RESONANT WHIRLING OF TWO-PIECE PROPSHAFTS IN
REAR-WHEEL-DRIVE CARS

1. Introduction

Many modern cars with rear-wheel drives have a two-piece, rather than the
traditional one-piece, propshaft (or tail-shaft). The cars include Holden Com-
modores, Nissans and many European makes. The two-piece shaft requires less
floor clearance, and hence a smaller floor tunnel, and does not suffer from the
high-speed twisting resonances to which the one-piece shaft is susceptible.

The two-piece shaft is, however, susceptible to a lower speed, high load (high
torque) phenomenon in which the propshaft whirls with increasing amplitude
until its restraining rubber bush is fully compressed in its mounting bracket
(see Figure 1), causing a thump sound. The whirling amplitude builds up
periodically, so that a regular series of thumps is heard at a frequency of about
5 per second.

The effect is very sensitive to the properties of the rubber bush and to its
temperature. Different designs of bush are used by different makers, each with
the purpose of minimizing both the whirling problem and the transmission of
other vibrations to the car body. GMH has a particular design which it would
prefer not to vary, because of retooling costs. It can however vary the properties
of the rubber material itself. By trial and error it has achieved rubber prop-
erties which control the whirling problem to an acceptable level under normal
conditions. GMH posed the question, to the MISG, of whether one can give
theoretical guidelines for optimal rubber properties. This might lead
to improved control of the whirling problem. It would also be useful for new

and modified propshafts, if it could replace the tedious trial and error process
previously employed.

GMH were also anxious to gain a better understanding of the whirling phe-
nomenon, and felt, with us, that a mathematical description of the phenomenon
was a prerequisite for the study of the rubber properties.

The thumping phenomenon is observed at both 40 and 80 kph approximately,
although the phenomenon had a different quality at these two speeds. The
2:1 ratio between these speeds suggests that a fundamental resonance and a
harmonic resonance are responsible. Such multiple resonances are typical of
non-linear oscillating systems, so we looked for non-linear driving forces.

The tail-shaft has a natural frequency of oscillation, in its rubber bush, of
about 40¢ps. A prime candidate for exciting this oscillation was the Hooke joints
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Figure 1: Sketch (not to scale) of a 2-piece drive shaft assembly, including detail of the rubber-bush-ballrace assembly.



Figure 2: Schematic illustration of the simplified model showing various constants and variables.



(see Figure 1). These are known to impose oscillatory torques on the shafts they
connect. The torques are known to excite torsional elastic oscillations in one-
piece tail-shafts at higher speeds and frequencies (Zahradka 1973).

A miniature model of the tail-shaft assembly was built using Technic Lego,
in a configuration resembling Figure 1. Hooke universal joints were used for
all joints, rubber bands were used to approximate the rubber bush and the
shaft was driven by an electric motor. The shaft-cum-rubber-band system had
a natural frequency of about 20cps. It was found possible to excite resonance
at this frequency by tuning the speed of the motor precisely. When the shafts
were all in a straight line, no such resonance was found. This rather primitive
experiment showed that Hooke joints between angled shafts could be the driving
force in the real system, and so the dynamics of this effect was studied. Other
possible driving forces were discussed and eliminated to the group’s satisfaction.

2. The dynamics of a simplified model

Figure 2 illustrates the simplified model that was analysed. The mass of the
tail-shaft was replaced by a single point mass m coincident with the constant
velocity (CV) joint. Real tail-shafts have moments of inertia and exhibit gy-
roscopic effects. There is no great difficulty in including such effects, but our
primary aim was to focus on the crux of the resonance phenomena. Inclusion of
all sorts of additional but inessential effects seemed likely to cloud the issue.

The rubber bush was taken as coincident with m. The front half of the shaft
is nearly parallel to the gearbox shaft so that the front Hooke joint behaves like
a CV joint. The real angle at this joint was given as no more than 1°, while the
other joints were at varying angles of around 4°, so this approximation seemed
satisfactory. However, for simplicity, we adopted the geometry shown in Figure
2, while retaining the front CV joint.

