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Stresses Induced by Non-Circularity
in Nominally Circular Sections
Under Internal Pressure

1. INTRODUCTION

C.I.G. Gases is the largest supplier of compressed gas in cylinders in
Australia. As such, the company goes to considerable pains to ensure that
these containers are safe for both consumers and handlers of the product.
While obvious deficiencies due to mishandling occur in these cylinders, the
feature of most concern at this meeting was the incidence of a small degree of
noncircularity (less than 5%) in the cross-sections of these cylinders, and the
effect of this on the stresses induced in the cylinders by internal pressures.

While initially, gas cylinders were thick with a relatively small payload
of gas at low pressures (80 litres of oxygen per kilogram of container weight
at about 7 MPa pressure) more recent development in cylinder construction
has led to much higher figures (200-400 litres/kg, at up to 30 MPa). At the
same time, changes in steel composition have led to a reduction in the
thickness of the walls of these cylinders (typically, tube diameter of 300 mm,
with wall thickness of 5-6 mm). On the other hand, cylinders of aluminium
construction have remained relatively thick-walled (20-30 mm, with tube
diameter as for steel).

In general, though, the increase in energy per unit volume of gas, and a
general reduction in tube thickness have led to a much reduced margin for
error in estimating the likelihood of cylinder failure. In the past, cylinder
design codes based on perfect circularity carried such high safety margins that
any errors induced by this assumption could safely be ignored. However, in
the light of the current desire for greater cylinder efficiency, it is felt that this
assumption may no longer be justified, and some way is sought to incorporate
the effects of noncircularity into a cylinder design code.

The ‘average’ tangential stress is given by:
& = pa/(b-a) (1.1)

where a and b are the internal and external radii and p is the internal
pressure. However, the maximum tangential stress may be substantially
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different to & due to variability in the stress through the cross section and the

possible deviation from circularity. Let o . be the maximum tangential
stress in a given cylinder and define A by the relation:

Oax = 51+ A). (1.2)

Essentially, A is the ratio of the maximum bending stress to . A number of
formulae have been identified by CIG for estimating A. They are:

A= e(g) ; (1.3)
o) (8"
A= 6(%) (1 + %)'l ; (1.5)

A= 6(%) (1 + Z:—*)'l ; (1.6)

where § is the maximal radial deviation from out-of-round, and h is the wall

and

thickness of the cylinder, while

Eh3
4(1-v?)R3
(where E = Young’s modulus, v = Poisson’s ratio, R = mean cylinder radius)

is the critical pressure (the pressure at which buckling of the cylinder wall
occurs) when the cylinder is subject to ezternal pressure.

*

(1.7)

The sources of the formulae (1.3)-(1.6) and the assumptions behind
them are of some interest. Equation (1.3) assumes a rigid-body deformation
(there is no deflection of the cross-section of the cylinder under deformation
[1]) while (1.4) is based upon the assumption of an external pressure acting on
the cylinder (it does however incorporate the effects of nonrigid-body
deformation |2|). The relation (1.5) is the adaptation of (1.4) for internal
pressure |3]. Finally, (1.6) is a design criterion based on (1.3); but obviously
the denominator has been modified; although the basis for this modification
was not made clear in the derivation [4].
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The questions brought to the study group were:
(i) Which of the estimates (1.3)-(1.6) is most appropriate.

(ii) Can these formulae be extended to thick walled cylinders.

(iii) What are the effects of non-uniform wall thickness.

After discussion, the Study Group agreed that no attempt should be
made to incorporate the effects of the ends of gas cylinders into the
calculations (although it was recognized that such ends could have
considerable effects). Rather, the cylinders should be modelled as an infinitely
long tube; thus reducing the problem of a two-dimensional one, with the
added assumption of plane strain.

2. PRELIMINARY CALCULATIONS

A natural starting point for the discussion was the Lamé (or boiler
maker) solution for a circular pressure vessel. The maximum hoop stress for
this problem is given by (see for example [1]):

_ p(b? +a?)

(2.1)
b2 - a?

max

pa
b-a

(1+2)

where

_ b(b-a)

'\_a(b+a)'

If h/a is small however we may proceed as follows. As in section 1, the
average hoop stress @ is given by:

pa
(b-a)’

Furthermore, the azimuthal strain produced by this stress is approximately
(bearing in mind that the radial stress is substantially smaller than &):

g =

(1-2)5
—
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The moment associated with this change in radius is

Eh3e¢
M=
6(1- v%)(a + b)

h2ap
"~ 6(a + b)

which leads to the approximation

a h
Omax =+ 5 + o(—p) . (2.2)

a

It is easy to verify that (2.2) and (2.1) are in good agreement provided (h/a)
is small. Note however that the deviation from the average stress is a
bending stress not associated with out-of-roundness of the cylinder. Thus,
bending stresses can not always be associated with a deviation from
circularity.

