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W arping of Moulded Plastics

1. INTRODUCTION

During the injection moulding of plastics, the hot melt is forced into the
mould under high pressure, which compresses the material considerably. The
melt then solidifies, and during this process there may be large temperature
gradients. The result of these effects is that on cooling the product may be
under warping stress, to which it yields on release from the mould.

The course of events preceding solidification is complicated, and partly
treated in another report in this volume. The state of the material may be

characterised when molten by: -
(a) the temperature distribution;

b) the pressure distribution;
P
(c) the velocity distribution.

On freezing the velocity distribution is no longer required, but the pressure
distribution is replaced by a more complicated stress distribution.

When partly frozen, in principle all these distributions must be
calculated. We found it necessary to simplify by assuming that the stress
distribution does not become important (except for a uniform pressure) until
just after total freezing, and it is at this point in time that the analysis
begins.

2. ELASTICITY THEORY

A linear stress-strain relation (Hookes’ Law) is assumed, and also a
linear dependence of thermal strain on temperature. In general the stress o
and the strain ¢ are second order tensors defined locally in the material, and

the coefficient P relating them:
o = Pe (l)

is a fourth order tensor.

The state immediately following freezing will be denoted with suffix 0,
and after final release from the mould by suffix 1. Then o is just a uniform
pressure Lensor.
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If there is material displacement v in going from state 0 to 1, then this
affects the strain, but does not determine it, because the temperature change
has shifted the equilibrium point. If f(T) is the tensor giving the rate of
change of strain with temperature variation, and d is the apparent strain
deduced from v, then the real strain ¢, is given by:

T,
€ =¢g+d- /T {(T)dT (2)
0

where d is derived from v by:

avi avj 8vk avk
i = ( ) ij =1.3. (3)

+ -
ax(j) ax(i) ox(i) ax(j)
The summation convention is used in this report, so terms involving the
repeated suffix k are summed over k = 1 to 3.

The strain energy contained in a volume V is given by:

Strain energy = /tr(a*c)dV = /tr(a*Pc)dV (4)

where tr denotes trace (sum of diagonal elements) and * denotes transpose.
The final shape adopted is that which minimises this energy.

This rather general tensor formulation can be used for anisotropic
materials. The tensor P has only a few independent elements; the number
depends on the extent of anisotropy. As indicated in the example below, for
isotropic materials there are just two parameters which determine the tensor,
and a simpler formulation is possible. The tensor f(T) also simplifies to just
the temperature difference multiplied by the thermal coefficient of expansion,
for many materials.

3. ESTIMATING THE INITIAL TEMPERATURE AND STRESS

It is assumed that in state 0 the melt is still fluid enough to move in
response tc a pressure gradient, but does not move; therefore the stress
everywhere is equal to the applied injection pressure.

The temperatures at the mould surfaces can be taken as known, and in
state 0 the maximum, attained somewhere in the interior, is the freezing, or
no-flow temperature. This is enough information to fit a quadratic
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distribution, at least where the mould surfaces are nearly parallel.

4. TESTING FOR MINIMUM STRAIN ENERGY

It is likely that one is not interested in the exact shape following
warping, but rather in whether warping will occur at all; that is, in whether
the desired shape minimizes the strain energy. The simplest way to test this
is to calculate the strain energy for that shape, and then to calculate the
energy for shapes warped in some plausible and easily computed way.

Example

Isotropic Material

Consider a sheet of isotropic material, laid on the z = 0 plane, thickness
zg- It has Young’s modulus E and Poisson ratio 6. The Lamé constants A
and u are defined:

3 E
2(1 + o)
B Ec
(1 +o)(1-20)"
Then the coefficients P

A

n

ijkm of the stress-strain tensor P are:

ijkm ijm 6jm .

[Love], where 6ij = 1if i = j, 0 otherwise. This gives the strain energy per

unit volume:
2W = A(tr e)? + 2p tr €2

where tr denotes trace = sum of diagonal elements.

Suppose there was initially a uniform temperature gradient in the
z-direction which produces, after freezing, a contribution to the strain given
by

el h,zl

where 1 is the unit tensor (matrix), and h; is the coefficient of thermal
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expansion.

Then

2W = (9A + 6y)(hz)2.

Suppose the plate then deforms so that an additional strain tensor d is
added (calculated from (3)). Then the new strain energy density is calculated
using e = e/ + d.

In this simple case, t,llllere is an explicit minimum. The displacement

2

u=-h;yz,v="-hxz, w=- 7 (z2 - x- y2) gives a tensor d = -/, making the

strain energy zero. The curvature then, which is a measure of warping, is just
2h
l.
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