THIN-WALLED BEAM OPTIMISATION

1. Introduction

General Motors-Holden’s Automotive Ltd (GMH) provided the Study Group
with a problem involving the optimisation of cross-sectional shapes of various
hollow beams which occur in car body structures such that the weight can be
reduced without sacrificing style, strength and stability requirements.

In the design of the overall vehicle structure, preliminary analyses are made
for vibrations and strength. At this early stage, the beams are represented as
lines with undefined cross section, merely points which should have appropriate
moments of inertia in horizontal and vertical directions relative to the ground
and a torsional constant. The next phase is to flesh out these beams, firstly
taking any styling into consideration and then to meet the target values of the
preliminary design. Then a final detailed analysis of the whole structure, in-
cluding finite cross sections, is performed using a comprehensive finite element
analysis. Beams at this stage are considered three dimensionally near their con-
nections and as line elements in between. Several iterations in these phases
could well be necessary. The participants at the Study Group decided as a first
step to look at the class of hollow thin-walled beams (Gjelsvik, 1981; Murray,
1984; Vlazov, 1961) of closed cross section. The walls are sufficiently thin to
neglect the effects of warping which can become important in correspondingly
thin open section beams. With classical thin-walled theory being applicable, it
would be natural to expect that such optimisation problems would have been
well studied. A modest data base search of the open literature yielded only one
relevant publication (DeVries et al., 1986).

The overall question which needs to be answered is whether or not optimisa-
tion would be cost effective to GMH in improving current beam designs. If so,
what is the best way of doing it? Here, a beginning is made on the second of
these questions.

There are essentially two basic approaches to solving our optimisation prob-
lem. One is to represent the unknown cross-sectional curve by some parameters,
such as coordinates of splined segment joints, and then optimally select these
by one of the standard numerical algorithms available. The other is to base
the optimisation on the calculus of variations, a method well suited here. Both
procedures are examined, with more emphasis given to variational calculus.
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2. Problem definition

Figures 1(a) and 1(b) show cross sections of two of a family of single or
multi-celled, hollow and thin-walled beams which may occur in the frame of a
car body. The wall thicknesses are denoted by ¢, arcs by S, arc lengths by L and
enclosed areas by A. It is required to find the dotted curve S and its thickness
¢ given the solid curve Sp and its thickness ¢o such that predetermined section
properties Iz, I, and J are met and the weight of the beam is minimised.
There will be some constraints on allowable thicknesses and on the extent of the
available region for S defined by a bounding envelope E. The junction between
S and S has been idealised, in that a real junction will have short flanges usually
outwardly normal to S—Sg and spot welded along the length of the beam. This
refinement can be included easily in a future analysis.

Figure 1: Cross sections of hollow, thin-walled beams

Because the cross-sectional shape of the beams to be designed is constant
along their length, their weight, which for a given homogeneous madterial is pro-
portional to volume, is then proportional to sectional area of the tube material.
With the further practical fabrication constraints of making continuous sections
of constant thickness, weight in such sections can be assumed proportional to
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lengths Lo, for So, and L, for §. Contours and lengths are based on mean paths
within wall cross sections.

Now define the requirements mathematically:

The axes z,y are principal axes located at sectional centroids. The terminol-
ogy for the single cell beam is used.

The position of the centroid is defined by

0 = tO/ zd.s+t/:cd.s (1)
So S

0 = to/ yds—i—t/yds (2)
So s
with ds = (dz? + dy?)1/? |

Arc lengths and enclosed areas are

Ly = g ds (3)
L = /S ds (4)
A = /So yda:+/sydx (5)

The torsional constant J is the Saint Venant torsion constant which expresses
the effects of geometry in the relationship between cross-sectional twisting mo-
ment and angle of twist. For a single cell it is (Gjelsvik, 1981; Murray, 1984)

4A2

J=_22
d
fSo-l—S Ts

which becomes
4A2
T = (6)
(2+%)

For a multi-cell, the extension of the definitions above is simple except for J.
However, this is well known and may be found in texts such as Gjelsvik (1981)
and Murray (1984). For our purposes it is sufficient to present the results for a
two-celled beam as in Figure 1(b):

Lott1 A? + Lt toAg?2 4 Litot(A + An)2
J=4{01 + 100+10(+0)} )

LoLty + LLytg+ Ly Lot
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With Lo, L1, to, t1 and Ag known and L, t assumed, then with c1, ¢z and e¢3
constants, defined from equation (7),

J=c1+c2A+ 63A2 (8)

For a greater number of cells the quadratic form in A still holds. Whether or
not a beam is multi-celled is predetermined by other criteria such as localised
buckling.