As a second preliminary calculation, consider a cylinder of uniform
thickness that a slightly out-of-round. Let the internal wall be described by:

r=a+ éu(0)

when the cylinder is uncharged. For h/a << 1 and large internal pressure
(p >> p*) we expect the final shape to be essentially circular. Thus, the
bending moment due to out-of-roundness will be approximately:

p*R3x

M=-—"

and hence for large p,

p(b? +a?)  p*Ri
&

h(b + a) h2

a *R2x
zgh— (1 P - ) (2.3)

~

ama.x

where
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K= E max|ii + u]

is the maximal deviation of curvature from circularity. That is, for h/a << 1

and p/p* >> 1

,CRszt
hp

(2.4)

It is worthwhile to compare (1.3)-(1.6) with the asymptotic expression
(2.4). Expression (1.3) is independent of p and is therefore inappropriate if §
is taken to be the maximal deviation in the radius of the uncharged cylinder.
In the next section we show that (1.1) is actually quite appropriate if § is the
deviation in radius for the charged cylinder. H we assume that the initial
shape of the cylinder is elliptical (i.e. u = cos28), then equations (2.4) and
(1.5) are consistent. A sign change in (1.4) to account for the fact that the
pressure is internal, not external, will make the equation consistent for an
elliptical cross section also. Finally, (1.6) is consistent if x = 126/R2 but the
rationale for this choice is unclear.

8. THIN WALLED VESSELS

The first step is to consider the equilibrium equations for the vessel.
Consider an element of cross-section of the tube, as shown in Figure 1, of
length ds. We assume that the interior boundary of this element has radius of
curvature R, and the element experiences a moment M about the midplane,
shearing force S at the (radial) cross-section, hoop force H, and is subject to a
(constant) internal pressure p. Figure 1 then shows this sytem of forces and
moments as they act on this tube element. If one then considers the
conditions for equilibrium of this element, one obtains the set of equations:

dM h

¥+(l +'2'E;)S:0 (3.1)
dS H

p+£—ﬁc:0. (3.2)

dH

0, (3.3)
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where h is the thickness of the tube.

Figure 1: Element of Cylinder.

Let the inner wall of the charged cylinder be given by:
r=a+ év(9)

where

27
/(; v(6) dé = o, max|v| = 1.

Th~en,

0| -

Ll i vsmeo (3.4)
- -« {V v . .
R'c 8.2 R

and

g v+ O 3
g9 =2t +0(8). (3.5)

Substitution of (3.4) and (3.5) into (3.1)-(3.3) yields:
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M = M, + éRvp + O(62)

H =p (a + év) + O(6?)

S = -pév! + O(6?)

where M is constant. However, M can be estimated as in section 2. That
is,

M = h2ap
°  12R
Thus,
M hap éR
M Tor T VP
and hence
pa h 6
amuzr(l+£+i (3.6)

& :_a (l + %‘) . (3.7)

Equation (3.7) corresponds precisely to (1.3) if the deviation from circularity
is taken to be the deviation of the charged cylinder. Note that (3.6), (3.7), in
contrast to (2.3), do not involve the curvature.

It is possible to extend the above analysis to the case when the initial,
rather than the final geometry is specified. Let the inner wall of the
uncharged cylinder be:

r=a(l-¢€)+ 6u(h)
where

(1- v*)pa
ThE

Then, the change in curvature is:



-« 6 .
R+R2[u+u-v-v

and hence

h3E
12(1 - 2)R2

or, equivalently,

[i +u-V-v]=-pRv

. 3p w
v+(l-p—* v=u-+u. (3.8)

Equation (3.8) can be solved using Fourier series. Let

0o
u(d) = Z (o sin k@ + B, cos ké) .

k=2
Then
oo 2
v(f) = z k21 (e sin k@ + B cos kb)
k=2 (k%- 1 + 3p/p*)
Thus,
pR 6éap
0 max ~ T }1_2 X

o k2.1

>

max{ 9
k=2 (k*-1+ 3p/p*)

For the special case of an ellipse, we obtain:

pa 66 P
Tmax ¥ l+-h—max|u| l+?

which is precisely (1.5). However if the shape is arbitrary, (1.5) will almost

(o sin kO + B cos kl))l} .

certainly be an underestimate.

A bound for v can be obtained in principle by noting that
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27
w0 = [ slo- elite + u(e)] ae

where
cos(fr - B¢) 1 1 cos ¢
G(¢) = 3 -
sin Bn 27‘.[,2 T ﬂ2 1
and
3p
ﬁ2 =1- p_* .
Thus,
[v(8)| < C max]ii + uf
and

27
C = max /0 IG(l6 - €])] de .

An estimate for C was not obtained during the study group, although it is
possible to show that

|
C—— >p*/3.
Sl p>pt/
The above analysis shows that we need to measure:

(i) For charged cylinders - the maximum deviation in the radius
OR

(ii) For uncharged cylinders - the maximum deviation in the curvature,

4. THICK-WALLED VESSELS

Consider a thick shell, and choose cylindrical polars (r,0,2). We assume
that the strain components are independent of z, and further, that
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€y = € = €3 = 053 (4.1)

i.e., we assume plain strain.

