
The National Acoustic Laboratory (NAL), is interested in developing a reliable
model of sound propagation in the atmosphere. Such a model would be useful to
them for determining whether noise producers should go ahead with their activities
at a particular time, or wait until more favourable meteorological conditions prevail,
so as to minimise annoyance to neighbours. The propagation of sound in the
atmosphere is affected by variations in air density, causing variations in the local
sound speed, as well as by air motion, i:e. wind, which is likely to be turbulent. In
this instance, NAL is interested in sound propagation over distances of kilometres,
in which case the effects of the ground covering on sound propagation are not
important. NAL has the capacity to measure air temperature and humidity, in
order to determine the local sound speed, and also can obtain some information
about wind velocity.

It was pointed out to the mathematicians that occasionally the meteorological
conditions are such that the noise from a particular event may be much louder
than expected. The increased sound level is often attributed to the prevailing
wind, but may also be caused by temperature effects. The NAL representative,
Mr Warwick Williams, 'indicated that such an anomaly often occurs when there is
a temperature inversion, that is, when the air temperature increases with height,
which is opposite to the normal situation. The existence of an anomalous increase
in local sound intensity was noted to be reminiscent of the formation of a "caustic",
caused by interference between groups of sound waves. It is noteworthy that the
existence of caustics for the propagation of sound in the earth has been studied by
geophysicists, and the identification of caustics is useful because they carry a large
amount of energy (and hence sound).

Thus the major activity undertaken during the three working days of the study
group was to develop a method of determining the existence and position of caustics
for given atmospheric conditions. This helped to satisfy the requirements of NAL,
because the relevant model equations were determined and discussed, and a useful
measure of sound intensity was obtained. Additionally, the equations developed
have allowed us to isolate specific conditions under which caustic phenomena will
occur.

There is a large collection of literature dealing with the subject of geometrical
acoustics. Two particularly useful textbooks are by Landau & Lifshitz (1959) and



Lighthill (1978). Both give equations for the tracing of sound "rays". They are
based on the assumption that the amplitude and direction of propagation of a
sound wave vary only slightly over distances of the order of its wavelength. Then
a sound wave can be regarded as a plane wave in any small region of space.

The wave vector, k, and the frequency ware connected by a dispersion relation. In
steady propagation of sound in an inhomogeneous medium, at rest, the dispersion
relation is

w = Iklc(x, y, z) (2)
where c(x,y,z) is the local sound speed in the medium (the atmosphere, in this
case). In a medium moving with velocity u, the dispersion relation is

The second term in equation (3) is a "Doppler effect" term, which accounts for a
frequency shift due to the moving medium. The ray equations can be determined
from the dispersion relations by using

dr ow
dt = ok' (4)

dk ow
dt - - or' (5)

Equations (4) and (5), along with a dispersion relation, are the basic equations
of geometrical acoustics. By integrating with respect to time, t, or equivalently
distance along individual rays, one can trace rays in any given atmospheric condi-
tion, and thus obtain a qualitative picture of the sound propagation. It must be
remembered that the results represent the solution for a single frequency sound
wave in a non-turbulent atmosphere.

I
o(r) IJ(Ot,t) = o(Ot,t)

where Ot is a set of parameters defining the initial direction of a ray. Because J is
a measure of the local divergence of rays, it is inversely proportional to the sound
intensity.

When rays get very close together the assumptions of geometrical acoustics
break down. In such a situation, the sound waves interfere and lead to the forma-
tion of caustics. The quantity J therefore gives a means of locating the position of
caustics, because J = 0 corresponds to a caustic surface.



The atmosphere is typically in motion, and the air motion will be turbulent.
Turbulence acts to attenuate sound, but the mechanisms of such attenuation were
beyond the scope of those gathered for this session, due to time restrictions, so
turbulence was not considered. A literature search carried out prior to the MISG
found that some experimental and modelling work has been done on this problem
(Ingard (1953), Daigle et al. (1978), Wenzel (1971)).

