
COMPRESSION OF HIGH QUALITY AUDIO SIGNALS

1. Description of the problem

Fairlight Instruments, whobrought the problem to the MISG, have developed
a high quality "Computer Musical Instrument" (CMI) which is used for creating
and manipulating music and sounds (mostly of musical instruments) for use
in music recording, editing, mixing and composition for the music, film and
advertising industries. These industries require sound reproduction of at least
the quality of the sound stored on compact discs. [On a compact disc, sounds
are sampled at 44.1kHz and digitised to 16 to 20 bits.] The CMI stores most
of its input and output on multi-track magnetic tape, but there would be great
advantages in speed and flexibility if the sounds could be stored on random
access read/write discs. The high sampling rates required for the sound quality
make this prohibitively expensive unless a method of substantially compressing
the data can be developed. The compression of high-quality audio signals also
has other applications; significant effort is goinginto the development of methods
for transmitting high fidelity music along ISDN (telephone) channels.

General methods of data compression are widely available but the compres-
sion of music has two special features. Firstly, the compression and decompres-
sion must occur in real time. To produce the quality of sound from compact
discs 44,100 samples of 16 - 20 bits must be compressed per second. [Decom-
pression will generally be a faster operation than compression.] This implies
that the compression will be done using a program on a digital signal processing
(DSP) or customised VLSI chip and it imposes restrictions on the complexity
of the compression algorithm used. Secondly, in many circumstances it will be
acceptable for the result of compressing and then decompressing a signal to be
just perceptually identical to the original. Perceptually identical signals may be
substantially different.

Shortly before the study group, papers were presented at a conference in
the USA (85th Convention of the Audio Engineering Society) which described
in general terms an algorithm which compressed music from a Compact Disc in
real-time, from 16 bits per sample to 1.45 bits per sample (Brandenburg et al,
1988). The main components of this algorithm were

(1) A transformation of the data to the frequency domain by the discrete
cosine transform.

(2) Modification of the coefficientsby a "psycho-acoustic weighting function"
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(3) Quantisation of the coefficients

(4) Compression using an entropy (Huffman) coder.

The Huffman coder and compression algorithms like it are reversible - the original
signal can be recovered identically from the compressed signal. Because of the
quantisation of the coefficients of the discrete cosine transform, the algorithm
of Brandenburg is irreversible - the decompressed signal may be significantly
degraded even though perceptually identical to the original signal. There is a
third possibility - a near-reversible algorithm - which introduces a very slight
degradation but from which the original signal may be very nearly recovered.

Fairlight expressed an interest in all types of compression algorithm: re-
versible, near reversible and irreversible. It seemed, however, that matters such
as quantisation and psycho-acoustic weighting would be determined by exper-
iment and were beyond the scope of the one week study group and would be
determined by experimental methods. We therefore decided to look at reversible
and near-reversible algorithms.

2. Compression using autoregressions

A general method for compressing data is to use a parametric model to pre-
dict observations. The parameters are estimated from the data and, instead of
saving the raw data, the estimates of the parameters together with the residuals
from the model are saved. If the model is a good one, the residuals have signifi-
cantly smaller variance than the raw data and so can be stored (or transmitted)
using fewer bits.

The principal method of compression considered was the modelling of the
data series using an autoregression, a method also known as linear predictive
coding (LPC). In this method, the sequence of observations, x( n), is supposed
to come from a model

x(n) + b1x(n - 1) + ...+ bpx(n - p) = e(n)

and the e(n)'s are assumed to be white noise (i.e. independently and identically
distributed random variables with mean zero and variance constant).

For a basic implementation, an autoregression is fitted to a block of data and,
as described above, the estimates of the b/s, the 'start up' values x(l), ... , x(p)
and the residuals e( n) are stored. For more sophisticated implementations, the
final values from one block can be used as the starting values for the next. The
use of theautoregressive model is attractive because there are fast algorithms
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for estimating the parameters of the autoregression. Such algorithms operate in
real time when carefully programmed on a Digital Signal Processing (DSP) chip
for reasonably useful values of nand p. These algorithms are recursive in the
order of the model: given the parameter estimates for an autoregression of order
p, it is easy to compute quickly the parameter estimates for an autoregression
of order p + 1.

The issues that remain to be considered are:

(i) the size of the block of data to be used.

(ii) the order of the autoregression to be fitted.

The two issues are related; as the size of the block of data becomes bigger, so it
becomes more likely that the parameters of the model best describing the data
will vary over the block - even the generating process itself will change.