The principal moments of inertia are given by

I = 1o y2ds+t/ y’ds (9)
So S

I, = tO/ x2ds+t/w2ds (10)
So S

I, = to/ zyds + t/ zyds =0 (11)
So S

Practical restrictions limit the thickness to a lower bound t7 and an upper
bound ty
tr<t<ty (12)

The nonlinear weight function to be minimised is
W = tolo+tL (13)
which is equivalent to a minimised L when ¢ is given.

Practically, it is Tecognised that it may be difficult to achieve all three targets
set on I g, I,, and J. The value of Iyy is considered to be the least critical for
vibrational design and may be allowed to float. Furthermore, it may be adequate
to have axes non-principal with Iy # 0.

3. Direct numerical optimisation

The conventional way of tackling our nonlinear optimisation problem is to
adopt a curve shape S and a particular ¢ and vary them systematically until a
deemed minimum W is found which does not violate the constraints. The curve
is normally assumed to be composed of a number of splined segments, linear,
quadratic or cubic. Some simple calculations for linear segments will now be
performed.

Given two fixed points with their cartesian coordinates, po(zo, o) and
Prt1(Znt1s Ynst) join them with n+1 straight-line segments numbered sequen-
tially. The location of nodes at points py(T1,y1)s - o» pn(Tn,yn) then define
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the segments representing the unknown boundary § with a total of 2n un-
known coordinates and 4 known. Consider now the j* segment lying between

pj-1(%j—1,9;-1) and pj(z;,y;) defined by
y=a;z+b; (14)
with
Wiy, (@1 — 25oay;)
(g —xi) (zj—zj-1)

The integrals defining the sectional properties may now be calculated by
summation over the individual segments. The position of the centroid (Z, 7), for
principal axes z,y derived from an arbitrary set of axes z’, ', then follows from
equations (1) and (2) as

1
_ lofs,wlds+ 530 (14 ad)i(af - 27, (15)

toLo +tL
n _o\1
— _ tlgyds+ 31351+ a7h)3(y7 -y ) (16)
y toLo + (L

where z/. — 2/,

— . L ; .
5= i1 =% — ;-1 and y; Yj—1 = Y; — Yj—1 are required for a; above
and in

n

L= Z [(.’L] - (L‘j_1)2 + (yj - yj—1)2J

[N

(17)

j=1
For a single cell
A= [ s+ j_z;[%aj(x? —a2) 4 bj(a; — 251)] (18)
and J remains as equation (6). The moments of inertia are
Lo = to/so y*ds + %J_‘;(Ha;z)%(yi—y?_l) (19)
I, = t /SO z2ds + %;(1 + a?)%(a;jf —-z34) (20)

t & 3
Iy = tof eyds + 33 (1+ aDHa;(ad - #5y) + Sbi(e? — a2 )
[0} j=1
= 0 (21)

The objective function W remains as equation (13). For a fixed t and no
envelope E the conditions for extrema are

ow  ow 0. =1
- — = 7—=0, =1,...,n
Oxj ayj I ’

19



and from these the global minimum is sought. With the envelope E included
and the thickness ¢ variable but bounded as in equation (12), the minimum W
could well have some point p; on E and t = {1, with OW /Ot # 0.

For quadratic and cubic spline segments it is not difficult to establish equa-
tions analogous to the linear case above. Then integrations provide logarithmic
functions and elliptic integrals respectively.

There are well established algorithms (Gill et al., 1981) for solving our op-
timisation problem. These are not discussed here; instead, a special case is
considered with a small number of linear segments without envelope restraint.
This forms a basis for comparison with the variational calculus approach of the
next section. The special case is a non trivial one not appearing in standard
structural analysis texts. It is the determination of the contour S, y > 0, of
minimum length L between two points, each on the line y = 0 at distance 2b
apart, for a given I ; about y = 0. This problem is identical to solving its
reciprocal: given L find S which maximises I,,. This is the problem which is
now examined.

b 125 .250 375 .500 .625 .750 875
Shape
1/2 Rectangle | .6380 | .5625 | .4557 3333 | .2109 | .1042 | .0286

1/2 Diamond | .6563 | .6250 5729 | .5000 | .4063 | .2917 [ .1563
1/2 Hexagon | .6585 | .6328 5876 | .5208 | .4307 | .3151 [ .1722
1/2 Octagon 6596 | .6361 | .5933 | .5286 | .4386 [ .3232 | .1772

sn Elliptic 6611 | .6406 | .6009 | .5385 | .4504 | .3333 .1841
Function

Table 1. I/t for shapes of Figures 2(a,b,c,d,e) with L = 2.