The sound speed in air is typically 340 ms-1 and a moderate air speed is 20
knots ~ 40 km hr-1 ~ 17 ms-1. Thus we see that in the atmosphere, typically
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To first order, this implies that a sound will reach its destination before the wind
has a significant effect. Hence, as a first approximation, we neglect the air motion in
the following considerations. This approximation is not too unreasonable, because
the analysis is still appropriate to a moving medium, with the benefit that the
calculations are much simpler.

Another important aspect of the atmosphere is that it is vertically stratified.
That is, there are strong variations of the properties of the atmosphere in the verti-
cal direction. On the scale of kilometres, the horizontal variation of meteorological
properties is typically negligible. So we make the further simplification that the
sound speed (and the air velocity) is only dependent on the vertical co-ordinate, z.

By assuming vertical stratification and motionless air, the ray equations are
considerably simplified. In a Cartesian co-ordinate system they become

dr_d(x,y,z)_ k ()
dt - dt - jkfc z ,

dk = d(k, I, m) = -Ikl( dc) (9)
dt dt 0,0, dz .

This system is in fact two-dimensional, because the horizontal components of the
wavevector are constant (from equation (9)) and because the remaining equations
are dependent only upon the vertical co-ordinate. Thus we will neglect the equa-
tions for y and I in what follows. The problem reduces to the following system

dx k
dt = jkfc(z),

dz m
dt = jkTc(z),



dm = _\kldc
dt dz'

along with the dispersion relation

Here, k is a constant. Also, if the z-dependence of e is known, then the wavevec-
tor component m can be found from equation (13) to be

~
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m=± --P
c2

which is purely a function of z. Note that if k is specified for a ray, then the
initial value of m is also specified by equation (13). The ± sign in (14) determines
whether a ray is going upwards (+) or downwards (-). For a noise that occurs at
ground level, all rays will initially be going upwards, and we are only interested in
rays that turn over and return to ground level, since they are the ones that will
cause annoyance. Those rays that turn over will have the property

Because the right-hand-sides of equations (10), (11) are functions of z only, it
is convenient to take z as the new independent variable. This gives

dt Ikl
dz me

Equations (16) and (17) can be integrated to get x(z) and t(z).
two-dimensional Jacobian

l
a(x,z)1 = dz la(x,t)1
a(k, t) dt a(k, z)

kc at ax
- jkf ak - ak

using equations (10-17). For certain simple functional dependences of e upon z it
is possible to integrate (16), (17) explicity, and thus obtain an expression for the
Jacobian. In such cases, the location of caustics can be determined explicitly. We
carry out this process in the following two informative examples.



In this case, solution of (16) shows that rays are arcs of circles, so they take the
form

2

(x - XO)2 + (z + C
O

)2 = ~k2 (19)
C1 C1

1 v-:
xo = C1 Y k2 - c5·

It is also possible to solve for t(z) and then determine the Jacobian, which is found
to be

J = ~ cos </>( cos </>0 - cos </>)

PC1 cos </>0

. k k
sm </>(z)= -c(z) = -(co + C1Z)

W W

(
. -1 kco

</>0 = </> z = 0) = sm (-).
w

It is simple to draw a picture of the rays generated by (19), since they are simply
arcs of circles, and such a picture is shown in Figure 1. In this example, we have
set w = Co = C1 = 1 for simplicity. It is clear that the rays never overlap, except
at the origin, so that the origin (ie the sound source) is the only possible location
of a caustic. This corresponds to setting </> = </>0 in equation (20), so that J = O.
There is also a zero of J when cos </> = 0, which happens when a ray becomes
horizontal. At such a point, equation (17) is singular and the analysis breaks
down. Consequently, this point does not correspond to the location of a caustic.



Figure 1: Numerically determined sound rays for a linearly varying sound speed.
The values marked on each curve are the horizontal component of the wavenumber
k.

with Cl < 0 and C2 > 0, thereby describing an "inversion". A ray in this case will
consist of arcs of circles, as shown in Figure 2. Thus, for each piece of arc, the
expressions for Section 4 are valid, and they allow determination of the Jacobian.

