(C) according as C < (>)144. Here we have assumed

that C is necessarily < (2] - 19)/( ) = 396, which is so).

36 48

Let U’ = U-T in some proposed scheme. Then comparing S + (U’//T)S
with A is the same as comparing U with (A/S)T. If, in either comparison, the
LHS exeeds the RHS by a sufficiently comfortable margin, then there is
reason to hope that U is sufficient for a feasible schedule to exist. In any case,
the smallest integer greater than or equal to (A/S)T will be denoted by u and
it is a lower bound for U.

For example, with S = 24 hrs, K = 105 tonnes and P = 105 tonnes, we
have C, = 953 cars/day. If it is proposed that there shall be 5 train runs per
24 hours, all trains being of the same configuration, then C = 953/5 = 191

(rounding up) so that, without banking, we require L = 4. Then A(C) = 215
191

+ 38 27% so that (A,S)T ~ 5;, giving u = 6 with a fairly comfortable

margin above (A/S)T, but detailed scheduling may well involve U = 7.
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In general, with S = 24, we have
for C < 144, A =19+ C/36,

1 C,

9
(A/24)T = aT +

24 x 36
for C> 144, A = 212 +C/48,

Cy

24
A/24)T = —T + )
(4/24) 32 24 x 36

Here we have taken C = Ct./ T. In fact C should be rounded up to an integer,
so that C, (= TC) should be rounded up to a multiple of T. However, the
small fractional error in C (given that C is of order 100) will lead to no

significant error in u.

Warning:

In the case of T (or of U), failure to round up to an integer value may
lead to errors. For example consider $ = 24, K = 10°, P = 105, C, =
953 and a decision to take C = 96 (with L = 2) for as many trains as are
needed. Here A = 19 + g = 21;. Taking T = %, we got (A/S)T =

8.962, with the hope that we can take U = 9. However T must be
rounded up first to 10, and then (A/S)T = 9.028, so that U = 9 is not
feasible (unless, of course, we increase P to reduce C,)-

In general, if all trains are to be of the same configuration, then the total
number of ore cars required in the system, UC, is a piecewise increasing
function of C, since U is an integer-valued step function of C; at the
points of discontinuity, there is a drop of U and thence a drop of UC. If
T and U are not constrained to be integers, we obtain (in the relevant
range of C) a continuous decreasing function of C (except for the
discontinuity of C = 144 where the unloading procedure changes)! This
would change the whole nature of the argument.
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Conclusions to Considerations in Cost Minimization

(a) Since the calculation of u involves rounding up (at two stages if C is
taken as the decision variable) and since rolling stock requirements can
be reliably determined only by detailed scheduling, it is probably not
fruitful to proceed with analysis of formulae that attempt to relate C,
T and U.

(b) If @9 + 7 + € is an increasing function of P, then any P under
consideration may be reduced so long as no increase in T or U occurs.
So, for any proposed T and U, take C to minimize P subject to not
changing T and U.

(c) There should be sufficient lee-way in any scheme for the effects of a
single breakdown or other single disruption not to involve a breakdown
of the whole schedule.

6. RECOMMENDATIONS AND ALGORITHM

(1) Since crewing considerations and handling at mine and port may make
S = 24 hours a constraint, optimization with respect to S will probably
not be required.

(2) For any proposed T and U, we maximize the number of ore cars used,
subject to restrictions of hauling capacity and subject to restrictions on
turnaround times because of U. This will produce a small number of
possible train configurations from which to make a selection.

The algorithm is a nested optimizing search, major decisions (purchase
of an extra locomotive, construction of a new siding, ...) being placed in the
“outer” parts of the structure, lesser decisions (e.g. selection of train types to
be used, given a supply of rolling stock) being placed next “in”, and the finer
detail (e.g. the numbers of ore cars per train, given the numbers of the various
train types) being placed at the “centre”.

The algorithm below has the advantage that it produces a range of
near-optimal solutions as well as the optimal one(s). It may also indicate,
from “inner” optimization calculations, whether a (relatively) major decision
is worth examining. For example, it may be impossible to schedule an
otherwise economical scheme because there are not enough locotrol units. In
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this case the inner part of the algorithm should be re-run with an extra
locotrol unit available (and costed).

CONCLUDING REMARKS

.

The appropriate “solution” to the problem was not a list of numbers of
train configurations with an explicit schedule for trains and crews: those who
presented the problem are able to generate schedules, and the details of the
problem are not fixed once and for all (e.g. demand may increase, or a new
supply point might be established and a line from it to the existing line would
have to be constructed).

The “solution” consisted of formulating the problem in such a way that
the Mt Newman Mining Co. could be given a procedure whereby good
(optimal?) decisions could be made and revised in changing circumstances.

The mathematics in the recommended procedure was not difficult - the
most difficult calculation was finding a partial derivative (or, finding a linear
approximation to a non-linear function in a neighbourhood of a suggested
point). The contribution of the mathematicians involved was to understand
the system and, from the available techniques of analysis and optimization, to
select appropriate ones and fit them into an overall strategy.
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Nested optimization algorithm

Given a combination of major resources (terminals, track)
Given a combination of less major resources (sidings, locomotives)
Glven a combination of still less major resources (control units, ore cars
(considered individually))

Y
# Finish » Exit
N
\J
Generate a combination T of trains (and estimate lower bounds for
! 3 .
rolling stock needed)
Y
44— Any reason for immediate rejection? Obvious conflict with management or
union policy?
N Obvious conflict with constraints?
Obviously much more costly than
] current best solution?
L Optimize P (and the Ci ’s) (a) Subject only to constraints from T
(and to general constraints on P)
(b) Subject also to having only minimal
numbers of the train types in the
Y Y system.
i—1Is it morc costly than the current best scheme?
! "
N
jgq——— Can it be scheduled?
Y
v
Can it be crewed, given this schedule? Add extra crewing costs such
7 as charter flights (if required)
N
N v
la———— Can a revised schedulewith crewing |Y
be constructed?
ji— I3 it more costly than the current best scheme?
A

v
“§— Replace the current best by the new combination