Figures 2 (a, b, ¢, d) display linear segment approximations to the true curve
calculated in Section 4 (an elliptic sn function) of Figure 2(e). Each has a length
I = 2 units. Table 1 shows values of I/t for variations of b. The symmetrical
shapes of Figures 2(a,b,c,d) are first assumed and I/t calculated for various
positions of the moveable nodes. Although the height of each figure changes
with base width, the semi-rectangle and -diamond are fixed once b is set. The
semi-hexagon has one degree of freedom, for a given b, to preserve its top surface
level at y = y; for the node p; shown and determined from 8I,,/dy; = 0. The
semi-octagon has two degrees of freedom, z1 and y for the node p;, determined

20



(a) 1/2 Rectangle (b) 1/2 Diamond (c) 1/2 Hexagon

(d) 1/2 Octagon (e) sn Elliptic Function

(f) Superposition (a)-(e) (9) sn Elliptic Function,
Rotated base 0-1

Figure 2: Shapes leading to optimum sn elliptic functions: maximised moment
of inertia I, arc length I = 2, base points separation 2b = 1

from 91;;/dx1 = 81,./0y, = 0. From the numerical results of Table 1, and the
superposition of correctly scaled Figures 2(a - e) in Figure 2(f), it would appear
that linear segment representation for S will approach the correct smooth curve
limit as the number of degrees of freedom is increased.

4. Optimisation by calculus of variations

(a) General formulation without envelope constraint

The objective function W containing L, its target constraints, lpz, Iy, Ly, J
and centroid coordinates ,7, are all expressed in terms of line integrals. This
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immediately suggests that the optimisation can be done by a variational calculus
approach for these quantities, with constant values of ¢t discretely varied within
the bounds of equation (12) until minimum W is found. Here the presence of £
is ignored.

With y’ = dy/dz and Lagrangian multipliers Xo.....6, consider a function

F(z,y,9') = (Ao + Mz + Aoy + Asz? + Mazy 4+ AsyP) (1 + y'2)17 +Xey  (22)

and a functional containing it
1
G = / F(z,y,y')dz (23)
zg

The curve y = f(z) between points po(Zo, yo) and pi(z1, y1) is to be found such
that G has a global (absolute) extremum, either minimum or maximum. The
association of the A; with section quantities is clearly

(>‘07 >‘1a )\27 A37 A‘h )‘5’ >‘6) : (La :iv 37, Iyy, I:L‘y7 Il'l‘? A) (24)

This form of F is the well studied isoperimetric case (Gelfand & Fomin,
1963) where there is minimax reciprocity. That is, if Ag = 1, the minimum
of G minimises L subject to six additional requirements of section quantities.
This is the same as maximising any other one of the section quantities, say Iz,
replacing an I, requirement by one with L. Before discussing the use of area
A instead of torsion constant J, the requirements (Gelfand & Fomin, 1963) for
finding an extremum of G are briefly outlined.

From the first variation of G there is the essential requirement of the Euler-
Lagrange equation

— (=) = 25
5y d ~(3 y,) (25)
from which simplified forms devolve for F' = F(y, y'),
a
F - y'5-57 = constant (26)
and, if need be, for F = F(z,y'),
oF
oy = constant (27)

Equations (25) or (26, 27) produce differential equations of second or first
order respectively but both involving two arbitrary constants dq,dy in their so-
lution y = f(x,dy,dz2). The end points po and p then provide two conditions

22



Yo = f(zo,d1,d2) and yy = f(z1,d1,dz). Often the solutions for d; and d, are
not unique and correspond to stationary values of G. These may be global and
minimum, maximum or neither, or multiple extrema and any of the extrema
may be weak (necessary continuity of y and y’) or strong (necessary continuity
of y only). (Weak and strong used here follow the calculus of variations tradi-
tion which is opposite to that generally used elsewhere in mathematics). For
uniqueness of d; and dy additional conditions are imposed arising from second
variations of G and the analysis of Weierstrass (Gelfand & Fomin, 1963). Al-
though there are established necessary conditions and sufficient conditions for
weak local extrema, and strong local and global, extrema, there do not appear
to be available yet both necessary and sufficient conditions for either local or
global extrema. Here, two sufficient conditions will be used which provide a
strong global extremum. The first is the strengthened Weierstrass condition for
a minimum

o’F ,

83/_'2>0’ — <Yy <0 (28)
assuming 93F/dy" exists. (For a maximum the sign of the inequality is re-
versed.) The second is the Jacobi condition that z solutions (conjugate points)

of
dy , Jy _((?y 83/)
oty 5d, = \ody 53 ) .., (29)

must lie outside the open interval (zg,z;). If there are conjugate points inside
(2o, z1) it means that either there is no extremum or that there is an extremum
plus a stationary but non-extremum G. In practice, the Weierstrass condition
(28) is used explicitly and the Jacobi condition (29) is more conveniently used
implicitly by checking numerically for the most extreme G if multiple solutions
are found for d; and d,.

