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Two Phase Flow of Hot Plastic
Through a Cold Mould

INTRODUCTION

Moldflow Pty Ltd develops and markets CAD software for the plastics
industry. They presently have a number of packages which assist in the
design of injection moulded products. Some of these are based on a finite
difference/finite element model of the coupled flow and heat transfer processes
which take place as hot molten plastic is forced under pressure into a cold
mould. These models however often require considerable computational
effort, particularly for complex geometries. The question Moldflow posed to
the Mathematics in Industry Study Group was what could be said about these
processes using only a “bare hands” approach (that is, without relying on any
significant computing). A particular topic of interest to Moldflow was the
growth in thickness of the solid skin as molten plastic flows through a cold
mould.

Three geometric configurations were identified as being amenable to
some form of analysis. These are shown in Figure 1 and correspond to flow
through a long cylindrical tube, plane flow through a slab, and radial flow in
a circular disc. These configurations have in common the property that they
are two dimensional, with one of these dimensions corresponding to a “slow™
coordinate (in the flow direction), whilst the other is a “fast” coordinate
(across the flow). Here “fast” and “slow” are meant to indicate the relative
rates of change of the various flow parameters (fluid velocity, temperature) in
the two coordinate directions. For instance, the midstream fluid temperature
is typically of the order of 200° C falling to a mould wall temperature of say
30° C in a few millimetres across the flow. On the other hand, the decay in
the direction of flow is an order of magnitude slower than this.

The method of analysis for these three configurations is essentially the
same, and for convenience in this report we shall only consider the slab, or
Cartesian, case. We shall also restrict our attention to the steady state
problem. That is, we suppose that sufficient time has elapsed for any
transients in velocity, temperature, skin thickness, etc., associated with the
filling process to have settled down, and that all quantities are now time
independent.



58

cylindrical geometry

Yvy

slab geometry

radial geometry

Figure 1: The various geometries that can be modelled.
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CARTESIAN STEADY STATE MODEL

Governing Equations

dh
The model supposes that o << 1. This allows us to locally neglect the

“slow™ variation of h with x, and so all the governing momentum and energy
balance relations can be formulated as if the fluid channel width is (locally)
constant. (This kind of approach is common in a number of other
applications, for instance, lubrication theory.) More precisely, consider a fluid
channel of thickness 2h (regarded as constant for the moment) as shown in
Figure 2.

Oum

k) /) /S

w

Figure 2: Cross section through a slab in the flow direction. (We suppose

h dh 1
that o << .)

Assuming unidirectional flow, and neglecting any compressibility effects, the
equations expressing two-dimensional momentum balance are

Pox = (HUsy )y

(1)

Psy = 0.

This represents a balance between the pressure gradient which is driving the
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flow, and the viscous forces acting within the fluid.

Energy balance within the fluid can be described by

pcuo’x = (k0$y)$y + ”(u’y)z . (2)

The left hand side of this equation accounts for convective heat transfer, while
the terms on the right hand side represent conduction and viscous dissipation
within the fluid. Within the solid skin we only consider heat conduction in a
direction through the thickness of the slab, so that

(kyfg)ry = 0 (3)

is the appropriate governing equation. There must also be a heat balance at
the solid-fluid interface. This requires

6(solid) = 0(fluid) = 8, (4a)
ksl),y(solid) = kl),y(ﬂuid) . (4b)

(Note that implicit in (3) and (4) is the assumption that an interface, and
thus a solid skin, actually exists. That is, h < d.)

We cannot however completely neglect the variation of h with x.
Whilst it is permissible to neglect any “slow” variation of h in formulating
the above local balance relations, such variations in h must nonetheless be
accounted for in some global sense. We do this by specifying a fixed
volumetric flow rate q which may be related to the velocity u by

/h dy =--=Q (5
Ouy—zw— . )

The goal now is to solve (1)-(5), and so find
u=u(xy), @=6(xy), p=p(x), h=h(x)

in terms of the various material properties and the flow parameters Q and d.
In general an exact, analytic solution in a tractable form is not possible, even
in the case of constant material propertiess However a number of
approximate techniques can be usefully employed. We shall illustrate one
such approach for the case of a Newtonian fluid (that is, all material
properties constant).