The angles 8,¢,% in Figure 2 are the Euler angles of rod Om relative to a
fixed frame through O. The angle 6 was taken as fixed because it was known that
the spline joint tended to freeze up under load, preventing significant change in
8. A flywheel of moment of inertia C' was located as shown. This was intended
to represent the inertia of all the rotating car components connected to the
tail-shaft itself. So C' would include the rotating parts of the engine, gear box,
differential, axles and the wheels (and, indirectly, the linear inertia of the car
plus load, though decoupled somewhat by the rubber tyres).

Equal and opposite torques I' are applied at the two ends of the system. No
damping forces are included, because these seemed inessential to an understand-
ing of the phenomenon.



The system has only 2 degrees of freedom, described by the 2 generalized co-
ordinates ¢ and 9. Evidently the system (with I'’s included) is a self-contained
conservative system. Energy can be exchanged between the mass m, the fly-
wheel, the torques and the rubber bush. The whirling phenomenon would cor-
respond to oscillations in ¢.

A Lagrangian formulation of the dynamics is convenient because it deals
easily with generalized coordinates and because it does not involve the rather
complex forces and torques at the Hooke joints. Only the forces that do work (the
I'’s and the rubber bush forces) need be considered. The Lagrangian equations
take the form (dots denote time derivatives).
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where T is the kinetic energy and V is the potential energy of the system. The
flywheel has angular velocity ¥ + ¢ shown in Figure 2. The mass m has linear
velocity ¢£sinf with ¢ being the distance from O to m as shown in Figure 2.
Thus

1 . 1.+ =
T = Sm(¢tsin 9) + SC(+ ¢)? (2)
We suppose, for simplicity, that the rubber bush is ideally elastic and exerts a
force ks where k is a stiffness constant and s = ¢£sinf is the displacement of m

along its circular path. The potential energy due to the torques I' is the negative
of the work done by the torques. Noting the angles in Figure 2 we thus have
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V = Sk(¢Lsind) + I($ + ¢ ~ B) (3)
A standard relation for Hooke joints is (Wagner and Cooney 1979).
) sin
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For equations (1) we need
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Substituting (2), (3) and (5) in (1) gives

(m€sin® 0)é + C(¥ + §) — (k£ sin?0)¢
C(h+¢) = [cos8/(1 - sin®f cos? ) — 1]T (6)



We take initial conditions
$(0)=0, $(0)=0

with various ¢(0) and %(0). Since 8 is of order 4°, we can expand the sines and
cosines and keep only terms up to 2. Then equations (6) combine to give

w2 = —¢+ Acos(29)
w2 = ¢-B cos(2%)

(M
where w = (k/ m)i' is the natural frequency of the system,
A = T/(2ke?),
B = AQl+me6*/C) (8)
A convenient simplification is to put T = wt. Then
¢ = —¢— Acos(2¢)
" = ¢+ Bcos(29) 9)

where (') = (d/dT).

The dimensionless constants A and B summarize the physical regime in
which we are interested. For VN Commodores

~ 10N/m
~ 290Nm

k
T
l 1m

Q

whence
A~15x10"*

We note that B/A measures the ratio of the moment of inertia of flywheel
plus m to flywheel alone. Since C represents many inertial parts, we expect
C >> m€%6?, whence

A=~ B
Then (9) gives
¢II + 'Qb” = 0
so that
¢+¢=Nr

where N = 1)(0)/w and 7 = T + ¢(0)/N. Using & for ¢ we now have
®" = —® + Acos(2N T — 29). (10)
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This is the equation upon which our subsequent discussion is based. We see that
it resembles a simple harmonic oscillation (SHO) with a forcing term of small
amplitude A. Prior to resonance we would expect ® to be small, so that

®" ~ —® + Acos(2NT). (11)

This linear equation exhibits resonance at N = %, so we would expect reso-
nance in (10) at this N. The non-linear ® dependence in (10), however, gives a
resonance which grows and develops in a fashion radically different from (11).