The nonlinear second order differential equation arising from (22) and (25)
is

(Mo 4 A1z + Aoy + Asz? + Agzy + AsyD)y” — Do + Aaz + 2X52)(1 + v?)
3
—A6(1+ %) + (A + 22az + Aay)y'(1+32)° =0 (30)
with Welerstrass condition
Ao+ Az + /\2y + /\3.272 + /\4:1,'y + /\5y2 > 0 (31)

Likewise from (26) and (28) for F(y,y’) there is the first order differential equa-
tion and Weierstrass condition

(Mo + Aoy + Asy?)(1 + y'z)_% + Aey = constant (32)
Ao+ Ay + syt > 0 (33)
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If J of equation (6) were added to F' as the integral form of A[J —4A4%/(toLo+
tL)] the first variation would produce 4A? [(toLo+tL)A[t/(toLo+tL)SL—(2/A)§ A].
The coefficients of § L and § A would then be absorbed into Ag and Ag respectively.
A similar process is required when using the multi-cell equation (7). However,
now it is necessary to use a constraint equation involving J, A and L, strongly
suggesting that, when J is given and L is sought, a numerical iterative process
is required using all the equations in finding an extremum G.

It is clear that with constant ¢ a minimum W corresponds to a minimum G
with Ao = 1. To gain some insight into the complete problem, it is useful to
consider some special cases where some of A; = 0.

(b) Maximise I, given L

Initially the case numerically studied in Section 3 with piecewise linear seg-
ments will be re-examined to obtain the curve of Figure 2(f). Variationally,
equations (32) and (33), with A2 = A¢ = 0 and A5 = 1, become

y? + ho= —dy(1+ y?)% (34)
Y2+ X <0 (35)
These require that g is negative, say A\g = —e, € positive. Then

dy >0 and y?—e<0

BOLY = (et di — yP)e —dy — ) (36)

requiring that
e>d; and e—dy >79y°

With positive square root, equation (36) yields
y
r+dy=dy / [(e + d1 — w?*)(e — dy — u2)]_17du (37)
0

Setting the origin of axes ,y at po, d2 = 0 and the integral expression (37) may
be written (Byrd & Friedman, 1971)

_ (1-m) )
z=qF ( g2 y|m (38)
F(| ) is the elliptic integral of the first kind with modulus
(6 - d]) dl
=—a) d ¢= 2
m (e n dl) an q (e n d1)1/2
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(Because of widespread usage, the notations F( | ) and F(z,y,y’) have not been
altered but should not cause confusion.) Equation (38) can be inverted in terms
of the sn( | ) elliptic function (Byrd & Friedman, 1971):

2qm1/2

Tha-m

The sn(u|m) function, containing sin(u) = sn(u|0), is periodic with period
4K(m), K(m) being the complete elliptic integral of the first kind. Equation
(37) for positive gradient dy/dx, corresponds to the first quarter segment of
sn. A negative gradient analogue of equation (37) would also produce the same
sn function but for the second quarter segment. The constant ¢ can now be
evaluated at half span & = b or at full span = = 2b at p; as

b
= Km)

sn( | m) (39)

(40)

To find m use
b 1
L = 2/ (14 y?)2dz
0
2 b,
= —-— —e)dz
= [w-o

After substitution of y from equation (39) and recognising an identity involving
E(m), the complete elliptic integral of the second kind, there is

L= st s - (1= m)] (1)

Because this problem is equivalent to minimising L given I, it is expected
that a somewhat similar expression may be found for I,,. Indeed,

b
Iz = 2/ v*(1 + y'?)%dz
0

2 [° 22
= _I/o ¥ (y° ~e)dz
producing
4bg? E(m)
Lp= —4 21—
“ 3(1—771)3[(1+m)K(m) (1 - m)] (42)

Thus m can be determined numerically from (41), given L and b, thence
¢ from equation (40) and from (42). The I, values which appear in Table 1.
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Efficient algorithms for calculating K(m), E(m) and sn were obtained from
Abramowitz & Stegun (1965). Only a single m was found in (zo,21), giving
assurance that the Jacobi condition is satisfied and a global minimum has been
found. The only reference to this problem found by the Study Group moderator
was a last century text of Greenhill (1894), where a heuristic treatment was
given with deduction of the sn form (39) from the dynamics of a whirling chain.
Equations (41) and (42) were not given and neither were any numerical results.