61

An Approximate Solution Technique (Newtonian Fluid)

We begin by a priori assuming that within the fluid u and @ take the

txn) = w1+ (3))

forms

(6)

8(x,y) = 00(x)(1 - (%)) + 0y

where uy, 85, ¢ and ¢ are to be determined. The symmetry condition

u,y:(), =0

at y = 0 implies that

#(o) = #(0) =0,
whilst the boundary condition (4a) at y = h means

Y(1) =¢(1)=1.

These give velocity and temperature profiles across the flow as shown in
Figure 3. Physically, (6) corresponds to taking the y-profiles of u and 6 to be
of a fixed shape, with only their amplitudes varying along the flow direction
x. For the moment we suppose that the profile functions ¢ and ¢ are known
(we shall discuss some choices for them later), and address the problem of
determining the amplitudes u, and 6 along with p = p(x) and h = h(x).
This will be done by applying the following versions of (1) and (2) which have
been averaged over the half thickness 0 < y < h,

h h
/0 Pog dy = /0 (1u,y),y dy

h h h
‘/0 pcuo,x dy :[] (koﬁy),y dy +‘/0 ’l(u’y)2 dy *
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Figure 3: Velocity and temperature profiles in the fluid.

Substituting the assumed forms for u and @ into these gives after a little

algebra
d Ug
hge=-#7 #0) (7)
dg,  ké, u?
poughdy g == Y T ey (8)
where ¢/(1), ¢/(1),
/‘l
A=) (- O we) de,
and

1
Ay = /0 (#'(€))% d¢

are (non-dimensional) numeric constants depending only on the shape of the
profile functions ¢ and ¢. (In evaluating 6, we have neglected the variation

of h with x in accord with our earlier supposition that —— << 1.) From (5) we

find

uOhAs - Q v
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where

1
)‘3:/0 (1-4(€)) d¢ .

Using this to eliminate uj from (7) and (8) yields

d__pQ [80)

dx_-h:‘l[/\a] (9)
Apddy Ay 1

pCQ,\—33=-E¢’(1)0O+MQ2;§- (10)

3
Turning now to the solid, (3) and (4a) immediately give (for the case of

a constant solid conductivity k;) a linear temperature profile

y-

across the solid. Using this in (4b) we find

(Ow - 0p) ké,

s an - n YO
that is
ks h
00=M(0M'0W)E’ (11)

Substituting (11) into (10) we may eliminate 8, and obtain an ordinary
differential equation for h = h(x). By introducing the nondimensional

quantities
H h
=3
x_x e A3k
-3 |vo5] e
and
i [,\2 Q2
23l d% (0 - Ow)
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this equation may be conveniently written

dH . (1-H)?
dx - ( - ) + 7 H3 *

The corresponding nondimensional versions of (9) and (11) are

(12)

dP 1
LA (13)
dX H3
H
— — 14
T=1Hq (14)

where

[A§ ¥(1) 4%
P A ()] pepQ?

k
T = 6y[¢'(1)) k(O - Oyg)

Plots of solution curves of (12)-(14) for a selection of values of the
parameter v are shown in Figures 4a, 4b and 4c. These particular curves
correspond to the initial conditions

H(0) = 0.99 , P(0) = 0.0.

However, as (12) and (13) do not explicitly contain X or P, the choice of
origins for X or P is arbitrary (only differences in X and P are physically
significant). The solution curves for other initial conditions can therefore be
obtained by simply moving the origin of the X axis in all plots so that the H
vs. X plot gives the required value for H(0), and then adjusting the origin of
the P axis in the P vs. X plot to give the correct initial value to P.