In this situation, the stresses o,
potential function @, which is biharmonic in the annular region of the tube,

» 09 and ogg are all derivable from a

and which yields

18¢ 1 9% i
T oy T2 g2 (4.2)

3 (43)
Opg = —— , .
60 arg

0 /109

_9 (22 4.4
" ar (r Br) ’ (4.4)
and

0,=0, 05,=0, o, =0vlo, +o0g), (4.5)

where v is Poisson’s ratio for the material of the tube (about 0.3 for steel).

Now consider a charged cylinder whose cross-section is defined by

1) < 1 < 1y0), (4.6)
with

ry(0) =a+ §cos 29,

ro(6) = b + qé cos 20,

where (6/a) << 1.

For a cylinder subject to internal pressure p at the inner boundary and
zero pressure at the outer, we have the boundary conditions

Op=-P: 0, =0 at r= rl(l)) s (4.7)

and
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on=0; 0, =0 at r=ry(0), (4.8)

where subscripts n and t denote stress components normal and tangential to
the boundary respectively.

If we assume an elastic potential of the form

#(r0) = A In (i) + B(i)2 + (6 cos 20)

COREE RTRICL

where A, B, ..., are constants; we obtain, on substituting into (4.2)-(4.4) and
applying (4.7), (4.8) to leading order in 4, a set of equations determining A,
B, ..., etc.

These then give

- pa2b2 .
) b2. a2’
pa’
- 2(b? - a2) ;
c—. pbas(qa + b) .
(b2-a2)3
b_. pa’b{ga(2a® + b%) + b(a® + 2b%)}
(b2 - a2)3 ’
E-. pab{qa3(a? + 2b2%) + b3(2a? + b2)} )
(b2 - a2)3 ’
F o pab3(qga® + b3)
(b2 - a2)3

In particular, the hoop stess o,,, regarded as being of most interest in
this analysis, is given by
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(6 cos 20) (b3 + ga®)

{a2(b2 + 12) N 6a%b3

=p

tt (b2 - a2)r2 (b2 - a2)3r4
2ab

+ ﬂ (6 cos 20) (qa(2a2 + b2 - 6r2) (4.10)
-a

+ b(a? + 2b%- 6r2))} +0(8%) .

Hence, when q = 1 (uniform wall thickness)

p(b? + a?) 4pbs(2ad + b3 + 3a%b)
max = 3 2 a(b? - a?)? '
Although the correction due to non-circularity can be large, (4.11) is
consistent with (1.3) and (3.6). Furthermore, a preliminary investigation
indicates that the terms neglected are O(82/h3) which suggests that the
analysis above is valid if 6/h is small.

(4.11)

It is worthwhile rewriting (4.11) as

_ PR h\2 66pa . h o(s
o=y (1 (@) )+ 55 (1 +5) + o

as this shows that the estimate (3.6) (when the charged cylinder is elliptical)
has a relative error of approximately

(h/2R)? + 6(6/R)
1+ 65/R

Thus (3.6) appears to be adequate for most practical purposes. Note however
that if h/R is not small, stresses such as the normal stress need to be taken
into account when designing pressure vessels.

The above analysis can be generalized to the case when the shape of the
charged cylinder is more complex. However the analysis is valid only if the
final shape of the cylinder is known.
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5. NON-UNIFORM WALL THICKNESS

The effect of non-uniform wall thickness did not receive much attention
due to time constraints. However, a solution for the cross section in figure 2
was found in the literature [5]. The maximum tangential stress is

[ 2b%(b? + a2 - 2ae - €?) .
o =p -
max (b2 + a2)(b2 - a2 - 2ae - €?)

when the external pressure of the cylinder is p. When e = 0, this of course

reduces to the standard formula for a cross section a < r < b of concentric
circles. Thin shell theory, as employed in section 3, yields the approximation

b+a-e
o Ep|lo—
max ¥ P 2(b-a-e)
which shows that the maximum stress is nearly the same as that of two
concentric circles of radiir=aandr=b-e.

Figure 2: Eccentric Bore.

6. DISCUSSION

The question of formulating a yield criterion was not examined.
However, i1 is clear that when h/R is not small, stresses other than the
tangential stresses need to be taken into account. Given that h/R is small
there are two cases which can be considered.
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a. Charged Cylinders. In this case, the estimate (1.3) is appropriate. All

that has to be measured is the maximal radial deviation from
circularity.

. Uncharged (empty) Cylinders. In this case, the maximum deviation in

curvature from circularity must be measured. In practice this will be
quite difficult unless a simple parameterization of the out-of-roundness
is assumed. Given that the shape is elliptical, the estimate (1.5) is
appropriate. The basis of (1.6) is unclear although the factor of 4 in the
numerator is possibly a safety factor. However, (1.6) does not give an
upper bound for an arbitrary shape.
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