Figure 2(g) shows an optimum shape for a curve where po and p; no longer
lie on y = 0. It is also an sn curve. If L and the distance 2b between po and
p1 are held constant, the modulus m will increase towards 1 as the angle of
rotation, ¢, of the line po—p; is increased. If b is replaced by bcos(¢) then m
is still determined by equation (41) and the expression for y of equation (39)
still holds. The curve S then becomes thinner and taller. At the critical value
of ¢ = 7/2, po is directly above p; and S is now a vertical straight line, rising
L(L + 2b) above p; then folded on itself, falling L(L - 2b) to po — a strong
maximum situation.

If z and y were interchanged in all parts of the preceding solution, then
the solution fits exactly the case of maximising I, given L and its reciprocal,
minimising L given Iy,.

(c) Other cases

The following cases for particular A; within equation (22) are of some interest
and can be analytically determined with known expressions:

e Given I,, and g, minimise L. This corresponds to equations (32) and (33)
with A\¢ = 0. This is a straight forward extension of Section 4(b) and
involves elliptic integrals, F'( | ) and sn functions.

o Given A, minimise L or given L, maximise A. These are isoperimetric
problems of antiquity with S being a circular arc. This means that the J,
L case is also satisfied by circular arcs.

e Given I,;, § and A, minimise L. This is the case defined by equations
(32) and (33). The solutions involve elliptic integrals of the first and third
kinds. If calculations lead to Ag = 0 identically, the required A is exactly
that arising from targeted I, and g and the integrals of the third kind
vanish. Conversely, if Ay = As = 0 arise then § is a circular arc due to A.
This case provides the dominant requirement of the overall optimisation
problem. A careful study of changes in I, and J will provide good insight
into desired changes in S and vice versa.
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e As indicated in Section 4(b), the I, L case is equivalent to the I, L
case and there is similar equivalence for I, Z, A, L.

The simultaneous presence of z and y terms in equations (30) and (31) is es-
sentially that of the complete problem and no analytical solutions have been
recognised.

(d) Solution of the general problem with envelope

Minimising W requires at least one iterative process for thickness ¢{. From
the discussions above, another would be required for satisfying J targets. In
the presence of F, iterations will be needed if an unconstrained optimum $
were to intersect E/. A portion of the constrained S would then lie on E and the
remainder would satisfy the geometrically unconstrained equations. A discussion
of such free boundaries with obstacles may be found in Elliott & Ockendon
(1982).

Presuming that the second order, nonlinear differential equation (30) could
be solved in analytical form, with two arbitrary constants, the number of non-
linear equations to be solved for the most general case would be eight, with six
Lagrangian multipliers, for each iterate of . An alternative would be to reduce
the nonlinear set to four equations involving the most important quantities, L,
Iz, and A, using the analysis discussed in Section 4(b,c) and iterating on z, 7,
lyy, I, and t. The right mix of analytical and iterative schemes needs to be
investigated.

A major point of importance is the difficulty in solving nonlinear two point
boundary value problems. This point is often used in justifying the use of dy-
namic programming (Cooper & Cooper, 1981) which, in principle, is correctly
applicable to calculus of variation problems with E. However, it has a ‘curse
of dimensions’ wherein the number of independent variables that can be used is
quickly limited by computer processing memory capacity. Usually this number
of variables is low, at five to eight, which makes feasible application marginal in
our case.

Apart from using numerical methods for solving the differential equation, a
recent analytical approach introduced by Adomian (1988) is worthy of considera-
tion. This method has solved many nonlinear equations such as (30) remarkably
efficiently. In essence the method uses a generalised Taylor series. Continuation
can be used when radii of convergence become too small.
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5. Concluding remarks

Within the limits of the Study Group environment, and with some numer-
ical calculations done following it, some progress has been made in developing
approaches to the thin-walled, hollow beam optimisation.

By focussing on the variational calculus method, valuable information can
be obtained for the major section quantities I, and J required in design. Still
more analysis can be done in this area.

Of the approaches discussed — direct numerical optimisation, analytical vari-
ational calculus and dynamic programming — analytical variational calculus is
favoured for gaining greater insight within the design process; dynamic program-
ming is valued for its assurance of finding the global minimum weight in a well
structured way; and the direct approach can be employed quickly using existing
algorithm software.
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