Notice that H = 1 is an unstable equilibrium point of (12). The other
equilibrium point is given by the solution of the algebraic equation

H3

1-H ™
which always has a unique root in the range 0 < H < 1 for 4 > 0. This
equilibrium point is a stable attractor for all solutions starting in the range 0
< H < 1 {which, of course, are the only solutions which make sense physically
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X

Figure 4c: Temperature T.
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in this application). This is readily scen in Figure 4(a), where all the H vs. X
curves reach their equilibrium values by about X = 5.

Hitherto we have not been specific about the profile functions ¢ and .
Notice however that the particular choice of such profiles will only change the
numeric constants enclosed within |..] in the above definitions of X, P, T and
~. The qualitative character of the solutions is thus essentially independent of
the particular profiles. In fact, the above analysis introduces a number of
important dimensionless groups and suggests which aspects of the process
they may govern. The group

LE

pcQ
would seem to determine how rapidly the skin thickness reaches its
equilibrium value, while

nQ?

2
d ks(aM - 0W)
governs the magnitude of this thickness.

A simple class of profiles would be given by

$(§) = €7, P(£) = €7

for n,m positive integers say. As n and m increase these profiles become more
bluff, and in the limit as n,m — oo a slug flow profile is obtained.

The proper choice of velocity profile is relatively straight forward for a
Newtonian fluid as (1) can be solved directly to give the usual
Hagan-Poiseuille quadratic profile

=T (- ).

The case of the temperature profile is not as clear, due to the presence of the
convective term on the left hand side of (2). One possibility is to use the
“equilibrium” profile, that is, the profile that would apply were all the x

variation dropped from (2). This is perhaps not an unreasonable choice since,
as was mentioned in the introduction. we are dealing with a situation in
which there is a “slow” variation of u and @ in the x-direction, in contrast to a
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“fast” variation in the y-direction. If the x dependence is neglected, then (2)
becomes

2 _
k0,yy + u(u,y) =0.

Using (15) to eliminate u,, we find after some calculation

p,i h4 v\ 4
)

That is, a quartic profile.

A possible extension of the technique outlined here is to assume the
following forms for u and 6 in place of (6)

N
=3 to(1-4()
0(x.y) = ‘i @(x)(l " (ﬁ)) + oy

where N,L > 1. In this case one will need to satisfy not only averaged versions
of (1) and (2), but also an appropriate number of moments across the
y-direction of (1) and (2). This will lead to a system of ordinary differential
equations which will need to be solved to determine h = h(x), rather than the
single ordinary differential equation (12) as in the present case. This will
necessitate more computational effort.

Non-Newtonian Case

In principle, the technique outlined above could also be applied in the
case of a non-Newtonian fluid. However, in general the problem will likely
become computationally intensive. The special case of a “power law” fluid
with '

— Q
# = Alu,)

(A. a constants) can be handled quite easily. However once a temperature
dependence is introduced into u, as in the commonly accepted
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n=A(u,)® exp(B9)

(A, B, a constants) then (1) and (2) become coupled, and little progress
would seem possible without substantial computation.

Selected Notation

p pressure

a”)

nondimensional pressure

fluid velocity

=

viscosity

temperature

H o ®

nondimensional temperature

melting temperature of plastic

>
2

wall temperature of mould

oy
g

thermal conductivity of molten plastic

= =

w

thermal conductivity of solid plastic
density

specific heat

fluid channel half-width

slab half-thickness

nondimensional channel half-width

volumetric flow rate

slab width
(see (5))

nondimensional velocity, temperature profile functions

O £ &£ T a - o

ES

nondimensional dummy variable running over range 0 to 1

o me
%

derivatives with respect to £
Aj:Ag,A5  nondimensional numeric constants

v nondimensional parameter (see (12))
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cartesian coordinate along the flow
cartesian coordinate across slab thickness
nondimensional version of x (see (12))
differentiation with respect to x

differentiation with respect to y