3. The resonant behaviour

Figure 3 gives a suite of solutions of (10) for a several values of N and
®(0) = 0 obtained by numerical computation using IMSL routine IVPRK. We
took A = 0.05, larger than its true value, so that individual oscillations are
clearer. We noted the expected resonance at N = % (figure 3a) plus others
at N = } and N = 1 (Figure 3b). The resonances do not persist, but rather
they grow and die away in periodic fashion. As N moves away from a resonant
value, the period of this envelope decreases quite rapidly as does the amplitude
(Figure 3c).

This periodic surging in the resonant behaviour seems quite close to GMH’s
description of the thumping phenomenon. The peak amplitudes are potential
thumps, since the peaks occur at a frequency much less than N. We cannot make

a more quantitative comparison at this stage because of the simplifications in
our model.

The resonances can be derived theoretically as follows. In (10) we put y = 2@,
1= 2N and a = 2A, which gives

y" +y = acos(y — nr). (12)

For & << 1 and 7 << 1/a we can obtain a solution y(7) in powers of a via the
recursion

Yo = 0
Yit1 +Yi+1 = acos(y; —n7) (13)
for j =0,1,2,..., with y;(0) = 9;(0) = 0. Thus
Y1 +y1 = acos(nr)

with solution
o

1—n2

"= [cos(nT) — cos 7] (14)
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Figure 3: Resonant and near resonant oscillations & vs 7 with ®(0) = 0,
®(0) = 0. Case (a) is the fundamental resonance with N = 0.5 (engine angular
velocity). Case (b) is the first overtone with N = 1. Case (c) has N = 0.49, just
below resonant speed. The uneven peaks in Figures 3 and 4 are a result solely
of the coarse time steps at which @ is plotted.



This shows the expected fundamental resonance at n = 1(N = ;—) The next
iterate satisfies

v+ = acos(nr) - ayisin(nr) + O(y7) (15)
o2

= acos(nT)+ i—z—? [sin(297) — sin(n + 1) — sin(n — 1)7] + O(c?).

(16)

The O(c?) driving terms imply that y, has resonances at
7+1=1,2n=1landyp-1=1

ie.n=0,}and 2 (N =0,%and 1). The values N =  and 1 are the first under-
tone and first overtone of the fundamental resonance N = %- The coefficient a?
indicates a more slowly growing resonance compared to the fundamental. This
is consistent with Figure 3b. The N = 0 resonance is an artifact of the simplifi-
cation leading to (10), which effectively gives the external system infinite inertia

(C = 00). Thus the system can have a spurious energy even when N = 0.

Since these solutions are valid only for small 7, they predict only the onset
of resonance, not its later development.

It seems likely that the fundamental (N = %) and first overtone (N = 1)
resonances correspond to the observed thumping phenomena at 40kph and 80kph.

For ®(0) # 0 one finds other modes of oscillation. We illustrate in Figure
4 how the fundamental resonance, N = , varies as ®(0) increases. We shall
classify these modes further in Section 4.

4. Asymptotic analysis

The technique developed by Krylov and Bogoliubov (see Bogoliubov and
Metropolski 1961 (BM)) enables one to find the amplitude (and phase) of the
envelopes of the solution curves, like those shown in Figures 3 and 4. First we
write our equation in the notation of BM:

i+ wlzr = ef(vt,z, %) (17)
with
f(T7$’j:) =COS(T_3)’ (18)

where ¢ = 2w?A4,z = 2& and v = 2¢/(0). BM represent solutions of (17) in the
form

z(t) = a(t) cos[vt + O(2)] + O(e) (19)