For the part ofthe arclabelled (3), the expressions for x(z, k), t(z, k) and J(z, k)
are

W Clx (z, k) = -k { cos ¢>o + 2(- - 1) cos ¢>A + cos ¢>( z )}, (24)
Co C2

t(z, k) = .!..{2(1 - Cl )inl tan ¢>A1- inl tan ¢>o(z) 1- inl tan ¢>(z) I}, (25)
Cl C2 2 2 2

W cos ¢> Cl COS ¢>
J(z, k) = -k2 cos ¢>(z){1 + -"J..- + 2( - - 1) ¢>}, (26)

Cl cos 'f'0 C2 COS A



Figure 2: Schematic of a sound ray in the case of a simple inversion. The ray
consists of three separate circular arcs.

~cos ¢>o= V 1 - ~ ; cos ¢>A =

where ZI is given by equation (23). From equation (26) we see that J = 0 when

1 + cos¢> + 2(1 -1) cos¢> = 0
cos ¢>o C2 COS ¢>A

cos¢>= 1- k2 c2(z) = cos¢>OCOS¢>A (29)
w2 2(1 - Ct/C2) COS ¢>o- COS ¢>A

which defines the height Z at which a ray with parameter k touches the caustic
surface. In particular, we are interested in where the caustic hits the ground, since
this would be the cause of a loud noise. Thus we substitute z = 0 into (29), and
rearrange to find the particular ray which touches the caustic at ground level. This
gIVes

k2 2 (2C2 - Cl)
= w 2 ( ) 2C2Zt CtZt + 2co + CO(2C2 - Cl)

which can then be substituted into (24) to give the x value at which the caustic
strikes the ground.



In order to verify this result, the original equations (10-12) have been integrated
numerically, using the IMSL routine DGEAR, for a range of k values. For simplicity
(and in the absence of knowledge of real data) the following values of parameters
were used

w 1,
Co 1,
Cl -1,
C2 = 4,
Zl 0.5.

The value of k given by (30) is )3/7 ~ 0.655 and (24) gives

x(O, 0.6'55) ~ 1.30

From the graph of Figure 3, which is the numerical solution, we see that there
is a caustic surface hitting the ground at x ~ 1.3 and close inspection shows that
the particular ray touching the caustic occurs for k between 0.6 and 0.7.

The numerical solution of the ray equations should be quite straightforward,
and indeed Figure 3 has resulted from simple application of an IMSL routine. It
is also possible to produce a set of o.d.e.'s for the components of the Jacobian, J.
Then in three dimensions, it is necessary to solve 10 first order o.d.e.'s in order to
find the sound intensity. Of course, if one neglects the effects of wind, then this
reduces to only 5 o.d.e. 's. The necessary software to do this on a PC type machine
may be available in the public domain, and is definitely available commercially (e.g.
from NAG). By solving these equations, it would be possible to produce a map of
relative sound intensity at ground level from a single frequency source. The results
obtained will only be qualitative, however, because of effects such as turbulence
and because most sources produce a band of frequencies. Only comparison with
field measurements can show how useful such a model would be.

The geometrical acoustics approach described here has enabled the develop-
ment of a numerical procedure for tracing sound rays and determining local sound



Figure 3: Numerically determined sound rays for a simple inversion. The values
marked on each curve are the horizontal component of the wavenumber k.

intensity. The actual mechanics of the numerical solution have not been considered,
since it is envisaged that there is no significant mathematical difficulty involved.
Instead, we have examined the relevant equations and developed a method for
determining the existence and position of caustics. The idea that unusually loud
sounds can be heard when an inversion exists is verified by the second case study
performed, because we showed that a caustic surface can exist in such a case. Also,
we have questioned the importance of wind upon the propagation of sound in the
atmosphere, due to the relative magnitudes of typical air speeds and sound speed.
We have also pointed out that the results from a ray tracing model will only be
qualitative, due to the effects of turbulence, the spread of frequencies produced by
most sources and the effects of interference.

The author wishes to thank all those at the MISG who participated in this
work. Notable contributions were made by Drs R.S. Anderssen, J. Ha, N. Joshi,
J.e. Taylor and Mr W. Williams.
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