One approach is to decide upon a fixed block length and then for each block
to fit various models (autoregressions of different orders) and to choose the best
one. What is 'best' and the method of determining which model is best will
depend on the final aim. For data compression, Rissanen (1978) showed that if
a sequence of autoregressions of increasing order is fitted then the order yielding
the encoded data of minimum length is that which minimizes

BIC(p) = In s; + p InTjT

where T is the length of the data and s~ is the residual mean square after fitting
the autoregression of order p. To test the applicability of these ideas, a small
number of experiments were conducted on digitised piano music provided by
Bruce Tulloch of Fairlight Instruments.

3. Data analysis

A set of 8000 data points from some piano music were analysed by fitting
autoregressions . Figure 1 shows a plot of 1000 observations (0.02 seconds of
music) and their periodogram. To investigate the importance of block size,
autoregressions were fitted with the data divided into 16 blocks of length 500,
and 8 blocks of 1000 and finally 1 block of 8000. In each case the order of
the autoregression was determined using the BIC approach, with the maximum
allowable order being 2v'T. In Table 1, the orders of the selected models and the
corresponding residual variances are given for each block and each block size.
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Figure 1: (a) Plot of 1000 observations (0.02 secs) of piano music. (b) The
periodogram (squared amplitude of Fourier coefficients of the data plotted in
(a».
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Table 1. Results of autoregression fitting

Block size = 500 Block size = 1000 Block size = 8000

Block AR NSR Block AR NSR Block AR NSR
var order var order var order

53.3 34 0.016 47.6 58 0.008 19.8 110 0.00175
42.0 33 0.019
28.1 32 0.025 25.0 59 0.012
21.9 7 0.036
20.0 8 0.038 19.1 59 0.008
18.3 6 0.035
15.0 22 0.024 15.7 58 0.010
16.3 15 0.031
17.1 20 0.020 16.6 58 0.008
16.2 21 0.012
14.3 22 0.012 14.0 57 0.007
13.8 23 0.016
12.5 15 0.020 11.6 60 0.006
10.7 19 0.009
10.2 16 0.002 9.3 58 0.003
8.4 19 0.008

*NSR = Ratio of residual variance to signal (block) variance.

From this table, we can. see, for example, that to fit a model to each of the
first two blocks of 500 observations a total of 67 coefficients would be required,
whereas the entire block of 1000 requires a model of only 58 parameters and
this model has smaller residual variance than either of the models fitted to the
smaller blocks. In fact the autoregression fitted to all 8000 observations requires
only four parameters more than are required to fit autoregressions to each of the
first four blocks of 500. The residual variance after fitting the model to all 8000
observations corresponds to a compression of about 4.5 bits per observation.
There remains substantial scope for quantisation of the data (roughly removing
the least significant bits from each observation) and thus compressing the data
further. A further possibility would be to develop a 'vocabulary' of autoregres-
sions. Then that member of the vocabulary which best fitted the data would
be used to compute residuals. The benefit of this would be that the parameters
of the autoregressions would not need to be stored each time, but rather would
be stored in a dictionary. As a result, there need not be the same penalty for
storing coefficients and so smaller blocks of data could be used for the same size
model.
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4. Compression of Fourier coefficients

Further data compression is possible. Firstly, the residuals from the selected
autoregression are not uncorrelated because the process generating the data is
varying with time, and so a second autoregression could be fitted to the residuals
from the first. A second approach is to transform to the frequency domain and
perform data compression there. This may be particularly useful after fitting
the autoregression, for the effect of that fitting is to make the amplitudes of
the Fourier coefficients more nearly constant (that is to flatten or whiten the
spectrum). A method is to divide the frequency range into bands, to compute
the mean amplitude within the band and then instead of storing the amplitudes,
to store the mean amplitude and the results of dividing each of the amplitudes
by the mean amplitude. For the present data, the effect of this approach was to
reduce the range of the amplitudes by a factor of 100.

Clearly the effectiveness of this compression of Fourier coefficients depends
on a good choice of bands. Cameron (1987) and Hannan and Rissanen (1988)
provide methods for choosing the bands.

After these compressions in the time and frequency domains a Huffman coder
would then be used to provide a further compression of the signal. Thus a
complete compression algorithm might consist of:

1. Transform to frequency domain

2. Use psychoacoustic weighting

3. Fit autoregressions and select that providing greatest compression

4. Use spectrum smoothing technique to reduce dynamic range of Fourier
coefficients

5. Use entropy coder.

The effectiveness of each of these steps and the interactions between them must
be determined in part by experimentation. This was beyond the scope of the
Study Group, but the results of the preliminary work done here suggest that the
autoregression fitting would provide significant improvement in the compression
of audio signals.
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