9
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Figure 4: Fundamental resonant oscillations N = 0.5, $(0) = 0. Case (a)
illustrates mode 1 with ®(0) = 1.0. Case (b) illustrates mode 2 with &(0) = 2.0
(cf Figures 5 and 6). Case (a) is close to the constant amplitude case of mode 1.
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Typically one finds that a(t) and ©O(t) vary slowly compared to cos(vt), so they
describe the envelope of the fast oscillations. BM, (14.4), obtain an asymptotic
expansion for a and © in powers of £. To first order these are given by (BM
(14.25) withp=¢g =1)

da E w= s
de _ £ P ooR) (20)
do 3 = 100
E = W-—-V- (—l-l-/- a___X_:ooe Ga(a) (21)
where
1 27 2T .
Foa) = 75 [ @[ dysinge @ Op(ab,y)  (22)
474 Jo (]
27 2m .
o) = 5 [ a0 dpcospe ¥ Nfy(ab,)  (23)
474 Jo 0

and (BM (14.4))

fo(@,6,8) = f(8,acos,~savsiny)
cos(8 — acosy) (24)

Note that the integration variables # and v bear no relation to our original
Euler angles.

We evaluate the integrals in stages. First, for F,,, we need
1 2T . . 2 .
5 /(; dfe~io(¥-9) cos(@ —acosyp) = gielasey—y) él}- /(; dge’® cos ¢

1 i
= 5(8on +85,-)e eV (25)

where §; ; is the Kronecker delta. Then we need

= L [ s Galeni=)
F = 3 Jo di sin e

1

= 5 02" dysinp[cos(oy) — isin(o9p)][cos(oa cos ¥) + isin(oa cos )]

= Zl,}' /(;21r dy[sin(oacos ) cos{(o — 1)1} — sin(oa cos ¥) cos{(o + 1)9}

—icos(oacos ) cos{(o — 1)1} + icos(oacos P)cos{(c + 1)¥}]  (26)
We have the standard integrals (Prudnikov et al 1986, para. 2.5.27, p440)

27 3
/ d sin(z cosz) }sin(nw) -0
0

cos(z cos z)
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and

cos(zcos z) cos(nw/2)

/ozvr " sin(z cos z) }cos(na:) _ sin(nr/2) }Jn(z)

for all integers n, where the J,, are Bessel functions. Now
F= -21-1' [e"(”“)“/zJa...l(aa) - e'.(""l)”/?J,-l(aa)] (27)
and (22), (25) and (27) give
Fy(a) = -‘lii(6,,1 - 65,-1) [e"(”“)"/ 2Jy41(0a) — e~/ 2Ja_l(cra)] (28)

Thus (20) has contributions only from ¢ = +1 and —1. Noting that J_,(-2) =
Jn(z) we eventually have

da € .
= -2-;[Jo(a) + J(a)]sin ©. (29)
By a similar procedure, (21) reduces to
do €
il M[Jo(a) — Ja(a)}cos © (30)

Noting that (Abramowitz and Stegun 1965)
Jo(a) — J2(a) = 2J1(a)

Jo(a) + J2(a) = 2J1(a)/a
we can write (29) and (30) in the form

da _ 108
dt ~ a ag
do 160H
T " ava (1)
where . 1
H(a,0) = ;Jl(a) cos© + 5(1/ —-w)a? (32)

Thus (31) is a Hamiltonian system with generalized position and momentum
variables 1a? and © (or —© and }a?) respectively. The practical consequence
is that H is a constant of the motion (or first integral) and (31) can be solved
analytically.
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The motion can be described qualitatively as follows. Put
H(a,®) = constant.
Then for the fundamental resonance v = w (N = %) we have
Ji(a)cos©® = K

for constant K. The resulting family of curves in the (a,®) plane are shown
in Figure 5 for various K. The particular cyclic path followed by the system
depends on the choice of ®(0). This shows how one can obtain oscillations of
the type illustrated in Figure 4.

Figure 6 shows a numerical solution of the envelope equations (31) with
a(0) = 0.01 and © = 0. The resulting envelope is evidently very close to the
simulation Figure 3a. The envelope equations do not admit a solution with
a(0) = 0, but a(0) can be very small, so one can get arbitrarily close to the
®(0) = 0 simulation.

The asymptotic analysis thus explains why the resonance like Figure 3a has
an oscillating envelope. For more detail, note that (31) implies, for v = w,

dez — 2 a? a

d?a 2 [Ji(a)Ji(a) Ji(a)? .
OREA LG CRETC W

At maximum and minimum a, (31) implies ©® = 0. Thus

d’a _ € Ji(a)Ji(a) %2 asa—0
dz e a? 0- asa—a

where a; is the first zero of J;. Thus a(¢) has a large positive curvature at its
minimum and a small negative curvature at its maximum. In the case $(0) = 0,
large becomes +o00 and small becomes 0; hence Figure 3a.

The peak amplitude @ of the oscillations at frequency v and ®(0) = 0 is
obtained by setting

H(a,0)=0
This quadratic equation in v has solution
1
2

Pim el %—{wz _ 8eJy(a)/@2}

Including @ < 0 solutions and plotting |a| against v gives Figure 7. This shows

the modes obtained in Figures 4 and 5 and how they are modified when v differs
from w. We see that the higher amplitude modes can exist only within sharply

13
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Figure 5: Variation of amplitude %a of the envelope versus its phase © at
the fundamental frequency N = 0.5. These curves, obtained from the method
of averaging (Krylov-Bogoliubov), are very close to simulation results.
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Figure 6: The envelope %a vs t as predicted by the KB theory with a(0) = 0.01
and ©(0) = 0. The result is close to the envelope of Figure 3(a).
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defined intervals of v values centred on w. The width of these intervals decreases
for large @, like )
Ji(@)/a® ~ 1/a?

We have not examined whether or how these modes, other than the lowest
amplitude mode, might be excited in a practical situation. They would seem
to require a large, abrupt input of energy directly to the & motion, when the
frequency is close to w. We know of no mechanism which might achieve this.

5. Conclusions

We have devised and analysed a simplified mathematical model of the whirling
and thumping phenomenon. The model shows that Hooke universal joints can
cause whirling (¢ oscillations) in the propshaft at its natural frequency and at
overtone and undertone frequencies. The observed thumping at 40kph and 80kph
seem likely to correspond to the 2 largest resonances: the fundamental (natural)
frequency and its first overtone.

The rubber property in our model is the linear elastic stiffness constant k of

the bush. There is the obvious dependence of the resonant engine speeds %w, %w

and w (radians per second) on k through w = (k/ m)% Increasing stiffness pushes
up these speeds. Further, equations (31) show that the thumping frequency (i.e.
the envelope frequency) is proportional to ¢ and hence to I'/k. So increasing
stiffness causes the frequency of thumping to decrease. We note however that
thumping (envelope) frequency is very sensitive to departures from resonant
frequences (Figure 3c) and to initial conditions ®(0) and ®’(0).

The time and data available at the MISG did not permit us to study this
central practical problem in more detail; so it remains to find rubber properties
in the central bush that minimize the severity of the phenomena. However the
study reported here shows that this problem can be analysed using the following
techniques.

1. A Lagrangian formulation of the basic dynamics, incorporating more real-
istic inertial and gyroscopic terms and rubber parameters.

2. A numerical solution of the resulting differential equations using an IMSL
program.

3. The iteration scheme of Section 3 to locate resonances of first, second, etc
order.

15
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Figure 7: Variation of envelope amplitude }a with engine speed $(0)(= ).
Note that models, other than mode 1, are confined to a very narrow range of
engine speeds around the fundamental resonant speed jw.
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4. The Krylov-Bogoliubov technique (Section 4) to directly obtain the de-
pendence of resonant amplitudes and thumping (envelope) frequencies on
rubber properties.

These techniques have wide application to problems involving oscillations of
non-linear systems (Bogoliubov & Metropolski, 1961 and Hagedorn, 1981).
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